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A B S T R A C T

According to the most recent definition proteomics is a “large-scale study of en-
dogenous proteins, their post-translational modi�cations, interactions and dynamic

behavior in space and time” (Lamond et al., 2012). Quantitative proteomics has become
a standard technique in molecular biology, next to transcriptomics and metabolomics,
to measure cellular response to changing environmental conditions. There are several
quantitative proteomics methods available and the development of new methods is an
active research area. Proteome quanti�cation can either be carried out in a relative way
or on an absolute scale. Relative protein quanti�cation methods allow comparison of
relative protein abundances in samples and characterization of the proteome dynamics
in cellular systems. However, absolute cellular protein concentrations are essential for
quantitative and comprehensive understanding of organism’s metabolism and for math-
ematical modelling in systems biology.

The objectives of this dissertation were as follows: 1) development of methods for the
quantitative analysis of a growth rate dependent Escherichia coli proteome, 2) comparison
of di�erent quanti�cation methods to characterize the E. coli proteome, and 3) to further
our understanding of E. coli metabolism using proteome, transcriptome, metabolome and
cultivation data.

Using an orthogonal acceleration time-of-�ight mass spectrometer (oa-TOF-MS) we
tested an “in-source” fragmentation method for identifying proteins. E. coli K-12 MG1655
cell lysate was separated by SDS-PAGE; fractions were digested and separated by ultra high
performance liquid chromatography (UHPLC). Peptides were identi�ed using oa-TOF-MS to
measure exact masses of parent ions and the fragment ions generated by “in source” col-
lision induced dissociation (CID). Fragmentation of all compounds was achieved by rapid
cycling between high and low values of energy applied to the ions. More than 100 pro-
teins of the E. coli K12 proteome were identi�ed and relatively quanti�ed. Results were
found to correlate with transcriptome measured by DNA microarray (R2 = 0.64). However,
the up-front CID method was not able to comprehensively quantify enough of the pro-
teome to study the metabolism of E. coli. Therefore, further studies were carried out with
tandem mass-spectrometer LTQ Orbitrap.

Metabolic labeling with 15N labeled ammonium salt (15NH4Cl) as the sole nitrogen
source was used in a quantitative proteomics study of the growth rate dependent acetate
over�ow metabolism of E. coli K-12 MG1655. Metabolic labeling of growing cells is a reli-
able method for quantitative proteome measurements because the label is incorporated
into the cells at the earliest stage possible. However, to reduce costs, 15N labeled batch
culture was used as a spike-in reference in this study. As a result, approximately 1,600
E. coli proteins were quanti�ed at �ve di�erent growth rates along with transcriptome
data, resulting in a reasonable correlation (R2 = 0.62-0.84 for biological replicates and R2

= 0.51-0.62 for protein and mRNA comparison).
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abstract

Although we obtained good coverage and biologically interesting results with relative
quanti�cation, many mathematical models applied in systems biology require absolute
protein concentrations. Measuring concentrations in metabolome or clinical proteome
studies is usually achieved using isotopically labeled standards. However, absolute quan-
ti�cation of the whole proteome by spiked-in isotope-labeled proteins, peptides or con-
catenated peptides is unfeasible due to its high cost and labor (Brownridge et al., 2011;
Ludwig et al., 2012; Whiteaker et al., 2011). Label-free methods are an attractive alternat-
ive to labeling experiments. Absolute protein abundances were thus calculated using the
APEX spectral counting method applied to the data from the 15N labeled experiments. We
demonstrated that from existing data it is possible to obtain absolute protein copy num-
bers per cell, but care must be taken in sample preparation because pre-fractionation of
the samples might a�ect the accuracy of label-free methods.

To compare spectral counting with peak area measurement we carried out a shotgun
experiment and calculated protein copies in the cell by spectral counting methods APEX
and emPAI and by the intensity based method iBAQ. Good correlation (R2 = 0.76-0.81)
between the three methods was demonstrated. However, in the case of spectral counting
methods, very large variance was observed for ribosomal proteins, and absolute protein
concentrations were not normally distributed. Peak intensity based method iBAQ pro-
duced the best correlation between biological replicates, had a normal distribution of
protein abundances in the cell, and had smallest variations for ribosomal proteins.

This dissertation forms the basis for further detailed studies of bacterial metabolism.
Relative and absolute proteome quanti�cation methods are now available as tools to be
used in combination with transcriptomics, metabolomics, steady state cultivation, and
metabolic modeling to elucidate quantitative peculiarities of bacterial physiology.
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K O K K U V Õ T E

Vastavalt kõige uuemale definitsioonile on proteoomika teadusharu, mis tege-
leb kõigi organismis, organellis või rakus toodetud valkude ja nende post-transla-

toorsete modi�katsioonide uurimisega ajas ja ruumis (Lamond et al., 2012). Proteoomi-
kast on saanud transkriptoomika ja metaboloomika kõrval oluline meetod molekulaar-
bioloogias mõistmaks raku või organismi vastust muutuvatele keskkonnatingimustele.
Proteoomi kvanti�tseerimiseks eksiteerib mitmeid meetodeid ning intensiivne uute mee-
todite välja töötamine on väga aktuaalne. Proteoomi kvanti�tseerimist teostatakse suhte-
lisel või absoluutsel tasemel. Suhteline kvanti�tseerimine võimaldab võrrelda sama val-
gu koguse erinevust proovide vahel ning valkude muutusi ajas. Samas ei anna suhteline
kvanti�tseerimine aimu kui palju molekule viib rakus läbi teatud protsesse. Absoluut-
ne kvanti�tseerimine võimaldab mõõta valkude kogust ühikutes ning võrrelda erinevate
valkude konsentratsioone. Absoluutsed valkude kontsentratsioonid rakus on olulised süs-
teemibioloogias kasutatavates matemaatilistes modelleerimistes, et mõista terviklikult or-
ganismi ainevahetust.

Käesoleva uuringu eesmärgid olid järgmised: 1) kvantitatiivsete proteoomi mõõtmis-
meetodite juurutamine Escherichia coli kasvukiirusest sõltuva proteoomi uurimisel, 2) eri-
nevate kvantitatiivsete proteoomi mõõtmismeetodite võrdlemine ja 3) pidevkultiveeri-
miskatsetest pärit kvantitatiivse proteoomikaandmete analüüs koos teiste –oomikaand-
metega, et selgitada E. coli ainevahetuse iseärasusi.

Esmalt katsetasime uudset fragmenteerismismeetodit valkude identi�tseerimiseks ka-
sutades suhteliselt odavat lennuaja massispektromeetrit (TOF-MS). E. coli K-12 MG1655 ra-
kulüsaat fraktsioneeriti geelelektroforeesi (SDS-PAGE) abil, valgu fraktsioonid lõigati en-
süümiga trüpsiin peptiidideks ja saadud peptiidid lahutati ultra-kõrglahutus vedelikkro-
matograa�a (UHPLC) abil. Peptiidid identi�tseeriti nende täpse massi järgi ning seejä-
rel lõhuti kõik mass-spektromeetrisse sisenenud ioonid fragmentideks, mis iseloomus-
tasid peptiidide aminohappelist järjestust. Selline protsess erineb tavaliselt proteoomikas
kasutatavast, sest: 1) kasutatakse ühekordset mass-spektromeetrit tavaliselt kasutatava
tandem-mass-spektromeetri asemel; 2) lõhutakse kõik mass-spektromeetrisse sisenevad
ioonid, samas kui tavaliselt lõhutakse 5-20 kõige intensiivsemat mitmekordselt laetud
iooni. Antud meetodiga identi�tseeriti ja kvanti�tseeriti sadakond valku E. coli K-12 pro-
teoomis, mis olid korrelatsioonis transkriptoomi analüüsi tulemustega (R2 = 0,64). Kuna
ei saavutatud piisavat proteoomi kattuvust, et uurida põhjalikult E. coli ainevahetuse ise-
ärasusi, jätkati proteoomi analüüsi tandem-mass-spektromeetriga LTQ Orbitrap.

Kasvukiirusest sõltuva atsetaadi ülevoolu metabolismi uurimiseks E. coli K-12 MG1655
tüves proteoomi tasemel kastutati valkude metaboolset märgistamist, lisades söötmesse
15N sisaldava ammooniumsoola (15NH4Cl). Metaboolne märgistamine on üks efektiivse-
maid proteoomi kvanti�tseerimise meetodeid, kuna isotoopne märgis lisatakse uuritava-
tesse valkudesse võimalikult varajases staadiumis ning edasine proovi töötlus ei põhjusta
kvanti�tseerimisse vigu. Märgistatud söötmete kasutamine pidevkultiveerimises on aga
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kokkuvõte

väga kallis, seetõttu lisati pidevkultiveerimiskatsete proovidele standardina 15N märgise-
ga bakterikultuuri, mis oli kasvatatud eraldi perioodilise kutiveerimise eksperimendis. Ka-
sutades SDS-PAGE fraktsioneerimist ja nano kõrglahutus vedelikkromatograa� koos LTQ
Orbitrap mass-spektromeetriga identi�tseeriti ja kvanti�tseeriti suhtelisel skaalal umbes
1600 E. coli valku viiel erineval kasvukiirusel. Bioloogiliste replikaatide korrelatsioon (R2

= 0,62-0,84) ja korrelatsioon transkriptoomi andmetega samadest katse punktidest (R2 =
0,51-0,62) demonstreerisid head katsete reprodutseeritavust ning kontrollitud tingimus-
test tulenevat head valgu ja mRNA võrdlust.

Vaatamata sellele, et suhteline kvanti�tseerimine andis hea proteoomi kattuvuse ning
bioloogiliselt huvitavaid tulemusi, on süsteemibioloogia jaoks siiski vajalik ka valkude
konsentratsioonide määramine. Biomarkerite tuvastamisel kasutatakse tihti märgistatud
peptiide või valke, mida lisatakse proovile sisestandardina. Samas kogu E. coli proteoo-
mi kvanti�tseerimine tähendaks töötamist tuhande ja rohkema standardainega, see on
tänu suurele töömahule ja maksumusele praegusel hetkel võimatu. Märgisevabad kvanti-
�tseerimise meetodid on muutunud järjest populaarsemaks kui odav alternatiiv märgise-
ga kvanti�tseerimisele. Seetõttu arvutati eelnevalt metaboolselt märgistatud ja SDS-PAGE
abil fraktsioneeritud proovide relatiivsetest andmetest MS spektrite loendamise tehnika-
ga (APEX) absoluutsed valkude kogused rakus. Kuna bioloogiliste replikaatide korratavus
oli oodatust halvem, järeldasime, et olemasolevate andmete põhjal on küll võimalik ar-
vutada absoluutsed valgumolekulide kogused proovis, kuid tuleb olla ettevaatlik proovi
ettevalmistamisega, kuna eelnev fraktsioneerimine võib mõjutada mãrgisevaba kvanti�t-
seerimise täpsust. Et kindel olla fraktsioneerimise negatiivses mõjus märgisevabale kvan-
ti�tseerimisele, teostasime samadele proovidele uue mass-spektromeetrilise analüüsi il-
ma SDS-PAGE fraktsioneerimiseta. Lisaks eelnevalt kasutatud spektrite lugemismeetodile
APEX võtsime kasutusele ka teise spektrite loendamismeetodi emPAI ning piigi pindalal
põhineva arvutusmeetodi iBAQ. Kasutatud kolm erinevat märgisevabalt valke kvanti�t-
seerivat meetodit olid hästi korratavad bioloogilistele replikaatide puhul (R2 = 0,89-0,99)
ja tulemused korrelleerusid hästi ka omavahel: R2 = 0,76-0,81. Samas avastati väga suur
varieeruvus individuaalsete ribosomaalsete valkude kvanti�tseerimisel (mis peaksid ole-
ma võrdsetes konsentratsioonides) just spektrite lugemismeetoditega APEX ja emPAI. Piigi
pindalal põhinev meetod iBAQ andis parima reprodutseeritavuse bioloogilistele replikaa-
tidele ning ribosomaalsete valkude konsentratsioonid erinesid üksteisest samuti kõige
vähem.

Antud doktoritöös saadud tulemusi kasutatakse edasistel E. coli metabolismi kvanti-
tatiivsetel uuringutel. Proteoomi kvanti�tseerimismeetodid on nüüd kasutusele võetud
ning rakendatakse koos transkriptoomika, metaboloomika ning pidevkultiveerimise ja
modelleerimisega kvantitatiivsete rakufüsioloogia uuringutel ja uudsete tootjarakkude
disainiprojektide läbiviimisel.

x



L I S T O F P U B L I C AT I O N S

The following publications form the basis of this dissertation and are reproduced in the
appendices with permission from the publishers.

I Arike L, Valgepea K, Peil L, Nahku R, Adamberg K, Vilu R Identi�cation and re-
lative quanti�cation of proteins in Escherichia coli proteome by “up-front”
collision-induced dissociation. European Journal ofMass Spectrometry, 16(2):227-
35 (2010)

II Valgepea K, Adamberg K, Nahku R, Lahtvee PJ, Arike L, Vilu R Systems biology
approach reveals that over�ow metabolism of acetate in Escherichia coli is
triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC
Systems Biology, 4:166 (2010)

III Arike L, Valgepea, K, Peil, L, Nahku, R, Adamberg, K, Vilu, R Comparison and
applications of label-free absolute proteome quanti�cation methods on
Escherichia coli. Journal of Proteomics, 75(17):5437-5338 (2012)

summary of author’s contribution

The author assumed the main role setting up the proteomics methods applied at the Com-
petence Centre of Food and Fermentation Technologies. This includes designing the rel-
ative and absolute quanti�cation work�ows for microbes and food samples.

I In Publication I, the author performed the experimental work, analysed and inter-
preted the data, and wrote the manuscript.

II In Publication II, the author designed and performed metabolic labelling, prepared
the proteome samples, and analysed the proteome data.

III In Publication III, the author performed the experimental work, analysed and in-
terpreted the data, and wrote the manuscript.

xi



L I S T O F P R E S E N TAT I O N S

I Arike L Comparison of two common proteomics platform applied on
growth rate dependent characterization ofLactococcus lactis proteome. Oral
presentation at Waters 3rd Nordic User Meeting, 11 September, 2012, Jurmala, Latvia.

II Arike L Comparison and Applications of Label-free “Absolute” Proteome
Quanti�cation Methods on Study of Bacterial Proteome. Poster presentation
at 60th Conference on Mass Spectrometry and Allied Topics, ASMS, 20-24 May 2012,
Vancouver, Canada.

III Arike L From relative to absolute proteome quanti�cation. Oral presentation
at MaxQuant Summerschool, 22-27 May 2011, Munich, Germany.

IV Arike L Quantitative Proteomics Applied on Studies of Microorganisms.
Oral presentation at 6th Joint Tartu – Turku – Tallinn Meeting “Exploring Science
and Culture”, 11-13 May 2011, Tallinn, Estonia.

V Arike L, Lahtvee, PJ, Valgepea, K, Nahku, R, Adamberg, K, Vilu R. Character-
ization of Proteome Dynamics at Di�erent Growth Rates in Continuous
Cultures Poster presentation at Systems Biology of Microorganisms, 22-24 March
2010, Paris, France.

VI Arike L, Valgepea K, Nahku R, Lahtvee PJ, Peil L, Adamberg K, Vilu R. Quantit-
ative study of Escherichia coli proteome by 15N-labeling at di�erent growth
rates. Poster presentation at SPS Scienti�c Meeting: “Proteome Dynamics: Protein
Quanti�cation in Time and Space”, 01-04 December 2009, Zurich, Switzerland.

VII Arike L, Nahku R, Lahtvee PJ, Adamberg K, Vilu R. Identi�cation and relative
quanti�cation of proteins in Escherichia coli proteome using up-front CID.
Poster presentation at Proteomic Forum 2009, 28 March - 02 April 2009, Berlin, Ger-
many.

xii



A D D I T I O N A L P U B L I C AT I O N S

A Olspert A, Arike L, Peil L, Truve E. Sobemovirus RNA linked to VPg over a
threonine residue. FEBS Lett, 585(19):2979-85 (2011).

B Lahtvee PJ, Adamberg K, Arike L, Nahku R, Aller, Vilu R. Multi-omics approach
to study the growth e�ciency and amino acid metabolism in Lactococcus
lactis at various speci�c growth rates. Microb Cell Fact, 10:12 (2011).

C Nisamedtinov I, Kevvai K, Orumets K, Arike L, Sarand I, Korhola M, Paalme T.
Metabolic changes underlying the higher accumulation of glutathione in
Saccharomyces cerevisiae mutants. Appl Microbiol Biotechnol, 89(4):1029-37 (2011).

D Sumeri I, Arike L, Stekolštšikova J, Uusna R, Adamberg S, Adamberg K, Paalme
T. E�ect of stress pretreatment on survival of probiotic bacteria in
gastrointestinal tract simulator. Appl Microbiol Biotechnol, 86(6):1925-31 (2010).

E Sumeri I, Arike L, Adamberg K, Paalme T. Single bioreactor gastrointestinal
tract simulator for study of survival of probiotic bacteria. Appl Microbiol
Biotechnol, 80(2):317-24 (2010).

xiii



A C K N O W L E D G M E N T S

I am grateful to Prof. Raivo Vilu, who has always had great faith in me. He was the one
who brought me to science when I was just a third year student. He was the one who
directed me to mass spectrometry and proteomics when I did not have any clue of those
techniques. And he is the one who always supports me if I have any doubts.

I am also thankful to Kaarel Adamberg for supervising me through last seven years.
His deep knowledge in bacterial metabolism and physiology have been of great help.
Probably I would not be still a scientist, if Kaarel would not been teaching me in the
beginning. He made work in laboratory interesting and challenging.

My journey in proteomics would not have been so smooth if I would not found in the
middle of the way my proteomics “guru” Lauri Peil. He is the one who I owe most of my
skills in proteomics. Although he taught me in the hard way I value this experience very
much. Without Lauri I would have kept on inventing bicycles.

Fellows — Kaspar, Karl, Petri, Ranno, Sten — it has been honour to be accepted in your
team. I loved the wicked humour. Thank you for your support and constructive critics. I
hope that my presence have been as useful for you as yours have been for me.

Girls — Kadri, Jana, Gethe — hang on.
Triin, Reet, Anett — thank you for teaching me teaching.
Andrus, Klim — without you I would be lost in data handling.
Mart — believe it or not, but my computer just does not work when you are not around.
All the colleagues in CCFFT, your support and help over the years means a lot to me

and hopefully we will work together again one day.
My friends and family, who never have really understood what I am doing those long

days in the laboratory, you have always cheered me up and never doubted in me.
Petri-Jaan, who is willing to discuss science with me 24/7 while also being wonderful

partner in life. You have kept me going when I have been facing di�culties.
The �nancial support for this research was provided by the European Regional Devel-

opment Fund project EU29994, SA Archimedes through the project 3.2.0701.11-0018 and
Ministry of Education, Estonia, through the grant SF0140090s08. These studies were sup-
ported by European Social Fund’s Doctoral Studies and Internationalization Programme
DoRa. Programme DoRa is carried out by Archimedes Foundation. This work has been
partially supported by graduate school “Functional materials and technologies” receiving
funding from the European Social Fund under project 1.2.0401.09-0079 in Estonia.

xiv



A C R O N Y M S

2D two dimensional
AIF all-ion fragmentation
APEX absolute protein expression
ATP adenosine-5’-triphosphate
BSA bovine serum albumin
CID collision induced dissociation
COG Cluster of Orthologous Groups
CV coe�cient of variation
DDA data dependent analysis
DIA data independent analysis
DNA deoxyribonucleic acid
ECD electron capture dissociation
emPAI exponentially modi�ed protein abundance index
ESI electrospray ionization
ETD electron transfer dissociation
FDR false discovery rate
FT-ICR Fourier transform ion cyclotron resonance
FWHM full width at half maximum
HCD higher energy collisional dissociation
HPLC high performance liquid chromatography
iBAQ intensity based absolute quanti�cation
ICAT isotope-coded a�nity tag
IEF isolectric focusing
IPG immobilized pH gradient
iTRAQ isobaric tags for relative and absolute quantitation
LC liquid chromatography
MALDI matrix-assisted laser desorption/ionization
MFA metabolic �ux analysis
mRNA messenger RNA
MS mass spectrometry
MS/MS tandem mass spectrometry
m/z mass to charge ratio
oa-TOF-MS orthogonal acceleration time-of-�ight mass spectrometry
ORF open reading frame
PAI protein abundance index
PQD pulsed Q collision induced fragmentation
PTM post-translational modi�cation
Q-TOF quadrupole time-of-�ight
QqQ triple quadrupole

xv



acronyms

RNA ribonucleic acid
RP Pearson’s correlation coe�cient
R2 squared Pearson’s correlation coe�cient
RP reverse phase
SDS sodium dodecyl sulfate
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SILAC stable isotope labeling by amino acids in cell culture
SRM selected reaction monitoring
TIC total ion count
TMT tandem mass tag
TOF time-of-�ight
TOF-MS time-of-�ight mass spectrometry
UHPLC ultra high performance liquid chromatography
UPS2 Sigma-Aldrich® universal proteomics standard

xvi



T H E S I S





1
I N T R O D U C T I O N

Systems biology takes advantage of transcriptome, metabolome, �uxome, and pro-
teome measurements, in order to understand the regulation of the cellular metabol-

ism (Nagaraj et al., 2011; Costenoble et al., 2011; Buescher et al., 2012). Recently, quantitat-
ive proteomics has become a standard procedure in molecular biology to measure cellular
responses to changing environmental conditions (Walther and Mann, 2010). Proteome
quanti�cation can either be carried out in a relative way or on an absolute scale. While
relative protein quanti�cation methods allow one to compare protein ratios in samples
and characterize proteome dynamics in cellular systems, absolute cellular protein con-
centrations are required for a quantitative understanding of metabolic processes and for
mathematical modeling in systems biology. Knowledge of cellular protein concentrations
enables one to evaluate the cost of running an active metabolic pathway or expressing
enzymes in a stress response, estimate ribosomal translational capacity, calculate work-
ing rates of enzymes or metabolic capacity of cells, etc. Knowledge gained from these
examples allows one to manipulate the metabolic behavior of the organism under study.
For example, one can postpone or even preclude Escherichia coli acetate accumulation, a
processes that is detrimental for target product synthesis, inhibits growth, and diverts
valuable carbon from biomass formation (Nakano et al., 1997; Contiero et al., 2000).

The objective of this dissertation was to develop methods for the quantitative meas-
urement of proteome and analysis of proteomics data together with the data of other
omics’ methods, in order to reveal quantitative features of the intracellular metabolism
of microorganisms. Initially, a new method to analyze peptides on a single mass spectro-
meter was implemented. Because it resulted in a low number of protein identi�cations,
more sophisticated equipment was used in further relative and absolute quanti�cation
analyses. Relative quantitative proteomics data, obtained by metabolic labeling with 15N-
enriched salt as the sole nitrogen source, was used to characterize mechanisms of acetate
over�ow in E. coli together with transcriptomics and metabolomics data. The absolute
abundances of proteins were calculated from relative ratios by using a peak counting
label-free method. Results were evaluated using a shotgun experiment to which internal
standards were added. Based on the shotgun experiment, three label-free absolute quanti-
�cation methods were compared and absolute proteome data was analyzed together with
other omics data to characterize various regulatory mechanisms in the metabolism of E.
coli.
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2
L I T E R AT U R E R E V I E W

2.1 proteomics

Proteomics is the study which aims to identify and quantify all proteins and their
post-translational modi�cations, interactions and dynamic behavior in space and

time, expressed in a cell, tissue or organism (Lamond et al., 2012). Although the idea
of analysing the complete complement of proteins expressed in a sample arose already
in 1970s, proteomics as a research area was de�ned in 1997 in order to make an analog
with genomics (James, 1997).

2.1.1 History of proteomics

Although de�ned more than twenty years later the beginning of proteomics can be con-
sidered to be in 1970s, when Patrick H. O’Farrell managed to resolve 1,100 Escherichia
coli proteins by two dimensional (2D) polyacrylamide gel by employing two independ-
ent properties of proteins to separate them: focusing by their isoelectric point in �rst
dimension and separating them by sodium dodecyl sulfate (SDS) electrophoresis accord-
ing their molecular weight in second dimension (O’Farrell, 1975). In order to identify
proteins highly reproducible gels were required to map the gels and for identi�cation
puri�ed proteins, mutants of known genes and speci�c antibodies were used (Neidhardt,
2011).

Protein identi�cation remained slow and laborious until new methods emerged. In the
1970s Edman degradation (Edman, 1949) was automated, allowing one to sequence poly-
peptide chains faster by removing labelled N-terminal amino acids and identifying them
by chromatography (Edman and Begg, 1967). A great improvement was the development
of microsequencing techniques for electroblotted proteins (Aebersold et al., 1986, 1987)
which allowed sequencing of less than 100 picomoles of protein.

Based on protein identi�cations 2D gel databases were established (for example human
secreted proteins (Celis et al., 1987); E. coli K-12: (VanBogelen et al., 1990)) and identi�c-
ation of proteins became more straightforward. However, most of the reference maps
contained only a small portion of proteins identi�ed (Wilkins et al., 1996b). A key break-
through with proteomics techniques arrived with the development of large biomolecule
mass spectrometry analysis by soft ionization techniques MALDI (Tanaka et al., 1988; Karas
and Hillenkamp, 1988) and ESI (Fenn et al., 1989). The inventors of both methods were re-
warded with the Nobel prize in chemistry in 2002. Soft ionization techniques allowed one
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to use mass spectrometry for protein identi�cation and the �rst method to identify pro-
teins from 2D gel spots was peptide mass �ngerprinting (James et al., 1993; Pappin et al.,
1993; Henzel et al., 1993). This technique is based on cleaving proteins into peptides using
an enzyme and then determining the exact masses of the product peptides. These masses
are then compared against in silico databases where protein sequences were cleaved with
the same enzyme used in the experiment (Henzel et al., 1993). Peptide mass �ngerprinting
is suitable for analyzing single proteins or simple mixtures where one protein dominates.
In order to analyze complex protein mixtures, the tandem mass spectrometry approach
was developed and applied (Wilm et al., 1996). The tandem MS approach (also termed
MS/MS or MSn) enables one to fragment peptides and proteins in the gas-phase and, based
on these fragment ions, the peptide sequence can be deduced (Wilm et al., 1996). Whole
genome sequencing, development of new, faster and more sensitive MS instruments and
miniaturizing liquid chromatography columns were start for mass-spectrometry based
proteomics.

Besides mass spectrometry based proteomics, other methods exist to analyze the pro-
teome. Some examples include cell imaging by light and electron microscopy, various
electrophoresis and chromatography methods, array and chip experiments, and western
blotting. Cell imaging allows one to localize and quantify proteins. Cryo electron tomo-
graphy (Malmström et al., 2009) and �uorescence microscopy (Taniguchi et al., 2010)
have been used to quantify proteins in single cells. Antibody based experiments such as
enzyme-linked immunosorbent assay (ELISA) (Engvall and Perlmann, 1971) or more mod-
ern protein microarrays (reviewed by Berrade et al. (2011)) or western blotting (Renart
et al., 1979) are useful for targeted detection and quanti�cation of proteins. However,
these techniques are limited in the number of proteins which can be identi�ed and ana-
lyzed. To overcome this limitation there have been some major developments in protein
microarrays to increase throughput (reviewed by Berrade et al. (2011)). Although the
above mentioned methods are also important in proteome measurement, this disserta-
tion is concentrated on mass spectrometry based proteomics.

2.1.2 Proteome

The term “proteome” was �rst used in 1994 by Marc Wilkins and was de�ned as “the entire
protein complement expressed by a genome” (Wilkins et al., 1996a). The human genome
contains roughly 20,500 open reading frames (ORFs) which encode proteins (Clamp et al.,
2007). However, it is believed that more than 2 million di�erent proteins are expressed
in di�erent cells within the human body (Kelleher, 2012). This large diversity of proteins
is driven mainly by alternative splicing (reviewed by Nilsen and Graveley (2010)) and
a variety of post-translational modi�cations (PTMs) that further in�uence protein con-
formation and function (reviewed by Walsh et al. (2005)). Microbial proteomes are less
complex, having less PTMs, and a smaller number of ORFs (E. coli 4,333 ORFs (Riley et al.,
2006) and Mycoplasma pneumoniae has 690 ORFs (Maier et al., 2011)), making them ideal sub-
jects to establish new molecular biology methods (e. g., (O’Farrell, 1975; Hörth et al., 2006;
Taniguchi et al., 2010)).
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2.1 proteomics

Proteins are built up from 20 amino acids with di�erent side chains that de�ne the
chemical properties of amino acids. Covalent peptide bonds link amino acids to long
polypeptide chains, which are known as primary structure of protein. Proteins fold into
secondary structures (α-helices and β-sheets), which in turn fold into tertiary structure
(three-dimensional organization). There is a large diversity of proteins: while there are
only 20 amino acids, they can be combined into 20n di�erent polypeptide chainsn amino
acids long. However, not all of them are possible to exist due to unstable conformation
(Alberts et al., 2002). After the proteins are translated they may undergo covalent modi-
�cations, called post-translational modi�cations (PTMs) (Walsh et al., 2005), to date over
200 of such modi�cations have been detected, the most important being phosphorylation,
acetylation, methylation, glycosylation, disul�de bond formation, sulfation, hydroxyla-
tion, ubiquitination, carboxylation and acetylation of the N-terminal acid (Ho�mann and
Stroobant, 2007). Proteins are the most important functional units of cells; they catalyze
biochemical reactions, act as messengers and transporters and have also defense and
structural roles. It is therefore understandable that there is a large interest in studying
proteins and proteomes (reviews of Mallick and Kuster (2010); Walther and Mann (2010);
Lamond et al. (2012)).

2.1.3 Protein and peptide separation

The goal of proteomics to analyze “the entire protein complement expressed by a
genome” challenges scientists with complex mixtures of proteins with a wide dynamic
range (i. e., the concentration di�erence between the most and least abundant peptides).
The complexity of the proteome can be reduced by protein and/or peptide fractiona-
tion. The �rst very powerful separating method applied on proteins was 2D gel elec-
trophoresis (O’Farrell, 1975). Whilst having great resolving power, it is also very labori-
ous and time consuming and therefore not suitable for high throughput proteomic work-
�ows. Components of 2D gel electrophoresis, isolectric focusing (IEF) and sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), are also used separately for redu-
cing sample complexity prior liquid chromatography mass spectrometry (LC-MS).

IEF is based on the movement of a protein or a peptide in pH gradient and electric
�eld towards its isoelectric point (Righetti, 1983). IEF as �rst dimension of protein or
peptide fractionating method can be performed using immobilized pH gradient (IPG) gels
(Cargile et al., 2004). Another approach is fractionation in the liquid phase, this has been
referred to as o�-gel method (Hörth et al., 2006; Hubner et al., 2008; Tran and Doucette,
2008b). O�-gel fractionation is advantageous over fractionation in the IPG gels due to
better recovery of focused peptides or proteins, as no extraction from the gel needs to be
performed (Hörth et al., 2006). Although isoelectric focusing of proteins can su�er from
low recovery of alkaline and hydrophobic proteins, if performed on the peptide scale,
at least some peptides from these problematic proteins can be typically detected (Hörth
et al., 2006).

SDS-PAGE uniformly separates charged denatured proteins in a matrix made of cross-
linked acrylamide that yields a porous network (Laemmli, 1970). Molecules move in an
electric �eld towards the anode at di�erent rates based on their size. SDS-PAGE can be used
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also as a gel-free system where proteins are constantly eluted from the gel column and
collected in the solution phase (Tran and Doucette, 2008a; Lee et al., 2009). Two dimen-
sional liquid electrophoresis has been combined from o�-gel IEF and gel-free SDS-PAGE to
separate intact proteins (Tran et al., 2011). Gel-free systems are advantageous over in-gel
systems due to the lack of protein recovery problems from the gel (Tran and Doucette,
2008a).

A common separation method for proteins and peptides is liquid chromatography (LC),
where a liquid is used as the mobile phase and a porous solid as the stationary phase. The
most often applied technique is reverse phase (RP) chromatography, where separation
takes place due to an increase of organic solvent in the mobile phase, which detaches
proteins or peptides from carbon chains in the stationary phase according to the hy-
drophobicity of the analytes. Shorter carbon chains (C4, C5, C8) are less retentive, and
therefore used for intact protein separations (Capriotti et al., 2011), while longer chains
(C18) are used for peptide separation. Size exclusion chromatography (SEC) has not seen
widespread use in proteomics, because it o�ers relatively low peak capacity (Tran and
Doucette, 2008a). However, it has been used to isolate large tryptic peptides from tryp-
sin digested peptide pools for further digestion (Tran et al., 2011). A combination of strong
anion exchange (SAX) or strong cation exchange (SCX) chromatography and RP chromato-
graphy are often combined and even automated to perform two dimensional separation,
where molecules are separated �rst by charge and then by hydrophobicity (Washburn
et al., 2001; Wagner et al., 2003).

Because each additional fractionation increases the required material and measure-
ment time, one dimensional analysis with high proteome coverage would be preferable.
Therefore, very long reverse phase columns (up to 50 cm) have been used recently to ob-
tain deep coverage of proteomes (Thakur et al., 2011; Nagaraj et al., 2012; Cristobal et al.,
2012). Long columns are packed with smaller particles to improve resolution, however,
in order to reduce the back-pressure in regular LC, �ow rates have to be reduced and
columns should be heated (Thakur et al., 2011). Traditional high performance liquid chro-
matography (HPLC) has been improved with introducing ultra high performance liquid
chromatography (UHPLC) (Plumb et al., 2004), where high pressure pumps are integrated
in order to use less than 2 µm particles which produce signi�cant increase in peak resol-
ution, sensitivity and analysis speed (Plumb et al., 2004).

2.2 mass spectrometry based proteomics

Today mass spectrometry based proteomics approaches allow one to identify and quan-
tify thousands of proteins from complex samples in less than a day of acquisition time
(Thakur et al., 2011). A common work�ow for mass spectrometry based proteomics is
presented on Figure 1. Brie�y, proteins of interest are extracted from the sample and
the complexity of sample is reduced by any of the protein and/or peptide separation
described in the above section along with other methods. However, while potentially
increasing proteome coverage, any form of fractionation requires more starting material
and increases analysis time. These extra resources are not always acceptable for high
throughput analysis of proteomes. Therefore, many of the bottom-up proteomics meth-
ods today are “shotgun” methods, which skip the pre-fractionation step and start by en-
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zymatic cleavage of the proteins into peptides, most commonly with trypsin (Thakur
et al., 2011). Separated peptides are ionized and entered into the mass analyzer where
the mass to charge ratio (m/z) is measured and in case of a hybrid instrument, ions are
fragmented for sequence determination.

Figure 1 – Common work�ow of bottom-up mass spectrometry based proteomics
experiments.

2.2.1 Mass spectrometers

In general, a mass spectrometer consists of three basic components: an ion source that
ionizes analytes, a mass analyser that measures the m/z value, and a detector that registers
the m/z values.

Development of soft ionization techniques electrospray ionization (ESI) and matrix-
assisted laser desorption/ionization (MALDI) enabled to analyze large, polar, and thermally
labile biomolecules, such as proteins and peptides that previously were not possible to
ionize (Fenn et al., 1989; Tanaka et al., 1988; Karas and Hillenkamp, 1988). Soft ionization
refers to the ability to ionize and volatilize thermally labile compounds, such as peptides
and proteins, without inducing any fragmentation (Mallick and Kuster, 2010). Other soft
ionization methods less frequently applied in proteomics are atmospheric pressure chem-
ical ionization (APCI) and fast atom bombardment (FAB) (Ho�mann and Stroobant, 2007).
In addition to to soft ionization methods, also hard ionization methods exist such as elec-
tron impact, �eld ionization, etc. Hard ionization is usually applied to small, volatile
molecules (Ho�mann and Stroobant, 2007). However, for proteomics research, the most
often applied ion sources are MALDI and ESI.

For MALDI, the sample is �rst mixed and co-crystallized with a matrix, usually a UV-
light adsorbing organic compound. In the ion source UV laser pulse is used to irradiate
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the matrix, which leads to sublimation of the matrix and sample molecules into the gas
phase. The analyte molecules are ionized by receiving protons from the ionized matrix
molecules (Mallick and Kuster, 2010). MALDI generated ions are singly charged and thus
are favorable for analyzing intact proteins (Yates et al., 2009). Because MALDI is not dir-
ectly compatible with LC, it is mostly used to analyze pure molecules or simple mixtures,
which do not require any additional separation prior to mass spectrometry (MS). How-
ever, HPLC separated peaks can be collected and spotted into a matrix on the MALDI target
by robotics and analyzed by MALDI (Mirgorodskaya et al., 2005).

ESI has an advantages over MALDI due to the fact that it produces ions from solution and
therefore is compatible with LC. ESI is performed by applying a high (1-6 kV) voltage to the
capillary carrying the sample in liquid �ow, and results in an electrically charged spray
of droplets (Yates et al., 2009). There are two theories regarding how ionization works in
ESI: (I) after all the solvent is evaporated, excess charges remain on the analytes (Iribarne
and Thomson, 1976), and (II) analytes are accumulated at the surface of the droplet and
are extracted and ionized by �eld desorption (Dole et al., 1968). In ESI, peptides are mainly
multiply charged, as roughly each basic site in the peptide gets protonated (Mallick and
Kuster, 2010). One of the most important developments in proteomics was the inven-
tion of nano-ESI (Wilm et al., 1996) compatible with nano�ow HPLC (Shen et al., 2002). A
nano�ow HPLC system is characterized by very small column diameters (e. g., 75 µm) and
operates at low �ow rates (usually in the range of 50-800 nL·min−1). This is advantage-
ous because peptides can be ionized much more e�ectively if they are concentrated into
small droplets (Gibson et al., 2009). Furthermore, MS is a concentration dependent instru-
ment and if the same amount of analyte is concentrated to smaller volume, MS signal will
be ampli�ed (Shen et al., 2002). A nano-ESI emitter can be integrated with a capillary
column to minimize post-column dead volume which a�ects the separation quality (Xie
et al., 2006). A disadvantage of the capillary merged emitter is that if the emitter fails, it
renders the column unusable (Shen et al., 2002).

There are currently �ve types of mass analyzers used in proteomics: time-of-�ight
(TOF), quadrupole, linear ion-trap, Fourier transform ion cyclotron resonance (FT-ICR) and
Orbitrap mass analyzers (review of Mallick and Kuster (2010)). In order to perform frag-
mentation of molecules, tandem mass spectrometers are used where di�erent mass ana-
lyzers are connected, i. e., hybrid instruments.

In a time-of-�ight (TOF) mass analyzer, the m/z value of an ion is detected by measuring
the time it takes for an ion to travel over a �xed distance inside the high vacuum of the
mass analyzer (review of Mallick and Kuster (2010)). TOF MS is often used as a single
analyzer in combination with a MALDI or ESI ionization source (Eidhammer et al., 2008).

A quadrupole mass analyzer consists of four parallel rods of electrodes. A strong elec-
tric �eld between the electrodes ensures that only ions of de�ned mass can pass through
the electrodes (Eidhammer et al., 2008). An oscillating electrostatic �eld forces ions to
follow a spiral trajectory through the quadrupole rods, with the radius of the ion spiral
depending on the m/z value. Ions with a speci�c m/z value can be trapped with a speci�c
oscillating �eld between the electrodes for fragmentation, while the majority of ions are
discarded (Eidhammer et al., 2008; Schuchardt and Sickmann, 2007).

Quadrupoles are used most commonly as part of a hybrid instrument, e. g., for accumu-
lating, isolating and fragmenting the ions emitted from the ion source on the way to an-
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other mass analyzer (May et al., 2011). A combination of three quadrupoles forms a triple
quadrupole (QqQ) system, where the �rst quadrupole is used as a mass �lter, the second
as a collision cell, and the third as the detector. QqQs systems are relatively slow, low
accuracy (100 ppm) and low resolution (up to 2,000 full width at half maximum (FWHM))
instruments, however they make up for these drawbacks with their excellent sensitivity
(down to attomole level) and dynamic range (up to six orders of magnitude) (Yates et al.,
2009). For Q-TOF two quadrupoles are combined with a TOF analyser. In the MS mode, the
quadrupoles act as an ion guide to the TOF analyzer where mass analysis takes place. In
MS/MS mode, the precursor ions are selected in the �rst quadrupole and undergo fragment-
ation in the second quadrupole. The product ions are analyzed in the TOF device (Domon
and Aebersold, 2006). Q-TOF instruments have a resolution up to> 25,000 FWHM (Domon
and Aebersold, 2010), a mass accuracy of 2-5 ppm, sensitivity up to attomole levels and a
dynamic range of six orders of magnitude (Yates et al., 2009).

A linear ion trap consists of four parallel rods and functions similarly to triple quad-
rupole, however, ion selection, fragmentation, and mass analysis are all performed in a
single device at di�erent times (Schuchardt and Sickmann, 2007). If an ion trap is over
�lled, ions start to interact with each other and a signi�cant loss of resolution and mass
accuracy will follow due to this “space charge” phenomenon (Hager, 2002). To minimize
this saturation e�ect, the amount of ions collected in the ion trap must be optimized. An-
other peculiarity of an ion trap is the low m/z cut-o� as ions with m/z values of less than
30% of precursor m/z are not trapped (also called 1/3 rule) (Cunningham et al., 2006). The
fast scanning rate, sensitivity, �exibility, robustness, and relative low cost are the advant-
ages of ion trap mass analyzers (Schuchardt and Sickmann, 2007). Low mass resolution
(2,000 FWHM) and low accuracy (100 ppm) are the main disadvantages (Domon and Ae-
bersold, 2010). Hybrid instruments where a linear ion trap replaces the third quadrupole
in a triple quadrupole system is termed Q-trap. These instruments have sensitivity down
to the attomole level while still having the speed of a linear ion trap and resolution, ac-
curacy, and dynamic range similar to QqQ (Yates et al., 2009).

Fourier transform ion cyclotron resonance (FT-ICR) MS was for a long time considered
to be the most accurate and suitable instrument for intact protein analysis (Ahlf et al.,
2012). The ions in FT-ICR MS are trapped in a cyclotron where the combination of elec-
tric and strong magnetic �elds accelerates ions to high energy. A Fourier transformation
is used to generate the m/z signal (Eidhammer et al., 2008). FT-ICR MS has the highest
resolution (500,000 FWHM) and mass accuracy (< 2 ppm) of any other currently avail-
able mass spectrometer (Schuchardt and Sickmann, 2007; Yates et al., 2009). FT-ICR has
a femtomole sensitivity and dynamic range of four orders of magnitude (review of Yates
et al. (2009)). However, as FT-ICR MS needs high magnetic �elds it makes the technology
very cost-intensive and poorly accessible (Schuchardt and Sickmann, 2007).

A major technological improvement in proteomics was the development of the Or-
bitrap mass detector (Olsen et al., 2005), which has made rapid, high-sensitivity mass
spectrometry more a�ordable and more widely available (Vogel and Marcotte, 2012). The
Orbitrap can be regarded as a highly modi�ed ion trap (Schuchardt and Sickmann, 2007),
it consists of two concentric electrodes and uses orbital trapping of ions in its electro-
static �elds. The ions orbit around a central electrode and oscillate in the axial direction.
No magnetic �elds are involved and the m/z is obtained by a Fourier transformation of
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the ion current (Olsen et al., 2005). When coupled to an ion trap, the hybrid instrument
retains the advantages of both: four orders of dynamic range, high resolution (more than
100,000 FWHM), high mass accuracy (down to sub-ppm), and good speed and the sensit-
ivity (at femtomole range) (Yates et al., 2009). Orbitrap mass analyzers equipped with a
quadrupole mass �lter in the front allows one to select precursor ion mass and perform
targeted analysis — selected ion monitoring (SIM) and selected reaction monitoring (SRM),
with a high resolution (up to 140,000 FWHM) (Michalski et al., 2011b; Gallien et al., 2012).

2.2.2 Protein/peptide fragmentation and identi�cation

Ions are fragmented in a mass spectrometer in order to obtain information about their
structure or sequence. Proteins and peptides are mostly fragmented by collision induced
dissociation (CID), however also other fragmentation methods exist: electron capture dis-
sociation (ECD) (Zubarev et al., 1998), electron transfer dissociation (ETD) (Syka et al.,
2004), higher energy collisional dissociation (HCD) (Olsen et al., 2007). Despite the frag-
mentation method used, the general fragmentation pattern of peptides is the same: the
fragments are labeled as a, b, c for N-terminally and x, y, z for C-terminally cleaved bonds
(Figure 2) (Roepstor� and Fohlman, 1984; Biemann, 1988).

Figure 2 – Peptide backbone fragmentation pattern: N-terminal fragments a, b, c
and C-terminal fragments x, y, z.

In CID, fragmentation is induced by collision of ions with residual gas in the tandem MS
collision cell and in case of peptides, fragmentation mainly occurs through the cleavage
of the peptide bond, producing y and b fragments (Steen and Mann, 2004). CID preferably
breaks the weakest bonds, a clear disadvantage in post-translational modi�cation studies,
where labile modi�cations are fragmented �rst (Ho�mann and Stroobant, 2007). The
same applies for large peptides and proteins where mostly N- and C-terminal regions are
fragmented (Eidhammer et al., 2008; Ho�mann and Stroobant, 2007).

CID can also be applied in one of the high-pressure regions between the atmospheric
pressure source and the mass spectrometer (van Dongen et al., 1999). This process is
called “up-front CID” (van Dongen et al., 1999) and has also been referred as “in-source
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CID” (Williams et al., 2003). This method has been applied to identify simple mixtures of
tryptic peptides (Williams et al., 2003) and rapid top-down characterization of antibodies
(Zhang and Shah, 2007; Ren et al., 2009). Because there is no precursor ion selection for
fragmentation, observed fragments can result from all precursor ions, including from the
solvent and background species, which may result in a noisy spectrum (Williams et al.,
2003).

CID fragmentation in linear ion traps is highly e�cient, however, when recorded in
the same linear ion trap, the resulting MS/MS spectra have relatively low mass accuracy
and resolution (Olsen et al., 2007). Furthermore, low-mass fragment ions are not trapped
(Cunningham et al., 2006), making small N- and C-terminal fragment ions unobservable.
Because CID fragmentation is preferably carried out through the lowest energy fragment-
ation pathways, this sometimes leads to uninformative spectra (Olsen et al., 2007). Pulsed
Q collision induced fragmentation (PQD) (Schwartz et al., 2005) and higher energy colli-
sional dissociation (HCD) (Olsen et al., 2007) were developed to overcome the limitations
of CID in trapping instruments and their hybrids. Although covering low m/z range, PQD
has been reported to be less e�ective for fragmentation than CID (Bantsche� et al., 2008).
HCD is more e�ective than CID and produces better coverage of the low mass region and
more y fragments. This technique is bene�cial for the quanti�cation of isobaric tag (TMT
and iTRAQ) labelled peptides in the low mass region (Köcher et al., 2009; Pichler et al.,
2011), and for better peptide coverage in order to perform de novo sequencing (Michalski
et al., 2012b).

While CID, HCD, and PQD mostly produce b and y fragments, there exist complement-
ary fragmentation methods that produce di�erent fragments that increase the sequence
coverage of peptides and proteins. Electron capture dissociation ECD occurs in FT-ICR MS
when trapped multiple protonated ions are exposed to thermal electrons and fragment
mostly to c and z ions, and occasionally also to a ions (Zubarev et al., 1998). However,
because thermal electrons are not possible to trap in ion traps and triple quadrupoles,
ECD is exclusively used only with FT-ICR MS (Syka et al., 2004). ETD (Syka et al., 2004)
produces similar fragments to ECD and can be used in triple quadrupole systems, lin-
ear ion traps, and their hybrid instruments. In ETD, electrons are delivered to multiply
charged molecules with anions which can be e�ectively trapped in triple quadrupoles
and ion traps (Syka et al., 2004). ECD and ETD are preferred fragmentation methods for
proteins because they can fragment molecules nearly everywhere along the backbone
(Ho�mann and Stroobant, 2007) while CID causes fragmentation mainly at the terminal
regions (Eidhammer et al., 2008). Both, ECD and ETD, are for the same reason also used
to study modi�ed peptides or proteins (Xu et al., 2011).

Although it is possible to identify proteins based on their proteolytic peptide masses
— peptide mass �ngerprinting (Yates III et al., 1993; Henzel et al., 1993; Pappin et al., 1993),
information rich fragmentation spectra are helpful in many ways for peptide and protein
identi�cation. First, it is possible to perform de novo sequencing for unknown peptides
by reading out peptide sequence based on the mass di�erences of fragments that corres-
pond to individual amino acids (Ma and Johnson, 2011). Second, biological samples often
contain complex mixtures of proteins where peptide mass �ngerprinting is not capable
of mapping the peptides back to proteins (Eng et al., 1994). Third, if proteins or peptides
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contains many modi�cations or unknown modi�cations, it is impossible to identify them
based only on the exact mass (Lanucara and Eyers, 2012).

Tandem MS spectra can be identi�ed by de novo sequencing, where the peptide sequence
is read from MS/MS spectra by interpreting fragment ions, either manually, or with the
help of special software (PEAKS, PepNovo) (review of Nesvizhskii et al. (2007)). De novo
sequencing is advantageous if the organism is unknown or the protein has some un-
known modi�cations (review of Nesvizhskii et al. (2007)). However, the high-throughput
interpretation of tandem MS spectra is performed by search engines which compare pre-
cursor masses and their fragments with peptides from in silico digested proteome data-
bases (Nesvizhskii et al., 2007). The candidate peptides are restricted to speci�ed criteria
such as mass tolerance, digestion enzyme, and PTMs allowed, and the search engine will
result in a list of peptides that match with the measured MS/MS spectra (Nesvizhskii et al.,
2007). Search engines are mainly applying probability based algorithms such as Mas-
cot (Perkins et al., 1999) and Andromeda (Cox et al., 2011), or heuristic algorithms like
SEQUEST (Eng et al., 1994) and XTandem (Craig and Beavis, 2004). Probability based
algorithms calculate a probability that the observed number of matches between the
calculated and measured fragment masses could have occurred by chance (Cox et al.,
2011). Heuristic algorithms correlate acquired MS/MS spectra with theoretical spectrum
and counts the number of peaks in common (Eng et al., 1994).

In large-scale proteomics studies, database searching remains the most frequently used
peptide identi�cation method (Nesvizhskii et al., 2007). However, there is also the possib-
ility of identi�cation based on sequence tags. Sequence tags combine small de novo iden-
ti�ed fragments and database searchs to identify peptides (Mann and Wilm, 1994) and
proteins (Mørtz et al., 1996). This method starts by identifying short partial sequences
from MS/MS spectra, followed by a database search (Nesvizhskii et al., 2007).

In order to validate the identi�ed database identi�cation, false discovery rate (FDR) is
calculated, which is identi�ed as the proportion of incorrect identi�cation among all iden-
ti�cations (Nesvizhskii et al., 2007). FDR estimation can be carried out by a targeted-decoy
strategy, where MS/MS spectra are searched against a target database of protein sequences
supplemented with the reversed or randomized sequences of the same database (Mascot,
Andromeda) (Perkins et al., 1999; Cox et al., 2011). A FDR threshold will be applied to �lter
the data to su�cient reliability (Cox et al., 2011). Di�erent strategies may be applied to
search against protein sequence databases and to calculate the probability of each pep-
tide being correctly assigned. It is also possible to estimate the FDR from this probability
(peptideProphet and ProteinProphet) (Nesvizhskii et al., 2003). In addition to FDR, also
false positive rate (FPR) is sometimes used. It is de�ned as the probability that a randomly
matched spectrum is correctly matched (Nesvizhskii et al., 2007).

2.2.3 Top-down and bottom-up proteomics

In mass spectrometry-based proteomics, three approaches exist how to analyze proteins:
the top-down approach that measures intact proteins; the middle-down approach that
measures long polypeptides, and the bottom-up approach that cuts proteins into peptides
and identi�es proteins based on the peptides present.
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Top-down proteomics analyses intact protein masses and their fragments. Fragment-
ation is obtained most preferably by ECD and ETD gas-phase dissociation (Yates et al.,
2009), although on Orbitrap platforms, HCD has also been used successfully (Ahlf et al.,
2012; Michalski et al., 2012a). Top-down proteomics identi�es proteins using sequence
tags (Mørtz et al., 1996) or based on accurate masses (Fenn et al., 1989) or more often com-
bines both (Durbin et al., 2010). In order to successfully deconvolute multiply charged
ions in ESI spectra to singly charged species, the MS must be able to resolve isotope distri-
butions and ion charge states; therefore, high resolution instruments like FT-ICR MS and
Orbitrap are mainly used (Ho�mann and Stroobant, 2007; Durbin et al., 2010).

By top-down methods combinations of protein PTMs are easier to characterize (Lanu-
cara and Eyers, 2012) and better sequence coverage of the protein is obtained allowing
to identify protein isoforms (Tran et al., 2011). It is also more precise to directly quantify
intact proteins than to calculate protein concentration based on the peptides originating
from the protein (Du et al., 2005; Waanders et al., 2007). Top-down proteomics measur-
ing intact proteins is gaining more attention as the protein separation methods improve
(Tran et al., 2011; Ahlf et al., 2012) and software develops (Durbin et al., 2010). Recently top-
down proteomics approach applying Orbitrap mass analyzer and gel-free electrophoresis
identi�ed 690 unique proteins and over 2000 protein isoforms (proteoforms) with intact
masses < 50 kDa (Ahlf et al., 2012).

Although it seems to be more reasonable to analyze proteins directly rather than cut
them into peptides and then attempt to identify them from a complex mixture, top-down
proteomics approaches are still too cumbersome for routine use. For example, synchron-
izing protein on-line separation with the MS time scale is challenging because intact pro-
teins require more time for ionization and fragmentation (Lanucara and Eyers, 2012) and
most often o�-line LC or gel-free IEF or/and SDS-PAGE fractions are analyzed (Tran et al.,
2011; Ahlf et al., 2012; Lanucara and Eyers, 2012). Furthermore, top-down analysis is lim-
ited to high mass-accuracy and high resolution instruments such as FT-ICR MS (Tran et al.,
2011; Durbin et al., 2010) and Orbitrap (Ahlf et al., 2012) in order to interpret the isotopic
patterns and calculate the exact mass of a protein.

Bottom-up approachs digest proteins to peptides by enzymes which are sequence spe-
ci�c, meaning their cleavage sites are known. Trypsin is often used because it produces
peptides that have a suitable average length for MS analysis and which also fragment well
(Steen and Mann, 2004). The speci�city of trypsin is to cut C-terminal ends to lysine (Lys)
and arginine (Arg) residues, producing mainly peptides which are 6-25 amino acids long
and have basic residue that are easily protonated (Steen and Mann, 2004). Bottom-up
proteomics is a preferred method because intact protein separation prior to MS and MS
analysis is considered to be too di�cult.

Digesting an entire proteome into peptides increases its complexity and therefore more
e�ort is required to fractionate it down to individual species. Therefore bottom-up proteo-
mics has concentrated on exhaustive fractionation steps (Washburn et al., 2001; de Godoy
et al., 2008). Currently, one of the most promising bottom-up approaches in high through-
put proteomics is a shotgun approach based on only long reverse phase chromatography
separations of tryptic peptides (Thakur et al., 2011; Nagaraj et al., 2012; Cristobal et al.,
2012).
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Middle-down proteomics combines top-down and bottom-up strategies by analyzing
long polypeptides (3,000-20,000 Da), obtained by digesting with enzymes that cleave
between less common sites (Cannon et al., 2010; Wu et al., 2012). Due to the long se-
quences analyzed, middle-down proteomics results in high con�dence identi�cations and
good sequence coverage (Cannon et al., 2010).

2.2.4 Mass spectrometry acquisition modes

There are several acquisition modes which can be used for di�erent proteomics exper-
iments: data dependent analysis (DDA), data independent analysis (DIA) (Venable et al.,
2004) and selected reaction monitoring (SRM; plural multiple reaction monitoring (MRM))
(Lange et al., 2008).

In DDA experiments, a full MS scan of all the precursor ions is followed by selecting a
number of precursor ions (typically 5-10, however it has expanded with current instru-
ments to even up to 25 ions (Thakur et al., 2011)) for MS/MS fragmentation based on their
abundance, and then dynamically excluded from fragmentation for a certain time, usually
30-90 seconds (Hoehenwarter and Wienkoop, 2010). The DDA approach has been used
extensively so far for most of the proteomics studies (Ishihama et al., 2008; de Godoy
et al., 2008; Schwanhäusser et al., 2011; Nagaraj et al., 2012) due to the speed limitation of
MS. However, as peptides can co-elute from the column and are selected for fragmenta-
tion on the basis of their abundance, this might a�ect the identi�cation of low abundant
peptides. It has been demonstrated that if a complex cell lysate is analyzed by a standard
LC run, only small fraction of detectable peptides are fragmented in DDA (Michalski et al.,
2011a). This is mainly due to the high complexity of the sample, and if analysis speed
would increased by 10 times, most of the peptides would be identi�ed (Michalski et al.,
2011a).

The data independent analysis (DIA) strategy has been developed to complement the
DDA method for proteomic analysis (Venable et al., 2004). Instead of a serial selection of
precursor ions for data dependent fragmentation, the DIA approach fragments a group of
co-eluting precursor ions at each given time, enabling a more unbiased detection of all
LC-eluted peptides compared to the DDA method (Venable et al., 2004; Ramos et al., 2006;
Purvine et al., 2003). The DIA strategy is currently commercially available on three MS plat-
forms: MSE (Silva et al., 2006b) on a quadrupole time-of-�ight (Q-TOF) instrument (Waters);
“all-ion fragmentation” (AIF) (Geiger et al., 2010a) on an Orbitrap mass analyser (Thermo
Fisher Scienti�c) and SWATH (Gillet et al., 2012), on a triple quadrupole-TOF instrument
(AB Sciex). In Q-TOF alternation between low and elevated energy in the quadrupole is
used; Orbitrap alternates MS scans between full scans with HCD fragmentation applied
in the collision cell (Silva et al., 2006b; Geiger et al., 2010a). For SWATH analysis the �rst
quadrupole passes small m/z ranges to a collision cell where all ions are fragmented and
fragments are analyzed in TOF (Gillet et al., 2012), those swaths are done consecutive to
cover large m/z range.

The major challenge of DIA acquisition is that the direct relationship between the pre-
cursor and its fragments is lost, and the fragment spectra can be sometimes very di�cult
to interpret. In most studies this problem has been alleviated by making use of the fact
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that precursors and fragments must “co-elute” in time (Geiger et al., 2010a) i. e., chroma-
tographic retention time of the precursor and fragment masses are very similar or in case
SWATH method the small m/z windows will give also additional con�dence in precursor-
fragment pairs (Gillet et al., 2012).

SRM analysis is a targeted method well suited for detecting and quantifying speci�c
proteins (Picotti et al., 2009; Costenoble et al., 2011). SRM analysis is mainly used in QqQ,
where the �rst quadrupole acts as a mass �lter, allowing through only selected m/z range
which will be fragmented in the second quadrupole (Lange et al., 2008). The third quad-
rupole then acts as a mass �lter of resulting fragment ions in a similar way to the �rst
quadrupole, allowing through only fragment ions of a particular, selected mass (Lange
et al., 2008). Triple quadrupole ion trap has demonstrated SRM analysis sensitivity with
combination to o�-gel IEF by detecting proteins expressed at a single-digit number of
copies/cell (Picotti et al., 2009). Recently, it has become possible to perform SRM with a
quadrupole Orbitrap hybrid instrument as well (Gallien et al., 2012). SRM is a preferred
method for targeted quanti�cation because it is able to consistently record the intensities
of prede�ned target fragment ions across the analysis (Gillet et al., 2012). However, SRM
is limited to the measurements of few thousands of transmissions (Costenoble et al., 2011)
and therefore not compatible with large scale proteome analysis (Gillet et al., 2012).

Trapping instruments can use similar analysis — selected ion monitoring (SIM), which
scans only a very narrow m/z range and ions outside of this range are not scanned. SIM
has been used in an ion trap hybrid instruments for absolute quanti�cation down to the
attomole level (Hanke et al., 2008) by using DDA with an inclusion list containing the
masses of the expected peptides of the standard protein.

2.3 qantitative mass spectrometry-based proteomics

Mass spectrometry-based proteomics turned quantitative shortly after its birth (Wilm
et al., 1996) as it was realized that protein identi�cation only provides only very limited
information (Mann, 1999; Ong and Mann, 2005). While a number of other methods exist,
this overview will concentrate on bottom-up gel-free quanti�cation approaches.

There are two main approaches used in quantitative mass spectrometry based proteo-
mics: stable isotope labeling and label-free quanti�cation. Stable isotope labeling is more
accurate quanti�cation method, while label-free quanti�cation allows one to perform
comparisons across many samples, and there is no need for expensive labeled substances.
Mass spectrometry-based quantitative proteomics can also be classi�ed into relative and
absolute quanti�cation. In this dissertation, relative quanti�cation refers to comparison
of the measure of the same protein present in di�erent samples, while absolute quanti�c-
ation refers to the amount (e. g., fmol, molecules, µg) of a protein in the sample regardless
of the measurement method applied (label-free or stable isotope based).

2.3.1 Stable isotope labelling

Quanti�cation with stable isotopes is based on the mass di�erence between labeled and
unlabeled ions in MS analysis. After mixing samples, the intensity ratio between the iso-
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tope variants re�ects the di�erence between their abundances. If protein concentrations
for one of the samples are known, also accurate absolute quanti�cation could be carried
out.

Stable isotopes can be incorporated into proteins by in vivo or in vitro methods. In in vivo
techniques, isotope enriched compounds are incorporated from the growth media into
all of the proteins in the organism under study (Gouw et al., 2010). In vitro techniques
use chemical reactions for incorporation of the stable isotopic tags onto selective sites on
peptides of proteins (Yan and Chen, 2005).

The most precise method for absolute protein quanti�cation is spiking a sample with
known amounts of isotopically labeled standard peptides (Gerber et al., 2003), concat-
enated peptides (Pratt et al., 2006), or proteins (Brun et al., 2007; Hanke et al., 2008;
Matic et al., 2011). To reduce interference from background ions, quanti�cation of iso-
tope labeled standards can be performed on speci�c fragments of the peptide using SRM
(Lange et al., 2008). While the advantages of using isotopically labeled standards have
been reviewed (Brun et al., 2009; Pan et al., 2009), there are also many disadvantages in
terms of synthesizing, storing and handling the standards (Mirzaei et al., 2008; Hanke
et al., 2008), accurate quanti�cation of standards (Hanke et al., 2008), cost (Ludwig et al.,
2012) and di�culties to have full coverage of complex proteome (Brownridge et al., 2011).

In order to overcome the above mentioned limitations of stable isotope standards one
could use enzymatic or chemical labeling. Enzymatic labeling of proteins by digesting in
H2

18O incorporates two labeled oxygen atoms into the enzyme-cleaved peptides, which
allows to distinguish heavy species from light species in MS by 4 Da mass di�erence
between them (Schnölzer et al., 1996). Although it is very simple method the small (4
Da) mass di�erence can overlap natural isotopes and also incomplete labeling has been
reported (Fenselau and Yao, 2009). Chemical labeling can be performed on the protein
level by isotope-coded a�nity tag (ICAT) (Gygi et al., 1999a), iTRAQ (Wiese et al., 2007),
etc.; or on the peptide level by TMT (Thompson et al., 2003), iTRAQ (Ross et al., 2004),
dimethyl labeling (Hsu et al., 2003; Boersema et al., 2009), etc. While mass di�erences
introduced by enzymatic labeling, ICAT and dimethyl labeling are detected on MS1 level;
isobaric chemical labeling methods iTRAQ and TMT labels are distinguished on MS/MS level.
Isobaric labels have the same mass but di�erent fragments in low m/z range of MS/MS
spectra that are used for quanti�cation. As for ion traps the recovery of fragment ions
below 30% of the precursor ion mass is very poor (Cunningham et al., 2006), iTRAQ and
TMT are challenging methods for ion trap hybrid instruments (Bantsche� et al., 2008;
Köcher et al., 2009; Pichler et al., 2011). However, the great advantage of iTRAQ and TMT is
the possibility to perform multiplexed quanti�cation of up to eight samples at the same
time (Choe et al., 2007). This saves instrument time and simpli�es experimental design
(Li et al., 2011).

While chemical and enzymatic labeling kits are commercially available and generally
easy to use with well-established protocols, they tend to be expensive due to costly chem-
icals. Also, because mixing of the samples takes place after the digestion, quanti�cation
accuracy su�ers (Ong and Mann, 2005). Additionally, there are some limitations for MS, as
small m/z di�erences require high resolution instruments in order to resolve the isotopic
patterns (Fenselau and Yao, 2009).
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Considering the proteomics work�ow in Figure 1, and all of the steps taken in order
to analyse proteins and peptides in MS, it is obvious that the best time to introduce an
internal standard would be before protein extraction from the sample i. e. by metabolic-
ally incorporating them into the living organism or cells. This approach produces the
lowest bias to quanti�cation (review of Gouw et al. (2010)). Unlike other labeling techno-
logies, samples to be analyzed are combined before protein extraction and digestion, thus
removing the main source of uncontrolled sample variability (review of Bantsche� et al.
(2007)). Therefore, metabolic labeling is suitable for samples that need to undergo extens-
ive preparation steps at the protein or peptide level, such as fractionation and enrichment,
which may introduce a signi�cant amount of error (Li et al., 2011).

Metabolic labeling for quantifying the proteome was �rst applied in yeast (Oda et al.,
1999), it involved comparison of two states by growing the yeast on media enriched with
15N in one state and on media containing the naturally abundant isotope 14N in the other
state. The ratios of 14N/15N containing proteins from the two conditions were measured
by MS and changes in protein expression levels were determined. 15N labeling has been
applied in top-down (Du et al., 2005) as well as bottom up protein quanti�cation studies
(Hendrickson et al., 2006; Palmblad et al., 2007; Nelson et al., 2007; Li et al., 2011).

A disadvantage of 15N-labeling is the fact that the mass di�erence between the un-
labeled and 15N-labeled peptides is unknown during mass spectrometric analysis and
becomes apparent only after peptides are identi�ed, because each peptide incorporates
a di�erent number of nitrogen atoms depending on the length of the peptide and the
number of amino acids that contain nitrogen atoms on side chains (Gouw et al., 2010).
Therefore, stable isotope labeled amino acids have been used to alter the mass of pro-
teins (Ong et al., 2002). The use of labeled amino acids can be carefully selected and even
multiplexed (Blagoev et al., 2004). In the stable isotope labeling by amino acids in cell cul-
ture (SILAC) method cells are labeled through the incorporation of stable labeled heavy
essential amino acids, typically 13C6

15N2-lysine and 13C6
15N4-arginine, which are best

suited for trypsin digestion (Ong et al., 2002). SILAC can be used for triple quanti�cation
(Blagoev et al., 2004) and this has been utilized in pulsed SILAC experiments (Schwan-
häusser et al., 2009) to measure translation rates and protein turnover (Schwanhäusser
et al., 2011; Boisvert et al., 2012). Furthermore, SILAC is not limited to only three labels: four
di�erent heavy stable isotopic forms of arginine (13C4, 13C6, 13C6

15N4, 13C6
15N4

2H7) com-
bined with light arginine have been used for 5plex quanti�cation (Molina et al., 2008).
Also, an absolute SILAC approach has been proposed (Hanke et al., 2008) where SILAC-
labeled proteins are produced in vivo or in vitro (Matic et al., 2011) and added to samples
for absolute quanti�cation.

One major consideration in choosing a metabolic labeling scheme is whether the cells
studied can metabolically incorporate the labeled precursors or not (Ong and Mann,
2007). For example, labeling cells with amino acids, as it is done in the SILAC approach,
is possible only if cells are auxotrophic for the labeled amino acid(s) and not synthesized
by the cells themselves (Hanke et al., 2008). There are no special requirements to the
metabolism of cells if salts labeled with 15N are used for metabolic labeling — in this case
the label is incorporated into all amino acids even if the cells are capable of synthesizing
all amino acids in the biomass (review of Gouw et al. (2010)). Conversion of labeled argin-
ine to proline can occur in certain strains or cell types (Ong and Mann, 2007). Although
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such conversion is undesirable for SILAC quanti�cation, it does not a�ect 15N labeling be-
cause all amino acids are labeled (review of Gouw et al. (2010)). Metabolic labeling was
considered to be limited to use only in cell cultures, this has been challenged by develop-
ment of SILAC mouse (Krüger et al., 2008), worm (Larance et al., 2011), �y (Sury et al., 2010).
Super-SILAC, which mixes multiple SILAC-labeled cell lines, is used as internal standard for
human tumor tissue quanti�cation (Geiger et al., 2010a). Super-SILAC has made metabolic
labeling possible also for human tissues and brought metabolic labeling towards clinical
relevance (Geiger et al., 2010a).

2.3.2 Label-free quanti�cation

Label-free quanti�cation is an alternative quanti�cation method which compares separ-
ately prepared and analyzed LC-MS/MS runs. It is widely used because it skips the laborious
and costly process of introducing stable isotopes and is applicable to samples from any
source (Li et al., 2011). The most simple label-free quanti�cation technique is spectral
counting, which is based on the observation that the more abundant the protein is, the
more peptides can be identi�ed from a protein (Washburn et al., 2001). Because larger
proteins produce more peptides and therefore also more MS/MS events, spectral count-
ing methods must take into account the size of proteins. This has been implemented
in several spectral counting methods: protein abundance index (PAI) (Rappsilber et al.,
2002), exponentially modi�ed protein abundance index (emPAI) (Ishihama et al., 2005),
normalized spectral abundance factor (NSAF) (Zybailov et al., 2006), absolute protein ex-
pression (APEX) (Lu et al., 2007), etc. The normalized spectral index (SIN) combines peptide
count, spectral count and fragment ion intensity (Gri�n et al., 2010).

The emPAI method is based on comparing the number of experimentally observed pep-
tides and calculated number of observable peptides (Ishihama et al., 2005). emPAI is an
improvement of PAI (Rappsilber et al., 2002), which is de�ned as follows:

PAI =
Nobsd
N

,

whereNobsd is the number of experimentally observed peptides per protein andN is the
the number of theoretically observable peptides per protein (Rappsilber et al., 2002). The
emPAI is de�ned as follows (Ishihama et al., 2005):

emPAI = 10PAI − 1.

Although such a method of concentration determination may not be very precise, the
accuracy of concentration measurements using emPAI values were demonstrated to lie
within the same error range or even better than protein concentration measurements
based on staining methods such as the Bradford assay (Ishihama et al., 2005). emPAI has
been used to measure protein abundance for more than 1,000 E. coli proteins with good
agreement with 40 enzymes of known amount (Ishihama et al., 2008). Because emPAI is im-
plemented into the Mascot database search platform, it is possible to apply this approach
to previously measured or published datasets to add quantitative information without
any additional steps.
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While emPAI employs unique precursor ions (Ishihama et al., 2005), another spectral
counting method APEX uses the total number of MS/MS scans observed for peptides from
a protein (Lu et al., 2007). APEX is de�ned as:

APEXi =
ni × pi

Oi ×
∑# observed proteins

k=1
nk×pk

Ok

×C,

where C is the total concentration of protein molecules in the sample, ni is the total
number of MS/MS scans observed from peptides of protein i through the course of the
experiment, pi is the probability of correctly identifying the protein i, Oi is an estimate
of the number of expected unique peptides observed for protein i (Lu et al., 2007).

The critical correction factor in APEX isOi, which is calculated for each protein separ-
ately by training a classi�cation algorithm to predict the observed tryptic peptides from
a given protein based upon peptide lengths and amino acid compositions (Lu et al., 2007).
Lu et al. (2007) reported Oi to improve estimation of protein abundance by up to ~30%.
APEX successfully determined the abundance of 10 proteins that were spiked in a yeast cell
extract with known amounts. In addition, the absolute protein abundance of yeast and E.
coli proteomes analyzed by APEX correlate well with the measurements by western blot-
ting and �ow cytometry (Lu et al., 2007). Calculation of APEX values can be carried out
by freely available software: APEX Quantitative Proteomics Tool (Braisted et al., 2008).

Spectral counting approaches have been reported to be not particularly sensitive to
small changes in abundance (Hendrickson et al., 2006) and less reproducible than labeling
based approaches (Li et al., 2011). It has also been demonstrated that at higher concen-
trations (> 100 fmol on column) and in complex samples, spectral counting methods suf-
fer from saturation e�ects (Ishihama et al., 2008; Grossmann et al., 2010). Optimization
of dynamic exclusion settings in DDA mode can increase the reproducibility of spectral
counting and the quanti�cation of low abundant proteins (Hoehenwarter and Wienkoop,
2010).

Peak intensity based quanti�cation is an alternative to spectral counting label-free
quanti�cation techniques where the mass spectrometric areas or intensities of peptides
in each of the experiments are measured (Chelius and Bondarenko, 2002). There are sev-
eral peak intensity based methods: high and low collision energy switching (MSE) used in
DIA mode (Silva et al., 2006a) and T3PQ used in DDA mode (Malmström et al., 2009; Gross-
mann et al., 2010) are based on the intensities of three most intense tryptic peptides from
a protein. Intensity based absolute quanti�cation (iBAQ) takes into account the sum of all
identi�ed peptide intensities and divides it by the number of theoretically observable pep-
tides (Schwanhäusser et al., 2011). iBAQ absolute quanti�cation is based on standard curve
combined from 48 accurately quanti�ed human proteins (UPS2, Sigma-Aldrich); dynamic
range of concentrations spanning six orders of magnitude. Linear regression is used
to �t iBAQ intensities to absolute amounts of standard proteins (UPS2 standard) amounts
(Schwanhäusser et al., 2011):

iBAQ =

∑N
n=1 In

Nobs
× a+ b,
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where N is the number of unique precursors, and Nobs is the number of theoretical pep-
tides by in silico protein digestion, In is the maximum peak intensity for a peptide, a and
b are the slope and intercept determined by standard curve of spike in proteins (UPS2)
(equation from unpublished work by Schwanhäusser et al.). Because iBAQ is integrated
into the software package MaxQuant (Cox and Mann, 2008), which is also capable of
processing SILAC data, combining absolute and relative quanti�cation is straightforward.
iBAQ has been applied in various works to quantify mammalian protein absolute abund-
ances (Schwanhäusser et al., 2011; Nagaraj et al., 2011; Geiger et al., 2012).

Although label-free quanti�cation has been broadly applied it is extremely sensit-
ive to variability in sample preparation (pipetting errors, incomplete digestion, inaccur-
ate sample injection), LC-MS reproducibility, and ionization e�ciency; any di�erence in
sample handling can lead to measurement errors and a�ect the reliability of quanti�c-
ation. Therefore chromatographic peak alignment, peak matching, data normalization
and statistical analysis should be applied to gain insight from the data and avoid inac-
curacies in quanti�cation (Chelius and Bondarenko, 2002; Ono et al., 2006; Choi et al.,
2008). Also, care should be taken if any fractionation will be applied to the samples. For
example it has been observed that in SDS-PAGE fractionation loss of peptides due to low
recovery from the gel may further a�ect the quality of label-free quanti�cation (Havliš
and Shevchenko, 2004). Low recovery from the gel has been explained by insu�cient
digestion process (Havliš and Shevchenko, 2004; Getie-Kebtie et al., 2011). In another
study SDS-PAGE separation was demonstrated to moderately decrease the reproducibility
of quanti�cation while improving the proteome coverage (Gautier et al., 2012).

2.3.3 Labeled versus label-free quanti�cation

Several studies have been carried out in order to compare di�erent quanti�cation ap-
proaches. Because label-free quanti�cation is an easy and a cheap alternative to ap-
proaches using labeling techniques, this overview will concentrate on studies comparing
those two methods.

Spectral counting quanti�cation of Saccharomyces cerevisiae membrane fractions was
compared with peak intensity based quanti�cation by metabolic labeling with 15N (Zy-
bailov et al., 2005). Strong correlation was found between two label-free methods when
high abundant peptides were compared (Pearson’s correlation of 0.64 (R2 = 0.41) for all
645 quanti�ed proteins), however, spectral counting was reported to be more reprodu-
cible and have a wider dynamic range than peak intensity based methods (Zybailov et al.,
2005). In another study, label-free methods performed better than chemical labeling ICAT
applied on standard proteins and when compared to each other in Francisella novicida cell
lysate, peak intensity based quanti�cation outperformed spectral counting (Ryu et al.,
2008).

A study of Methanococcus maripaludis proteome quanti�cation with 15N metabolic la-
beling or with spectral counting (RP = 0.57 (R2 = 0.32)) revealed that although spectral
counting quanti�cation had a wider dynamic range, it was less sensitive to detecting
small changes (< 2 times) (Hendrickson et al., 2006).
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Spectral counting in combination with MS/MS peak intensity measurements provided
a higher dynamic range (up to changes 1:60) than regular spectral counting and SILAC
methods for screening phosphotyrosine binding proteins in HeLa cells (Asara et al., 2008).

Peak intensity methods based on the three most intense peptides and DIA mode out-
performed chemical labeling iTRAQ (RP = 0.69 (R2 = 0.48)) in terms of analysis time and
number of proteins quanti�ed in a Methylocella silvestris cell lysate (Patel et al., 2009).

2D gel electrophoresis and APEX were compared for global quanti�cation of Shigella
dysenteriae proteome and were found to have reasonably good correlation (R2 = 0.67) for
255 protein quantities detected by both methods (Kuntumalla et al., 2009).

A comparison of SILAC and spectral counting quanti�cation of human embryonic stem
cells showed low correlation between the methods and that spectral counting provided
less precise quanti�cation of proteins with low number of spectral counts (Collier et al.,
2010).

Spectral counting, metabolic labeling with 15N and isobaric chemical labeling iTRAQ
and TMT were systematically compared using Pseudomonas putida cell lysate and found
that spectral counting covers more proteins and has larger dynamic range but is less re-
producible than labeling approaches; chemical labeling is more precise and reproducible
than metabolic labeling (Li et al., 2011).

While these examples are not exhaustive, we can conclude that comparing label-free
methods with isotope labeling methods is a popular topic. So far it has been proven that
advantages of label-free methods, additionally obvious ease of use and low cost, are also
larger dynamic rage (Zybailov et al., 2005; Hendrickson et al., 2006; Asara et al., 2008)
and better proteome coverage (Collier et al., 2010; Li et al., 2011). Better proteome cover-
age by label-free quanti�cation has been explained by less MS analysis time spent in the
label-free approach on redundant peptides that di�er only in the number of isotopes (Li
et al., 2011). Disadvantages of label-free methods are sensitivity to any deviation in par-
alleled sample preparation and low sensitivity to small protein changes between di�erent
samples (Hendrickson et al., 2006; Asara et al., 2008).

2.3.4 From relative to absolute quanti�cation

The ultimate purpose of quantitative proteomics is the measurement of absolute protein
abundances. Absolute concentrations of proteins are expressed as the amount of each
protein per unit of biomass — for example, molecules per cell — and they can be used
independently to characterize the amount of di�erent proteins in the sample. Absolute
quanti�cation provides a more precise description of molecular events in the biological
processes than relative quanti�cation (Vogel and Marcotte, 2012). Knowledge of abso-
lute levels of proteins in cells is important for kinetic modeling of biological processes
(Tolonen et al., 2011), calculation of protein half-lives (Schwanhäusser et al., 2011), de-
termination of the stoichiometry of protein complexes (Kuntumalla et al., 2009; Maier
et al., 2011), or comparison of concentration di�erences between proteins within or across
samples or species (Ludwig et al., 2012; Nagaraj et al., 2011; Geiger et al., 2012). As ex-
plained above, this overview considers all methods that report protein amounts, rather
than ratios between di�erent states, as an absolute quanti�cation.
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As absolute quanti�cation of full proteome with isotope labeled standards remains
technically challenging (Picotti et al., 2009, 2010) label-free quanti�cation is used instead.
Absolute concentrations measured using label-free quanti�cation are estimated either by
splitting the total amount of protein in the sample among all proteins identi�ed (Ishihama
et al., 2005; Lu et al., 2007; Nagaraj et al., 2011) or absolute abundances for the whole
proteome are estimated based on linear regression of standard proteins (Ishihama et al.,
2008; Schwanhäusser et al., 2011; Maier et al., 2011; Schmidt et al., 2011).

The total amount of protein to split over the quanti�ed proteins has been calculated
by �orescence absorbance (Nagaraj et al., 2011), or applied based on textbook knowledge
(Lu et al., 2007), which is not very precise. Even worse, the measurement of proteomes by
mass spectrometry methods are limited in the number of identi�ed proteins, and there-
fore, this type of abundance estimation is a very rough indication of actual concentration.

If linear regression is used, accurate absolute protein abundances are determined only
for a small number of proteins spanning the whole protein abundance range. The Sigma-
Aldrich® universal proteomics standard (UPS2), which consists of 48 accurately quanti�ed
human proteins formulated into a dynamic range of concentrations spanning six orders
of magnitude, was used to form a calibration curve in order to quantify absolute protein
concentrations in a mammalian cell line (Schwanhäusser et al., 2011). In another approach,
three MS based quanti�cation methods were combined: SRM analysis of isotope labeled
reference peptides to quantify small number of anchor proteins, median intensity of the
top three most intense peptides, and spectral counting (Malmström et al., 2009; Maier
et al., 2011; Schmidt et al., 2011; Beck et al., 2011) to estimate protein abundances to a
complete proteome of Leptospira interrogans (Malmström et al., 2009; Schmidt et al., 2011),
Mycoplasma pneumoniae (Maier et al., 2011) and human cell line (Beck et al., 2011).

To gain further insight from label-free quanti�cation and improved sensitivity of re-
lative quanti�cation by metabolic labeling, these methods can also be used in parallel.
Absolute protein concentrations in a proteome-wide analysis of a biofuel-producing mi-
crobe Clostridium phytofermentans were estimated using APEX; relative changes between
treatments were quanti�ed by chemical dimethylation with stable isotope-enriched re-
agent (Tolonen et al., 2011).

Wide dynamic range of protein abundances in proteomes have been detected with
di�erent MS approaches: 2-2,000 copies per cell in M. pneumoniae (Maier et al., 2011); 1-
40,000 copies per cell in L. interrogans (Malmström et al., 2009); 100-105 copies per cell
in E. coli (Ishihama et al., 2008); 10-106 copies per cell in yeast (Picotti et al., 2009), 10-
107 copies in mouse �broblast (Schwanhäusser et al., 2011); and 500-2 × 107 in a human
cell line (Beck et al., 2011). This remarkable di�erence in protein abundance between
organisms indicates that the dynamic range of the proteome correlates with both the
size of the cells and their genome. Also, the proteome coverage with MS based analysis is
more or less correlated with the size of the organism. The most comprehensive proteome
coverage achieved so far is 74% for M. pneumoniae (Maier et al., 2011); 51% for Leptospira
interrogans (Malmström et al., 2009); 60% for E. coli (Iwasaki et al., 2010); 63% for yeast
(Nagaraj et al., 2012); and ~50% for a mammalian cell line (Geiger et al., 2012). There
are also remarkable di�erences between the abundances of protein functional groups
between mammalian cells and microorganisms: for example in mammalian cells half of
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the protein mass is devoted to regulatory mechanisms, while in microorganisms only 25%
(Beck et al., 2011).

2.4 relationships of proteomics with other –omics methods

The central dogma of molecular biology was formulated by Francis Crick in 1958 and
it involves the principle of unidirectional �ow of information from DNA to messenger
RNA (mRNA) to the resulting proteins (Crick, 1970). This is realized in two processes: tran-
scription and translation. Transcription is a process in which mRNA molecules are synthes-
ized from DNA templates and translation is a process in which proteins are synthesized
from mRNA templates. In order to understand microbial metabolism and its responses to
environmental changes, all gene products should be measured: mRNA, proteins and meta-
bolites. mRNA expression alone does not provide information of the amount of protein
produced, its location, activity, or functional relationship with metabolites (Zhang et al.,
2010). Gene expression regulation can take place at transcriptional, post-transcriptional,
translational or/and post-translational level. It remains challenging to combine di�erent
–omics methods to understand the gene expression regulation levels (Maier et al., 2011;
Schwanhäusser et al., 2011). While previous studies have concentrated on the compar-
ison of protein-mRNA pairs (see below), new methods using metabolic labeling are also
able to measure protein half-lives. The analysis of the dynamics of mRNA-protein pairs
over 4 days in batch culture revealed that in M. pneumoniae, these dynamics are dominated
by translational regulation (Maier et al., 2011). Protein and mRNA abundances, together
with corresponding half-lives, revealed that in mouse �broblasts, gene control is also
controlled at the translation level (Schwanhäusser et al., 2011).

2.4.1 Transcription units in bacteria

Most of the bacterial genes are organized into polycistronic operons (Lodish et al., 2000)
and, under various conditions, operons could be divided into smaller transcriptional units,
resulting in many alternative transcripts (Güell et al., 2009). It was thought until recently
that this organization into operons or transcription units leads to an equal level of expres-
sion of all the genes in the units (Laing et al., 2006). However, a recent genome-wide tran-
scriptomics study revealed that in M. pneumoniae consecutive genes within the operon did
not have the same expression level, leading to operon polarity (Güell et al., 2009). Almost
half of the consecutive genes showed staircase-like decay, meaning that the consecutive
genes have lower and steady expression levels following 5′ to 3′ directionality (Güell et al.,
2009). The staircase behavior was also reported for Streptomyces coelicolor but in the same
study not found for E. coli operons (Laing et al., 2006).

Operon polarity could be explained by the combinatorial e�ect of internal promoters
and terminators that would result in the production of di�erent transcripts from the same
operon, therefore leading to unequal expression levels of gene products (Güell et al.,
2011). At the proteome level, decay of consecutive genes has been described in antibi-
otics treated E. coli ribosomal protein operons, similar to staircase behavior (Siibak et al.,
2011), however, a gradual decrease in protein production was clearly seen only for a few
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non-ribosomal operons. Maier et al. (2011) stated, after comparing mRNA-protein pro�les
in operons, that the previously observed operon polarity of consecutive transcripts in M.
pneumoniae (Güell et al., 2009) tends to be compensated on the protein level and Schmidt
et al. (2011) discovered staircase-like behavior at the proteome level for only 5% of L. inter-
rogans operons. Therefore, there is no clear evidence that staircase behavior takes place
also at the proteome level.

2.4.2 mRNA and protein level correlation

Transcriptomics, also called global analysis of gene expression or genome-wide expres-
sion pro�ling, has been one of the tools to measure all mRNA molecules, or “transcripts”,
produced in one cell or a population of cells (Zhang et al., 2010). Before proteomics meth-
ods became widely used, mRNA concentrations were used to express the corresponding
proteins concentrations, assuming that transcript abundances were the main determin-
ants of protein abundances (Vogel and Marcotte, 2012). However, technological advances
in mass spectrometry have allowed to carry out large-scale studies of proteomes and
correlate these with their transcriptomes. In general, in both bacteria and eukaryotes,
protein levels correlate with their corresponding mRNA levels, but not very strongly. The
squared Pearson’s correlation coe�cient in the range of ~0.40-0.60 have been observed
(Lu et al., 2007; Maier et al., 2009; Schwanhäusser et al., 2011), which implies that only
about 40-60% of the variation in protein concentration can be explained by knowing
mRNA abundances (de Sousa Abreu et al., 2009; Vogel and Marcotte, 2012). This low cor-
relation can be explained as processes involved in gene expression involve besides mRNA
and protein synthesis also degradation rates of mRNAs and proteins (Vogel and Marcotte,
2012). Therefore, there is no one-to-one relationship between protein amounts and their
corresponding mRNAs.

Low correlation between relative mRNA and protein levels has been reported for sev-
eral organisms such as Saccharomyces cerevisiae (Spearman rank correlation Sr = 0.21) (Gri�n
et al., 2002), Halobacterium (Baliga et al., 2002), human cancer cells (Chen et al., 2002) and
Lactococcus lactis (Dressaire et al., 2009). Weakly positive correlation (Sr = 0.45) for abso-
lute abundances was demonstrated for yeast (Washburn et al., 2003). Moderate correl-
ation between protein and mRNA absolute abundances has been reported for Plasmodium
falciparum (Le Roch et al., 2004) (Sr up-to 0.59). A delay between mRNA and protein accu-
mulation, based on comparative analysis of relative expression data was observed in the
studies of Plasmodium falciparum (Le Roch et al., 2004).

As proteomics and transcriptomics technologies have improved, the correlation
between mRNA and proteins has also improved, probably by chance, however, the Spear-
man rank correlation has been mostly replaced with Pearson’s squared correlation coef-
�cient, which we will refer from here on. The following Pearson’s squared correlation
coe�cients between absolute abundances of proteins and mRNA have been reported: 0.73
for Saccharomyces cerevisiae (Lu et al., 2007), 0.47 for Escherichia coli (Lu et al., 2007), 0.40
for Streptomyces coelicolor (Jayapal et al., 2008), 0.27 for Mycoplasma pneumoniae (Maier et al.,
2011) and 0.41 for mouse �broblasts (Schwanhäusser et al., 2011).
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The poorer correlation between mRNA and protein expression levels in early studies
could be partly explained by technical limitations. 2D gel quanti�cation was a�ected by
signal saturation and multiple proteins per spot (Lu et al., 2007). Also the low number of
proteins (Gygi et al., 1999b; Gri�n et al., 2002), or protein and mRNA data from di�erent
experiments or conditions were correlated (de Groot et al., 2007), which makes the over-
all correlation unreliable. It has been proposed that the greatest source for the variation
of the mRNA-protein correlation is the variation of mRNA or protein abundance measure-
ments (Nie et al., 2006). Variation in protein abundance contributed 34-44% and mRNA
9-22% to the variation of mRNA-protein correlation (Nie et al., 2006). However, variations
in measurements are strongly dependent on the experimental setup and equipment used.
Obtaining quantitatively reliable data on the proteome (and transcriptome) is one of the
most important challenges in systems biology in order to understand organism-speci�c
regulation of translation and protein degradation (Maier et al., 2011; Schwanhäusser et al.,
2011; Boisvert et al., 2012; Martin et al., 2012).

2.4.3 Integrating metabolomes and proteomes

Metabolites are small molecules within cells, and their concentration levels vary as a
consequence of genetic or physiological changes. Metabolomics is a method to measure
the diversity and abundances of the metabolites in the cell (Raamsdonk et al., 2001). To
date, there is no known direct relationship between cellular metabolite concentrations
and gene expression as occurs between mRNA and protein levels (Zhang et al., 2010).

Measuring the concentrations of substrates and extracellular by-products together
with biomass amounts and composition allows one to calculate quantitative input-output
�ux values, as is accomplished using metabolic �ux analysis (MFA) (Valgepea et al., 2011).
Metabolic �ux analysis, together with quantitative proteome measurements, allows one
to understand the mechanisms of how enzymes are regulated. Metabolic regulation
through the transcription and translation processes takes time and is inadequate for cells
to cope with a rapidly changing environment. For e�cient metabolic regulation, enzyme
activities are regulated (Kim and Gadd, 2008). A targeted study of 228 protein abund-
ances together with metabolic �ux analysis (MFA) in the central carbon and amino-acid
metabolic network of Saccharomyces cerevisiae revealed that newly required �uxes are reg-
ulated by protein abundance (Costenoble et al., 2011), while changes in already existing
�uxes are probably regulated by enzyme activities.

Maximal enzymatic activity can be measured using in vitro enzyme assays (Canelas
et al., 2010; Tolonen et al., 2011), however, those values do not re�ect the enzyme activity
in the cell under speci�c experimental conditions.

2.5 microbial cultivation methods

The simplest microbial cultivation method is batch cultivation, and is usually carried out
in a shake-�ask, where nutrients are not added after inoculation. Batch culture is a hetero-
geneous system, where the environment continuously changes as growth, product forma-
tion and substrate utilization take place all at the same time (Hoskisson and Hobbs, 2005).
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However, in order to collect reproducible and meaningful information with regards to
cell physiology, the culture must be grown under controlled conditions (Hoskisson and
Hobbs, 2005). The simultaneous development of the continuous culture system chemo-
stat by Monod (Monod, 1950) and Novick & Szilard (Novick and Szilard, 1950) allowed
microbial physiologists to study bacterial growth under constant physiochemical envir-
onments.

Chemostat begins as batch culture until it reaches the exponential growth phase. After
that, fresh medium is added and the same amount of culture is removed at a steady
suitable rate, which allows the cells to grow at a speci�ed steady rate. Environmental
parameters, pH, temperature, nutrients, and metabolic products can all be varied and
controlled. In chemostat cultivation cells are in a “steady state” (Hoskisson and Hobbs,
2005), meaning that all the cells are growing with the same growth rate (µ, h−1) which is
equal to the dilution rate (D, h−1) (Novick and Szilard, 1950; Monod, 1950). Steady state
is achieved after the culture is stabilized during the �ow-through of 4-5 culture volumes.

Accelerostat (A-stat) is a modi�cation of chemostat, where the speci�c growth rate is
changed with smooth acceleration, so that the speci�c growth rate remains equal to the
dilution rate (Paalme et al., 1995). This method has advantages over chemostat, because
it enables one to collect data at di�erent growth rates in one experiment, thus saving
time. With A-stat culture it is possible to precisely detect metabolically relevant switch
points, for example start of over�ow metabolism, which could have been unnoticed using
chemostat culture (Adamberg et al., 2009; Valgepea et al., 2010).

Most proteomics studies with cultivable cells are performed using batch cultivation
(Malmström et al., 2009; Maier et al., 2011; Tolonen et al., 2011; Nagaraj et al., 2012), how-
ever, there are also studies where chemostat cultivation has been applied for global pro-
teome characterization (Rathsam et al., 2005; Kolkman et al., 2006; de Groot et al., 2007;
Ishii et al., 2007; Dressaire et al., 2009).

It has been claimed that batch cultivation complicates mRNA-protein correlation while
the reproducibility of growth rate under controlled steady environmental conditions are
likely to result in more accurate quanti�cation (Kolkman et al., 2006). However, the
correlation between proteins and mRNAs in chemostat cultivated Saccharomyces cerevisiae
remained moderate (Sr = 0.55) for 285 pairs (Kolkman et al., 2006). The only example
of proteome quanti�cation in an A-stat cultivation is a growth rate dependent study of
Lactococcus lactis (Lahtvee et al., 2011); R2 = 0.48 was observed between 600 relatively quan-
ti�ed protein and gene pairs, when comparing cells growing with fast or slow growth
rate (Lahtvee et al., 2011). Systems biology is used to study global transcriptomics, pro-
teomics, metabolomics, along with several other –omics methods and requires reprodu-
cible, reliable and biologically homogeneous datasets to quantitatively characterize the
physiological states of cells or organisms. The use of continuous culture techniques such
as chemostat and A-stat are important tools in the acquisition of such data. Steady state
continuous culture techniques are preferred over batch culture, where heterogeneous
growth and stress, caused by accumulating metabolic products, can often mask subtle
physiological di�erences and trends (Hoskisson and Hobbs, 2005). Controlled culture
conditions are an important issue for the reproducibility of experiments and therefore
continuous cultivation techniques should be applied more often in systems biology stud-
ies (Schaechter, 2006).
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3
A I M S O F T H I S D I S S E R TAT I O N

This dissertation had three main aims:

I Development of methods for the quantitative analysis of a growth rate dependent
E. coli proteome,

II Comparison of di�erent quanti�cation methods to characterize the E. coli pro-
teome,

III To further our understanding of E. coli metabolism using proteome, transriptome,
metabolome and cultivation data.
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4
M AT E R I A L S A N D M E T H O D S

More detailed descriptions of the materials and methods applied are available in
the publications. The following sections are provided to make this material more

accessible.

4.1 bacteria cultivation

E. coli K-12 MG1655 (λ- F- rph-1Fnr+; Deutsche Sammlung von Mikroorganismen und
Zellkulturen (DSMZ), DSM No.18039) was cultivated on glucose minimal medium in A-
stat culture, as described by Valgepea et al. (2010). Samples for proteome analysis were
collected from speci�c growth rates 0.10 h−1 (chemostat point prior to the start of accel-
eration in A-stat); 0.21; 0.30; 0.40; 0.49 h−1. Samples were collected from the fermenter,
washed with PBS (0.137 M NaCl, 2.7 mM KCl, 10.0 mM Na2HPO4, 1.4 mM KH2PO4), �ash
frozen in liquid nitrogen and stored at -80℃ prior to protein extraction.

4.2 sample preparation

4.2.1 SDS-PAGE

Proteins were extracted and total amount of protein was quanti�ed. For metabolic la-
beling with 15N labeled standard (Publication II), culture was mixed in a 1:1 ratio with
samples from continuous cultivation. Samples were separated on a SDS-PAGE, lanes were
cut to 10-40 slices and in-gel digested. Details are provided in Publication I and Publica-
tion II.

4.2.2 Shotgun

Proteins were extracted, and the total amount of protein was quanti�ed. The Universal
Proteomics Standard (UPS2, Sigma-Aldrich) was added to samples in 1:3 ratio, followed
with overnight in-solution digestion, as described in Publication III.
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4.3 mass-spectrometry

4.3.1 “In-source CID” in LCT Premier

Orthogonal-acceleration time-of-�ight instrument oa-TOF-MS LCT Premier (Waters, UK)
was coupled with UHPLC (Waters, UK). A peptide mixture (~0.25 µg) was loaded on a
column (Waters ACQUITY UPLC® BEH300 C18 1.7 µm, 2.1 mm x 100 mm) using a 20
minute gradient from 5% to 40% solvent B (solvent A: MilliQ H20/0.1% formic acid, solvent
B: 100% acetonitrile/0.1% formic acid) and a �ow rate of 0.15 mL·min−1. LCT Premier
mass spectrometer operated in positive mode, mass range 300-2,000 Da, resolution up
to 10,000 FWHM, at 2 kV capillary and 30 V sample cone voltage, 300℃ desolvation and
120℃ source temperature. LCT Premier was run simultaneously in two modes, switch-
ing every second between low and high energy (15 and 55 V, respectively) in the aperture
between ion guides, resulting in data independent acquisition where all the precursor
ions entering the source were fragmented. Data was collected with MassLynx 4.1 soft-
ware (Waters, UK).

4.3.2 QStar Elite

A Q-TOF mass spectrometer QStar Elite (Applied Biosystems/MDS SCIEX, Germany) was
connected to a P680 chromatographic pump (Dionex, Sunnyvale, CA) equipped with a
degasser (Dionex Corporation, Sunnyvale, USA). The pump was �tted with an in-house
built splitter, where the �ow rate of 100 µL·min−1 was split before the column to 10
µL·min−1. Peptides were separated on a PepSwift monolithic PS-DVB column (500 µm
I.D.×50 mm, Dionex). A 100 minute linear gradient was used from 0% to 60% solvent B
(solvent A: MilliQ H20/0.1% formic acid, solvent B: 80% acetonitrile/0.1% formic acid) at
�ow rate of 10 µL·min−1. Mass spectra were acquired in positive ion mode setting the
spray voltage at 1.80 kV, the capillary temperature at 250℃ and the voltage of tube lens at
140 V. Mass spectra (300-2,000 Da) and tandem mass spectra were recorded in positive-
ion mode with a resolution of 10,000-12,000 FWHM. Data acquisition was performed with
an ion spray voltage of 5.5 kV, declustering potential of 60 V and focusing potential of
320 V. Data dependent acquisition was used to obtain tandem mass spectrometry (MS/MS)
spectra for the �ve most intensive peaks following each MS survey scan.

4.3.3 LTQ Orbitrap

An LTQ Orbitrap mass-spectrometer (Thermo Electron, Bremen, Germany) was connec-
ted to an Agilent 1200 series nano�ow system (Agilent Technologies, Santa Clara, CA).
Peptides were loaded on a self-packed fused silica emitter (150 mm x 0.075 mm; Proxeon,
Denmark, packed in-house with ReproSil-Pur C18-AQ 3 µm particles (Dr. Maisch, Ger-
many)) using a �ow rate of 0.7 µL·min−1 and 90 or 120 minute gradient for SDS-PAGE
separated samples (Publication II) and 240 minute gradient for shot-gun samples (Public-
ation I). For all methods, the gradient was from 3% to 40% solvent B (solvent A: MilliQ
H2O/0.1% formic acid, solvent B: 80% acetonitrile/0.1% formic acid) with a �ow-rate of
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0.2 µL·min−1. Peptides were sprayed directly into an LTQ Orbitrap mass-spectrometer
operated at 180℃ capillary temperature and 2.4 kV spray voltage. One full mass spectra
was acquired in FT-ICR pro�le mode, with a mass range 300-1,900 Da at a resolving power
of 60,000 FWHM, following by data-dependent fragmentations of the �ve most intense
multiply charged ions acquired in centroid mode in the linear ion trap.

4.4 data analysis

4.4.1 “In-source CID” data analysis

Fragmented peptide spectra were aligned manually with information on their precursor
masses and charges and searched by Mascot search engine using NCBI E. coli database.
Details are provided in Publication I.

4.4.2 Metabolic labeling with 15N

Peak lists for database searches were produced with Raw2MSM and searched by Mascot
search engine against E. coli K-12 MG1655 protein sequence database (http://ecogene.
org). Quanti�cation of 15N/14N ratios was performed using the MSQuant program. Two
biological replicates were compared at speci�c growth rates 0.20; 0.26; 0.30; 0.40; 0.49
h−1 with sample at µ = 0.10 h−1 (chemostat point after stabilizing the culture in A-stat).
Details are provided in Publication II.

4.4.3 Spectral counting based absolute quanti�cation

Exponentially Modi�ed Protein Abundance Index (emPAI) values were obtained directly
from the Mascot database search results. Absolute protein expression indexes (APEX) were
calculated from Mascot search results processed with the APEX Quantitative Proteomics
Tool.

The total concentration of protein copies per cell (2 × 106) at a speci�c growth rate
of 0.11 h−1 was calculated based on biomass concentration, cell size and total protein
concentration. Total protein copies per cell was used as a normalization factor to determ-
ine individual protein copies per cell for all identi�ed proteins from the emPAI and APEX
indexes. Details are provided in Publication III.

4.4.4 Intensity-based absolute quanti�cation (iBAQ)

Raw data �les were analysed with the MaxQuant software and the protein concentrations
in fmol were calculated based on linear regression of UPS2 standard proteins. Protein
copies per cell were calculated by multiplying the molar concentration with Avogadro
constant and dividing with the number of cells in the respective experiment obtained by
plate counting (8-9 × 109 cells·mL−1) (Valgepea et al., 2010). Details are described in
Publication III.
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4.4.5 Label-free quantitative data analysis

Absolute quantitative data for di�erent growth rates was calculated using protein abund-
ance at growth rate 0.1 h−1 and relative ratios (0.2/0.1, 0.3/0.1, 0.4/0.1, 0.49/0.1 h−1) col-
lected from 15N metabolic labeling experiments.

All identi�ed and quanti�ed proteins were grouped into Clusters of Orthologous
Groups (COGs) and divided into transcription units and functional complexes according
to the EcoCyc database (Keseler et al., 2011) using the in-house built script.

For correlation analysis, Analyse-it for Microsoft Excel (version 2.20) was used. Pear-
son’s correlation test was applied to biological replicates as well to samples analysed with
di�erent quantitative proteomics methods and proteomics and mRNA correlation.

Variability was characterized by the coe�cient of variation (CV, %), which is de�ned
as the ratio of the standard deviation to the arithmetic mean.

Staircase-like expression was analysed for transcription units with two or more com-
ponents. Protein expression levels of transcription units were sub-divided into “no stair-
case” and staircase-like behaviour types “up”, “down” and “others”. A transcription unit
was classi�ed as “no staircase” if at least half of its consecutive genes were not di�eren-
tially expressed. Two consecutive genes in the transcription unit were considered di�er-
entially expressed if their protein abundance measurements for two biological replicates
did not overlap. Staircase-like behaviour expression of transcription units was classi�ed
as “up” or “down” if at least half of its consecutive genes were di�erentially expressed at
higher or lower levels, respectively, in the mRNA emerging direction during transcription
(5′→ 3′). The remaining transcription units were classi�ed as “others”.

The cost of protein synthesis was calculated by multiplying the respective proteins’
abundance in the cell with its peptide bond count (number of amino acids in the protein
minus one) and 4.306 ATP (Stouthamer, 1973) which stands for the cost in ATP for one
amino acid polymerization reaction in the ribosome.

Apparent enzyme activities (kcat, s−1) per protein chain or subunit (without taking
into account the number of proteins and catalytic sites necessary for catalytic activity)
were calculated as follows:

kcat =
speci�c �ux×NA

iBAQ
,

where speci�c �ux ( mmol·g−1
DCW·h−1; gDCW — grams of dry cellular weight) was obtained

in the same experiments for respective reaction and published previously (Valgepea et al.,
2010),NA is Avogadro constant, iBAQ is a protein abundance (protein copies in g-DCW).
In vitro enzyme assays measure maximal enzymatic activity (Tolonen et al., 2011); how-
ever, those values do not re�ect the enzyme activity in the cell at certain experimental
conditions. In our studies we used apparent kcat values of enzymes, which were de�ned
as average throughput of molecules per protein chain catalyzing given reaction in an
experiment. Apparent kcat can be calculated for each enzyme at speci�c experimental
condition as a ratio of speci�c �ux and protein abundance designated for the respective
�ux. Apparent kcat calculations were based on absolute amounts of 266 enzymes and
66 metabolic �uxes in the main metabolic network; covering glycolysis, the tricarboxylic
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acid cycle, pentose phosphate pathway, respiratory chain, and biopolymer monomer syn-
thesis.

For gene regulation analysis covariance coe�cients were calculated: 1) between pro-
tein/mRNA and speci�c growth rates; 2) between �ux/protein i. e., kcat and speci�c growth
rates (Table 1). Uncertainty values were calculated for covariance analysis for testing the
statistical hypothesis of covariance values being statistically di�erent from zero. Calcu-
lated covariance coe�cients were subjected to statistical hypothesis testing: one sided
t-test was applied to test the hypothesis that absolute values of covariance are higher
than zero at statistically signi�cant level. Covariance value was considered to be zero if
the p-value was below 0.05. Genes were divided into three groups: 1) genes with covari-
ance value statistically higher than zero; 2) genes with covariance value equal to zero at
statistically signi�cant level; 3) rest of the genes that are described by very high uncer-
tainty level of covariance — in this case no regulation analysis could be applied. The gene
was considered as transcriptionally (TR) regulated if the covariance coe�cient between
protein/mRNA and speci�c growth rate was zero, i. e., protein/mRNA remained constant at
all growth rate values; post-transcriptionally (P-TR) regulated if there was negative cov-
ariance between protein/mRNA, i. e. less proteins produced per mRNA with an increase in
speci�c growth rate and translationally (TL) regulated if there was positive covariance
between protein/mRNA and speci�c growth rate. For 266 genes, where also the apparent
kcat was calculated, additional analysis, including covariance between kcat and the spe-
ci�c growth rate, was applied. Post-translational (P-TL) regulation of some of the enzymes
previously considered as transcriptionally regulated was observed — if kcat values were
statistically proven to depend on the speci�c growth rate (Table 1).

Table 1 – Rules for gene regulation analysis. COVARIANCE – Covariance analysis
between the protein/mRNA ratio or kcat and speci�c growth rate. Statistical tests
were performed to di�erentiate, which protein/mRNA (pm) or kcat values were stat-
istically unchanged (“= 0”) or which were statistically di�erent from zero (“6= 0”).
Regulation patterns for gene products that did not pass these two statistical tests
were not considered in the gene regulation analysis.

COVARIANCE with µ Regulation

Δprotein/ΔmRNA = 0, Δkcat = 0 Transcriptional
Δprotein/ΔmRNA < 0, Δkcat = 0 Post-transcriptional
Δprotein/ΔmRNA > 0, Δkcat = 0 Translational
Δprotein/ΔmRNA < 0, Δkcat 6= 0 Post-transcriptional / Post-translational
Δprotein/ΔmRNA > 0, Δkcat 6= 0 Translational / Post-translational
Δprotein/ΔmRNA = 0, Δkcat 6= 0 Transcriptional / Post-translational
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5
R E S U L T S A N D D I S C U S S I O N

The results of this dissertation are presented and discussed in the following sec-
tions.

5.1 “in-source CID” applied in proteomics (Publication I )

A method for peptide identi�cation using a relatively low-cost ESI TOF mass-analyzer
LCT Premier (Waters) was developed and tested. Simultaneous accurate precursor ion
measurement and peptide fragmentation was performed, using an “in-source CID” which
occurs in LCT Premier MS in the region between the �rst ion guide and the aperture
separating the ion guides. In the �rst ion guide region, the ions gain signi�cant internal
energy as they accelerate. Collision of these ions with neutral molecules of the residual
atmospheric gas leads to their dissociation (Ren et al., 2009). In order for “in-source CID”
to take place in a single MS, the analyzer must operate in two di�erent scanning modes. In
full-scan mode all ions from the source are analyzed, allowing the recording of precursor
ions; in fragmentation mode all ions are subjected to an additional fragmentation step
that leads to the formation of fragment ions. A similar switching approach is used for
example in di�erent versions of DIA mode: MSE and all-ion fragmentation (AIF) (Silva et al.,
2006a,b; Geiger et al., 2010a), where the tandem mass spectrometer switches between MS
and MS/MS mode without any precursor ion selection. However, in tandem instruments,
DIA method uses isolation, which will discard singly charged molecules, thus producing
cleaner MS/MS spectra.

In Publication I, E. coli whole cell lysate was separated with SDS-PAGE (Figure 3A)
and analyzed with LCT Premier MS working in two scanning modes collecting almost
identical total ion count (TIC) chromatograms (Figure 3B). By changing the fragmentation
energies, all the precursors entering the source were fragmented and both spectra were
collected (Figure 3C). Unlike in a typical DDA MS/MS experiment, where precursor ions
are isolated and analyzed individually, all the precursor ions were fragmented without
any selection in these experiments. Hence, fragmentation spectra are much more com-
plicated and lead to di�culties in identi�cation of fragments. A signi�cant drawback of
the method is low automation. The peak list combination for the database search was
carried out manually because it was not possible to analyze it with currently available
software packages.
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Figure 3 – (A) E. coli soluble proteins were separated by SDS-PAGE, each lane was cut
into 40 fractions and fractions were digested and analyzed by LC-MS. (B) Two similar
TIC chromatograms were collected in the same run by rapidly changing between
high and low energies in the middle of ion guides. (C) An example of a peptide
fragmented with “in-source CID”. All the precursor ions which were entering the
source were also fragmented, producing fragment spectra for peptide identi�cation.

More than one hundred proteins were identi�ed by in-source fragmentation. Two E.
coli continuous cultivation samples were analyzed: one at speci�c growth rate 0.5 h−1

and another one at 0.2 h−1. Protein identi�cations obtained by TOF MS were validated
for six gel fractions with quadrupole-TOF MS QStar Elite (AB Sciex). All proteins, which
were observed with TOF MS, were also identi�ed with Q-TOF MS. However, three times
more proteins were identi�ed with Q-TOF MS than with TOF MS (Publication I, Fig 2a and
Supplementary Table 2). This improvement with Q-TOF MS analysis can at least partly be
explained by higher e�ciency of automatic LC-MS/MS data analysis which was missing in
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TOF MS where peak lists were collected and analyzed manually. It can only be assumed
that if the data handling with TOF MS would have been automated, more peptides would
be identi�ed with TOF MS as well.

With this study we showed, as a proof-of-principle, that a single TOF MS is usable for
peptide and protein identi�cation. However, such an approach is very laborious and,
because better methods exist, we did not pursue this approach further.

5.2 set-up of metabolic labeling in continuous culture (Publication
II )

Metabolic labeling of the growing cells is the most reliable method for quantitative pro-
teome measurements as the label is incorporated into the cells before any sample pre-
paration step, resulting in high reproducibility (review of Gouw et al. 2010). Usage of
labeled medium is usually not cost e�ective in continuous cultures; therefore, stationary
phase 15N labeled E. coli K-12 MG1655 batch culture was used as a spike-in standard to
study changes in E. coli proteome during the over�ow metabolism. In this study 15N la-
beling was used only to produce heavy labeled reference proteins, which are added to the
samples from continuous cultivations after cell lysis and before protein digestion. The
di�erence between experimental samples was calculated as the “ratio of ratios”, where
the ratios of samples relative to the standard were divided with each other (Figure 4).

Figure 4 – The work�ow of a 15N-labeled experiments. The labeling is separated
from the cultivation experiment, which is carried out in A-stat continuous cultiva-
tion (see Publication II). The non-labeled samples from cultivation experiment were
combined with the 15N-labeled standard and these combined samples were SDS-PAGE
fractionated and analyzed separately by LC-MS/MS. The di�erence between the ex-
perimental samples was calculated as the “ratio of ratios”.
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As a result approximately 1,600 E. coli proteins, identi�ed with at least two peptides,
were quanti�ed in two biological replicates. Protein relative abundance ratios were cal-
culated for speci�c growth rates 0.2; 0.3; 0.4; 0.49 h−1 (A-stat samples) and compared
to a sample at µ = 0.1 h−1 (chemostat point prior to the start of acceleration in A-stat)
which produced correlation between two biological replicates in the range of R2 = 0.62-
0.84 (Figure 5). This good reproducibility for biological replicates can be explained with
the controlled growth on balanced de�ned medium in continuous cultures (chemostat
and A-stat).
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Figure 5 – Correlation between protein expression ratios of two biological replic-
ates. Protein expression ratios were obtained by using 15N metabolically labeled
reference. µ – speci�c growth rate ( h−1); # – number of data points analyzed; R2

– Pearson’s squared correlation coe�cient calculated for log protein expression ra-
tios; CV – coe�cient of variation in percentage. All correlations are signi�cant at
p-value < 0.0001. Axes are at log scale.
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Protein expression values were calculated as the ratios of ratios (Figure 4), this leads
to a decrease in the number of quanti�ed proteins due to the missing values in one of the
samples. 1,860, 1,797, 1,812, 1,738 and 1,803 15N/14N ratios were quanti�ed for samples at
growth rates 0.1 h−1, 0.2 h−1, 0.2 h−1, 0.4 h−1 or 0.49 h−1, respectively. However, after
calculating from those ratios new ratios to the �rst time point at growth rate 0.1 h−1, we
ended up with 1,620, 1,628, 1,595 and 1,613 values for 0.2/0.1, 0.3/0.1, 0.4/0.1 and 0.49/0.1
h−1 ratios, respectively. We could not mainly quantify uncharacterized proteins; how-
ever, there were unquanti�able proteins in all of the Clusters of Orthologous Groups COG
functional categories (data not shown). One group of proteins which were not possible
to quantify in continuous culture samples were �agella proteins, mainly due to their very
low abundance in the stationary phase 15N standard culture. This clearly demonstrates
the limitations of relative quanti�cation and also that care should be taken in preparing
standard cells. Preferably reference cells should be collected at di�erent growth phases
and combined to a standard that has the best representative of the proteome under study,
this “super-standard” approach has been applied on quanti�cation of human tumour tis-
sue (Geiger et al., 2010b).

5.3 absolute qantitative proteomics

5.3.1 Quanti�cation of SDS-PAGE separated proteins (Publication I and Publication
III)

It has been demonstrated that the average mass spectrometry signal response for the
three most intense tryptic peptides from a protein correlates with the concentration of a
current protein (Silva et al., 2006b). We applied this method in Publication I for SDS-PAGE
separated proteins. First, we tested the hypothesis that the average signal response (peak
area or height) of three most intense peptides should be quantitative (Silva et al., 2006b)
on a standard protein — bovine serum albumin (BSA). Four di�erent concentrations of
BSA were loaded on the gel and in-gel digested (Figure 6).

Figure 6 – Standard curves of BSA based on the MS peak areas (left) or peak heights
(right) for the three most abundant peptides. The correlation is linear for peak areas
or heights at BSA amount lower than 100 pmol.
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The calibration curve was linear for BSA amounts lower than 100 pmol (Figure 6),
the mass analyzer became saturated at higher concentrations and the linearity of re-
sponse was lost. It was concluded that relative quanti�cation can be applied between
two samples extracted from the gel, based on peak area and/or height; as long as the
amount of the sample remains smaller than 100 pmol or 5 µg. Peak area was used to
quantify 117 gel-extracted proteins at growth rate 0.5 h−1 compared to the growth rate
0.2 h−1 (Publication I).
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Figure 7 – Correlation between APEX protein abundances for SDS-PAGE separated
and gel extracted samples of two biological replicates. µ – speci�c growth rate
( h−1); # – number of data points analyzed; R2 – Pearson’s squared correlation coef-
�cient calculated for log protein expression ratios; CV – coe�cient of variation in
percentage. All correlations are signi�cant at p-value < 0.0001. Axes are at log
scale. Correlation at growth rate 0.4 h−1 was 0.58 for 1,263 proteins, CV 35% (data
not shown).

Absolute Protein Expression (APEX) measurements were carried out on a data set of
1,808 E. coli proteins (15N/14N metabolically labeled experiments, previously published in
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Publication II, also including proteins based on 1 peptide identi�cation), combined from
two biological replicates separated by SDS-PAGE fractionation and extracted from the gel.
The Pearson’s squared correlation between two biological replicates was 0.56-0.62 (Fig-
ure 7), which is lower than for relative quanti�cation (Figure 5). Poorer reproducibility
was expected because label-free quanti�cation is generally considered to be less accurate
than metabolic labeling (Hendrickson et al., 2006; Asara et al., 2008; Collier et al., 2010;
Li et al., 2011).
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Figure 8 – The e�ect of sample preparation on APEX calculation. µ – speci�c
growth rate ( h−1); R2 – Pearson’s squared correlation coe�cient; # – number of
data points analyzed. All correlations are signi�cant at a p-value < 0.0001. A)
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log scale. B) Correlation between average APEX values for samples fractionated by
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between spectral counts for biological replicates analyzed as a shotgun experiment.
Axes are a log scale. D) Correlation between spectral counts for biological replicates
separated by SDS-PAGE. Axes are a log scale.
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In order to evaluate the e�ect of sample preparation on label-free absolute quanti�ca-
tion, a sample from the speci�c growth rate of 0.1 h−1 was analyzed again by a shotgun
experiment, using only a four hour nano-LC gradient for sample separation. Almost 600
proteins were detected less compared to SDS-PAGE separated sample (based on two bio-
logical replicates, data not shown). However, the correlation for 1,021 common proteins
in shotgun biological replicates was found to enhance the Pearson’s squared correlation
to 0.83 and dynamic range improved from three to four orders of magnitude (Figure
7A compared to Figure 8A). Correlation between APEX values for SDS-PAGE fractionated
and shotgun samples was R2 = 0.44 (Figure 8B). Low correlation between APEX values of
same samples prepared by di�erent protocols demonstrates that label-free quanti�cation
is highly in�uenced by sample preparation.

Because APEX method rely on spectral counts of peptides, we also compared the spec-
tral counts between di�erent sample preparation methods (Figure 8C, D); less spectral
counts per protein were detected for samples processed with in-gel digestion than in shot-
gun experiments, which indicates poor recovery of peptides from the SDS gel. It has been
observed before that the digestion of proteins embedded into a polyacrylamide matrix
a�ects the recovery of peptides (Havliš and Shevchenko, 2004), and therefore, label-free
quanti�cation may be altered if gel based methods are used in sample preparation.

It has been reported recently that sample fractionation by SDS-PAGE is associated only
with a moderate decrease of label-free quantitative measurement repeatability, while im-
proving the depth of proteomic coverage (Gautier et al., 2012). However, we concluded
based on our results that SDS-PAGE is not a suitable sample preparation method for label-
free quanti�cation and label-free results presented from here on are based on the shotgun
experiments at a growth rate of 0.1 h−1.

5.3.2 Comparison of di�erent label-free quanti�cation methods (Publication III)

In Publication III, three label-free proteome quanti�cation methods — APEX, emPAI and
iBAQ were compared in order to measure proteome-wide protein concentrations in the
cells. All methods were applied to a shotgun sample from E. coli chemostat culture at
growth rate 0.1 h−1. Label-free quanti�cation was made on an absolute scale, meaning
that concentrations were calculated for each protein as a number of molecules per cell.

Absolute protein abundance in cells can be calculated by normalizing the contribution
of individual proteins with the total protein mass in the cell (see for example (Nagaraj
et al., 2011)). This is done using a quantitative measure, such as the sum of mass spectro-
metry responses of peptides used to identify each protein. However, this method is de-
pendent on the measured total protein amount and on the number of identi�ed proteins.
Another approach would be to perform absolute quanti�cation by spiking the sample
with a known quantity of intact proteins and estimating protein concentration based on
linear relationship of the mass spectrometry response and concentration of standard pro-
teins.
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Figure 9 – The e�ect of internal standard calibration or normalization on pro-
tein concetration, calculated by label-free quanti�cation methods. A-C) UPS2 pro-
tein abundances calculated by the internal standard calibration. D-F) UPS2 protein
abundances calculated by the normalization method. G-I) Correlation between bio-
logical replicates calculated by the internal standard calibration. J-L) Correlation
between biological replicates calculated by the normalization method.

In order to investigate the e�ect of internal standard addition on the performance of
label-free quanti�cation methods, Universal Proteomics Standard (UPS2, Sigma Aldrich)
was used. UPS2 is a mixture of 48 precisely quanti�ed human proteins with a dynamic con-
centrations range spanning �ve orders of magnitude. Internal standard addition enabled
us to evaluate the magnitude of absolute protein abundances. The sum of all proteins
in a cell, according to iBAQ and emPAI, was 8 and 5% less than the value derived from
the Lowry total protein analysis. This very small di�erence between the total protein
amount measured by the colorimetric assay and label-free quantitative proteomics meth-
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ods indicates a high con�dence of calculated protein abundances. Interestingly, the APEX
method overestimates total protein concentration 1.5 times compared to Lowry, iBAQ and
emPAI methods.

Comparison of standard protein abundances, calculated either by normalization or lin-
ear regression, revealed no di�erence in the squared Pearson’s correlations for spectral
counting methods APEX and emPAI (0.88 and 0.83, respectively) (Figure 9B, C, E, F). Cor-
relation improved from 0.87 to 0.94 for iBAQ if the linear regression based on standard
proteins was used instead of the normalization approach (Figure 9A compared to Figure
9D). Therefore, we decided to quantify protein abundance using the most appropriate
approach for each method. Normalization was applied for APEX and emPAI, and internal
standard calibration was used for iBAQ.

High correlation between biological replicates for all three absolute quanti�cation
methods was observed (Figure 9G, K and L). However, iBAQ outperformed the others:
Pearson’s squared correlation for logarithmized abundances 0.99 versus 0.92 for APEX and
0.89 for emPAI were measured (Figure 9G, K and L). High correlation between biological
replicates can be explained by the highly reproducible continuous cultivation system and
also due to minimized sample preparation by shotgun proteomics experiment.

Ribosomes are one of the largest protein complexes working in the cell and ribosomal
proteins are expected to be expressed in equal copy numbers, however, we could not �nd
agreement with the theoretical 1:1 stoichiometry. We identi�ed and quanti�ed 53 of 54
annotated ribosomal proteins and found that their absolute abundances span over one
order of magnitude with the intensity based absolute quanti�cation (iBAQ) method and
over two orders of magnitude with spectral counting methods. Median ribosomal abund-
ances were found to be 7,063, 3,987 and 5,219 copies per cell with CVs of 35%, 85% and 98%
for iBAQ, APEX and emPAI, respectively (Publication III, Figure 4C). This signi�cant di�er-
ence of ribosomal protein abundances between di�erent label-free methods showed that
quanti�cation methods must be chosen with great care. In the literature, spectral count-
ing has resulted in higher variations of ribosomal proteins than peak area measurement,
probably due to a saturation e�ect in spectral counting for such high abundant proteins
(Ishihama et al., 2008; Maier et al., 2011). Because ribosomal proteins are relatively short
and have high lysine and arginine content they produce a lot of tryptic peptides compared
to their length which can complicate label-free quanti�cation of these proteins.

Reasonable correlation between protein abundances determined by di�erent absolute
label-free quanti�cation methods was observed. The spectral counting method APEX
versus peak area calculation method iBAQ resulted in R2 = 0.76, and correlation between
another spectral counting method emPAI and iBAQ was R2 = 0.81. Correlation between
two spectral counting methods emPAI and APEX was found to be R2 = 0.77 (Publication III,
Figure 1G-I).

Median protein copy numbers per cell at growth rate 0.1 h−1 were 457, 886 and 409
for iBAQ, APEX and emPAI, respectively. We found that the top 20% of proteins by abund-
ance contributed 76%, 62% and 78% of total protein amount in the cell for iBAQ, APEX
and emPAI, respectively. This is in accordance with the well-known understanding that a
small fraction of proteins are of high abundance. This has been observed for example in
studies of mammalian cells (Beck et al., 2011; Nagaraj et al., 2011), Saccharomyces cerevisiae
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(Ghaemmaghami et al., 2003), Leptospira interrogans (Schmidt et al., 2011), and Mycoplasma
pneumoniae (Maier et al., 2011).

5.3.3 Proteome distribution (Publication II and Publication III)

The E. coli K12 MG1655 genome is 4.64 million bp long (Blattner et al., 1997) and contains
approximately 4303 ORFs (according to UniProtKB, 17 october, 2012). The theoretical 2D
gel of the E. coli genome was formed by plotting all proteins according to their theoretical
isoelectric points and molecular weights (Figure 10).
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Figure 10 – Theoretical 2D map of all quanti�ed E. coli proteins by the shotgun
method. Empty spots represent proteins that remain unidenti�ed in our analysis.
Colour code represents quantitative information calculated by iBAQ method.

All proteins identi�ed and quanti�ed using the shotgun method were overlaid on the
plot and colour coded according to the iBAQ absolute abundances. The theoretical 2D gel
provides an overview of the molecular weight and isolectric point range of quanti�ed
proteins. Small proteins are missing from the analysis due to a limited number or lack of
detectable tryptic peptides, making them di�cult to identify by MS. However, our analysis
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was not biased to large proteins, because 55% of the identi�ed proteins had molecular
weight over 30 kDa, well in accordance with the proportion of proteins (54%) larger than
30 kDa in the E. coli theoretical proteome. There is a clustering of identi�ed proteins in
the isoelectric point range of pH 4-7; this is expected because 65% of E. coli proteins are
with isolectric point less than pH 7 (calculated based on theoretical isoelectric points of
E. coli proteins).
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Figure 11 – Coverage and abundance levels of protein groups by COG classi�cation.
The number of genes, the number of identi�ed proteins, the protein copies per cell
and cost in ATP for protein synthesis. Functional classes are colour coded. J – trans-
lation, ribosomal structure and biogenesis; K – transcription; L – replication, recom-
bination and repair; D – cell cycle control, cell division, chromosome partitioning;
V – defence mechanisms; T – signal transduction mechanisms; M – cell wall/mem-
brane/envelope biogenesis; N – cell motility; U – intracellular tra�cking, secretion,
and vesicular transport; O – posttranslational modi�cation, protein turnover, chap-
erones; C – energy production and conversion; G – carbohydrate transport and
metabolism; E – amino acid transport and metabolism; F – nucleotide transport
and metabolism; H – coenzyme transport and metabolism; I – lipid transport and
metabolism; P – inorganic ion transport and metabolism; Q – secondary metabol-
ites biosynthesis, transport and catabolism; R – general function prediction only; S
– function unknown; NO – no COG class.
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The cellular roles of all E. coli K12 MG1655 4,303 protein coding genes and of all the
identi�ed proteins were predicted according to the classi�cation of the Clusters of Ortho-
logous Groups (COGs) database (Tatusov et al., 2003) maintained by the National Center
for Biotechnology Information (NCBI). The data indicate a discrepancy between the num-
ber of protein coding genes and the number of identi�ed proteins within COG classes (Fig-
ure 11, Genome and Proteome bars, respectively). The protein identi�cations are missing
mostly for poorly characterized proteins. More than 40% of ORFs (28% of all the identi�ed
proteins) in E. coli are hypothetical, and do not have any COG class or are associated with
a poorly characterized COG class.

By taking into account the protein copy numbers in the cell (Figure 11, Copies/cell
bar) and the lengths of their polypeptide chains, together with the ATP cost of one amino
acid polymerization reaction in the ribosome, the ATP cost for protein synthesis in the
cell was calculated (Figure 11, Cost in ATP bar). This is a very rough calculation, because
protein degradation is not considered. According to these calculations, E. coli invests a
large fraction of cellular protein synthesis energy budget to the processes of translation,
ribosomal structure and biogenesis (J); energy production and conversion (C), and amino
acid transport and metabolism (E). In contrast, groups K, L, V, N and P have only a mod-
erate impact on the abundance of proteins and the synthesis budget. The latter is partly
caused by limitations of the analysis method — for example there is very little inform-
ation regarding proteins from group N, which covers proteins involved in cell motility.
Groups K and L embrace genes involved in transcription, replication, recombination and
repair, which are of very low abundance and not costly for cells to synthesize. Group V,
genes involved in defence mechanisms, are needed only in certain conditions and group
P, inorganic ion transport and metabolism, are probably low abundant and low cost pro-
teins. Poorly characterized proteins are generally at low abundance and do not demand
excessive energetic costs.

5.3.4 Protein dynamics within transcription units (Publication III)

Proteins originating from the same transcription units should have similar absolute abun-
dances, because they are synthesized from the same pool of mRNA species. The absolute
abundance of proteins calculated in this study allowed us to quantitatively analyze the
expression levels of proteins in transcription units. We divided transcriptional units into
four groups based on their ratio to neighboring gene products: “up”, “down”, “others”
and “no staircase” (see details in materials and methods). “No staircase” regulation,
where at least half of consecutive genes were not deferentially expressed, was found in
only 9% of the transcription units (Figure 12). Most of the transcription units had signi�c-
ant di�erences between the genes. It has been previously demonstrated by computational
methods that E. coli genes in transcription units are regulated equally (Laing et al., 2006).
However, the previous analysis by Laing et al. (2006) only takes into account the average
of all transcriptional units (Figure 12, All transcriptional units) and it eclipsed the stair-
case regulation which takes part in several modes. Our �nding is also opposite to the
�ndings in M. pneumoniae (Maier et al., 2011) and L. interrogans (Malmström et al., 2009)
where staircase-like regulation on the protein level was not signi�cant.
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Figure 12 – Variation in protein dynamics within transcription units. Box plot
diagrams for all ratios calculated for genes at position 1-5 in all quanti�ed E. coli
transcription units and grouped by “up”, “down”, “others” or “no staircase behavior”.

Despite the di�erential regulation on transcriptional units the over all CV of quanti�ed
proteins was found to be 205%, which is more than three times higher than within the
transcription units (60%) (Publication III, Supplementary Figure 7).

5.3.5 Protein versus mRNA (Publication I, Publication II, Publication III)

Relative proteomics expression data obtained using a low cost single MS instrument was
compared with mRNA expression data measured by DNA microarray analysis for the same
A-stat experiments (Nahku et al., 2010) (Publication I). High correlation between pro-
tein abundance and mRNA levels was not expected because slightly di�erent growth rates
(0.5/0.2 h−1 for proteome and 0.47/0.3 h−1 for transcriptome) and low-throughput im-
precise proteome measurements were used. However, the Pearson’s correlation 0.7 for
117 gene products was observed (when calculated based on log values then R2 = 0.64),
which indicated a good correlation (Publication I, Figure 3).
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Figure 13 – Correlation of protein and mRNA expression ratios at di�erent growth
rates. Protein expression ratios obtained by using 15N metabolically labeled refer-
ence, mRNA ratios obtained by using Agilent DNA microarray analysis. R2 – Pear-
son’s squared correlation coe�cient; # – number of data points analyzed. All cor-
relations were signi�cant at p-value < 0.0001. Axes are at log scale.

Proteome expression, based on two biological replicates at �ve speci�c growth rates,
were compared with mRNA levels in Publication II. The Pearson’s squared correlation for
more than 1,400 mRNA and protein pairs was R2 = 0.51-0.62 for the speci�c growth rate
range 0.3-0.48 h−1 compared with 0.1 h−1 (Figure 13). However, comparison of two
low speci�c growth rate experiments, 0.2 h−1 and 0.1 h−1, resulted in a very low Pear-
son’s squared correlation (R2 = 0.06). The latter was caused by two main reasons. First,
no major metabolic changes occurred during this small change of conditions. Secondly,
although there were small changes in mRNA levels, proteins levels were kept practically
constant because it takes more time for protein levels to change due to the longer half-life
of proteins (Figure 13) (Vogel and Marcotte, 2012; Maier et al., 2011).
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Figure 14 – Correlation of protein and mRNA absolute abundances at di�erent
growth rates. Protein abundances obtained by combining iBAQ values at growth rate
0.1 h−1 with relative ratios calculated by 15N metabolically labeled reference. mRNA
ratios obtained by using spot intensities from Agilent DNA microarray analysis. R2

– Pearson’s squared correlation coe�cient; # – number of data points analyzed. All
correlations are signi�cant at p-value < 0.0001. Axes are at log scale. Correlation
at growth rate 0.4 h−1 was 0.58 for 1,178 mRNA-proteins pairs.

By comparing the absolute abundances of mRNAs and proteins (Figure 14) squared Pear-
son’s correlation 0.37-0.58 was found. Correlation was lower at low growth rates 0.1 and
0.2 h−1 which is also explained by longer protein half-lives than these of mRNA.

Correlations detected between mRNA and protein abundances in the current study are
in accordance with the knowledge that ~40% of the variation in protein concentration
can be explained by knowing mRNA abundances (Vogel and Marcotte, 2012; Maier et al.,
2009; de Sousa Abreu et al., 2009).
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5.3.6 Apparent enzyme activity (Publication III)

Apparent catalytic rates of enzymes (kcat) were calculated per protein chain or subunits
in order to estimate enzyme activities without in vivo assays in the cell at certain experi-
mental conditions. Apparent kcat was calculated for each enzyme at speci�c experimental
condition as a ratio of speci�c �ux and protein abundance designated for the respective
�ux (see materials and methods for calculation details) (Figure 15). We found that
biosynthetic enzymes (COG functional classes G, J, E, M, H, I, F) were working with ten
times lower activity (median < 10 s−1) than energy generating enzymes (COG functional
class C). High enzymatic activities of energy generating enzymes indicate a shortage of
such genes, which may be a limiting factor for biomass or product formation rates.

Median kcat  μ  = 0.1 h-1

Median kcat  μ  = 0.48 h-1

C
al

cu
la

te
d 

kc
at

, s
-1

10−2

10−1

100

101

102

103

104

All C G NO J E M H I F

Figure 15 – Box plots showing the distribution of catalytic activities of enzymes at
µ = 0.1 h−1 divided into COGs. Horizontal bars represent 25th, 50th (median) and
75th percentiles and whiskers represent 1.5 interquartile ranges. Outliers are plot-
ted individually in open circles. Black dots represent median kcat at slow and red
dots at fast growth rate. All – median of all calculated enzymatic activities; C – en-
ergy production and conversion; G – carbohydrate transport and metabolism; NO
– no COG class; J – Translation, ribosomal structure and biogenesis; E – amino acid
transport and metabolism; M – cell wall/membrane/envelope biogenesis; H – coen-
zyme transport and metabolism; I – lipid transport and metabolism; F – nucleotide
transport and metabolism.

The median kcat value increased three times when comparing growth rate 0.48 h−1

and 0.1 h−1 indicating an increase in the metabolic capacity of E. coli at higher growth
rates (Figure 15).
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5.3.7 Gene expression regulation

As shown above, there was a positive correlation between levels of mRNAs and proteins,
however, because the correlation was far from ideal, there was no transcriptional regula-
tion for all gene products. In order to elucidate the regulation levels of gene expression,
covariance analysis between protein per mRNA ratios and speci�c growth rates was used
(details in materials and methods) (Figure 16A). High uncertainty levels were found
for almost half of the gene products due to the high error between biological replicate
measurements for protein and mRNA abundances — no expression regulation could be re-
vealed for those genes (ND, Figure 16). Almost half of the genes studied were found to be
post-transcriptionally regulated (44%), which means that there were fewer proteins per
mRNA translated with an increase in speci�c growth rate (Figure 16A). Genes were con-
sidered transcriptionally regulated if the protein to mRNA transcription rates were kept
constant over the growth rates studied — this was the case for only 14% of the genes
(Figure 16A). Translational regulation was determined only for minority of the genes, in
this case translation rate was increased more than transcription rate with an increase in
speci�c growth rate.
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Figure 16 – Gene expression regulation. A) Based on covariance analysis of
protein/mRNA ratio and speci�c growth rate; B) Based additionally to components
in A also on covariance analysis of kcat and speci�c growth rate. ND – no reg-
ulation analysis could be applied; TR – transcriptionally regulated; P-TR – post-
transcriptionally regulated; TL – translationally; P-TL – post-translationally regu-
lated. See Figure 11 for information of COG class nomenclature.
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Post-translational regulation was added to the analysis by considering also covariance
between kcat and speci�c growth rate values (Figure 16B) — this was done for 266 pro-
teins, for which a speci�c �ux was calculated. Most of the post-translational regulations
were combined with the post-transcriptional regulation (116 genes, Figure 16B), which
means that when the protein to mRNA ratio decreased, the kcat value increased with rais-
ing growth rate. The latter is probably regulated with PTMs. However PTMs were not
analyzed in this study and this hypothesis should be tested in future studies.

Gene expression regulation was divided into COG functional classes and it was revealed
that proteins involved in translation, ribosomal structure and biogenesis (group J) are
mostly regulated at the post-transcriptional/post-translational level (Figure 16). Those
proteins are mostly ribosomal proteins which are at high abundance and have low kcat
values. No other speci�c enrichment of gene expression in COG functional classes was
detected, most probably due to high uncertainty of the analysis method.

Absolute quanti�cation of proteomes combined with quantitative mRNA and meta-
bolome analysis revealed that post-transcriptional gene regulation dominates in E. coli
growth rate dependent studies. However, those calculations are a simpli�cation because
post-translational modi�cations, and protein and mRNA degradation rates were not meas-
ured. In addition, our data su�ers from high uncertainty (for half of the mRNA-protein
pairs).
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6
C O N C L U S I O N S

Four main conclusions result from this dissertation.

I A method for proteome characterization using a relatively low-cost single mass-
spectrometry was developed and tested (Publication I). Peptide identi�cations
obtained using a single mass analyzer were in a good correlation with results
achieved with a tandem mass analyzer. The method is valuable for the detection
of the most abundant proteins, especially if a limited numbers of high abundant
proteins are of interest. The drawback of using a single mass analyzer for pep-
tide identifying is the low selectivity, which is not comparable with tandem mass
spectrometry. Because all of the ions are fragmented without any selection, mass
spectra are often very complicated and our manual identi�cation of peptides was
very time consuming. To improve the performance of a single TOF-MS for peptide
identi�cation, a software routine should be developed to automate the peak pick-
ing process.

II The use of metabolically labeled culture as a spike-in standard is an advantageous
technology for continuous culture experiments where the introduction of labeled
media over the duration of the experiment is prohibitively expensive (Publication
II).

• However, when using a spike-in standard culture, care should be taken that
all of the interesting proteins are represented in the standard culture. The
physiological state of the culture used for the labeled standard production
and that obtained in the experiments must be similar.

• SDS-PAGE fractionation is a suitable sample preparation method for proteome
quanti�cation by metabolic labeling, where samples under study are mixed
before fractionation.

III Absolute quanti�cation of the proteome using three label-free quanti�cation meth-
ods was validated (Publication III). The peak intensity (iBAQ) method was superior
to spectral counting methods (APEX, emPAI) in terms of linearity of standard curves
and reproducibility of biological replicates. In addition iBAQ provided the lowest
variation among ribosomal protein abundances, which are expected to be present
in equal amounts.
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IV Absolute proteome quanti�cation is essential for the comprehensive understand-
ing of regulation mechanisms in the cell (Publication III). Absolute quanti�cation
allowed us to:

a) calculate the energetic burden put on cell energy generation system in order
to synthesize proteins;

b) determine apparent enzyme activities at di�erent growth rates of E. coli;
c) identify gene regulation mechanisms if combined with quantitative tran-

scriptome and metabolome data.
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Application of collision-induced dissociation (cID) for frag-
menting molecules is necessary for sequence analysis of 
peptides using electrospray ionization.1 In tandem mass 
spectrometry (MS/MS) instruments, ions of interest are 
selected by the first analyzer and then directed into the 
collision cell where they collide with neutral gas molecules 
(for example argon or nitrogen). the second mass analyzer 
records all the fragments resulting in MS/MS spectra.2,3 As 
well as fragmentation occurring in the collision cell, frag-
mentation can also be induced in one of the high-pressure 
regions between the atmospheric pressure source and the 
mass spectrometer. this process is called “up-front” collision 
induced dissociation4 and has been referred to by a variety of 
terms including “nozzle-skimmer cID” and “in-source cID”.5 
the difference between “up-front” cID and data dependent 

MS/MS experiments is that there is no precursor ion selec-
tion and fragments can result from the dissociation of all 
precursor ions, including solvent and background species.5 
It has been demonstrated that fragmentation of single- and 
double charged peptide ions by “up-front” cID can yield ion 
spectra comparable to those obtained in the collision cell 
of a tandem quadrupole-tof mass spectrometer.1 As the 
equipment is not spending any time in MS/MS mode, the data 
collection in an “up-front” cID scheme is much faster. Hence, 
more information can be obtained and no co-eluting peptides 
will be missed in narrow chromatographic peaks.6

In order to perform “up-front” cID in a single analyzer, the 
analyzer must operate in two different operating modes. In 
full-scan mode all ions from the source are analyzed, allowing 
the recording of precursor ions. In fragmentation mode all 
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A method for identifying and quantifying proteins with relatively low-cost orthogonal acceleration time-of-flight mass spectrometry 
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ions are subjected to a fragmentation step which produces 
daughter ions. 

the aim of this work was to test a low-cost alternative 
method for performing proteomic experiments. the fragmen-
tation mode used in this paper has been described previously 
by ren et al.7 Briefly, in an oa-tof-MS instrument, gas-phase 
ions from the source are transferred to the tof mass analyzer 
by ion guiding tunnels, which consist of ion guide 1 and ion 
guide 2. fragmentation occurs in the region between the ion 
guide 1 and the aperture separating the guides. In the ion 
guide 1 region, the ions gain significant energy as they accel-
erate. collision of these ions with neutral molecules of the 
residual atmospheric gas leads to their dissociation.7 A rapid 
change of voltage was applied to the aperture between the 
guides, and chromatograms for high- and low voltages were 
recorded in the same run. A similar switching approach was 
also used in a new technology called MSe,8,9 where the tandem 
quadrupole-tof mass spectrometer is switched between low- 
and elevated collision energy. 

Materials and methods
Preparation of peptide fractions
Escherichia coli (E. coli) K-12 MG1655 (Statens Serum Institute, 
Denmark) was cultivated in A-stat10 culture, where specific 
growth rate was continuously increased according to the 
preset dilution rate. E. coli K-12 samples were collected at 
specific growth rates of 0.2 h–1 and 0.5 h–1, centrifuged, washed 
once with phosphate buffer saline, centrifuged again and the 
pellet was suspended in sodium dodecyl sulfate (SDS) buffer 
[100 mM tris/Hcl pH 7.5, 1% SDS, protease inhibitor cock-
tail (P8465, Sigma, uSA)]. cells were disrupted as a result of 
agitating the suspension with glass-beads at 4°c for 30 min. 
After centrifugation for 30 min at 4°c, the supernatant was 
collected and protein content was determined by 2D Quant 
kit (Amersham Biosciences, uSA) and stored at –80°c prior 
to further analysis. Extracted proteins (60 μg) were separated 
on a 12% acrylamide sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS-PAGE) gel11 (Protean II xi, Biorad, 
20 × 20 cm). the gel was stained overnight with colloidal 
coomassie, lanes were cut to 40 slices and slices were trypsin 
(Promega, Southampton, uK) digested.

Liquid chromatography-mass spectrometry
Peptides were analyzed with an oa-tof instrument, Lct 
Premier, coupled with a uPLc instrument (Waters, uK). five 
μL of peptide mixture (~0.25 μg) were loaded on a column 
(Waters AcQuIty uPLc BEH300 c18 1.7 μm, 2.1 mm × 100 mm) 
using gradient of 0.1% formic acid in AcN from 5–40% over 
20 min in a flow rate of 0.15 mL min–1. Data was collected with 
MassLynx 4.1 software (Waters, uK). the Lct Premier was run 
simultaneously in two modes, switching every second between 
low- and high energy (15 V and 55 V, respectively) in aperture 
between ion guides. Six fractions were also analyzed with 
a tandem quadrupole-tof mass spectrometer, QStar Elite 

(Applied Biosystems, uSA) in order to evaluate the identifica-
tions obtained with the Lct Premier.

Data analysis
fragmented peptide spectra collected with Lct Premier 
were centroided in MassLynx 4.1 program and aligned 
manually with information about their precursor masses 
and charges and stored as DtA format files which were 
subsequently merged together. Proteins were identified 
by the Mascot search engine12 using the NcBI database 
(17.10.2008). the search parameters were as follows; E. coli 
taxonomy, one missed trypsin cleavage, fixed modification: 
carbamidomethyl (c), variable modification: oxidation (M), 
1.2 Da precursor mass tolerance and 0.6 Da fragment mass 
tolerance. A protein was considered positively identified if 
there were at least two peptides identified with a significant 
score.

the average MS signal response for the three most intense 
tryptic peptides was calculated for each identified protein.8–13 
for relative quantification, specific growth rate 0.5 h–1 was 
compared to 0.2 h–1. 

Results and discussion
Protein identification
A method for proteome characterization on relatively low-
cost equipment was developed and tested. Simultaneous 
precursor ion measurement and peptide fragmentations were 
performed using up-front cID which yields to fragmentation 
of all the precursors entering the source. A similar approach 
has been applied to a mixture of known tryptic peptides.6 In 
the current work, SDS-PAGE fractions from E. coli whole cell 
lysate were used. Gel fractions were digested and injected into 
liquid chromatography-mass spectrometry (Lc-MS) where 
two different experiments were performed in the same run 
by rapidly changing between high- and low energies with 
concurrent collection of almost identical chromatograms. All 
the precursors which were entering the source were frag-
mented by changing fragmentation energies and both spectra 
were collected (figure 1). unlike a typical MS/MS experiment, 
where a precursor ion is isolated and analyzed individually, 
the precursor ions are fragmented without any selection in 
the current approach. Hence, the fragmented spectra can be 
much more complicated and lead to difficulties in fragment 
spectrum identification. the big drawback of the method is 
also the low automatization as peak lists are composed manu-
ally. Although the data produced is similar to MSe data,8,9 it 
is not yet possible to analyze it with a commercial software 
packages.

In the current study, more than 100 proteins (table S1 in 
supplementary on-line material) were identified by manually 
created peak lists. A protein was considered identified with 
sufficient confidence when at least two peptides were identi-
fied. If the identification was based only on one sample but 
masses of the peptides were found with the same  retention 
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time in both samples, the protein was considered to be present 
in both samples.

Proteins identified by the single tof mass-spectrometer, 
Lct Premier, were compared with the results obtained by 
the tandem quadrupole-tof mass analyzer, QStar Elite. Six 
different fractions were compared and all proteins which 
were observed with the Lct Premier were also found using 
QStar Elite (figure 2). However, three times as many proteins 
were detected with the QStar Elite than with the Lct Premier 
[figure 2(a)]. this remarkable advantage of QStar can at 
least be partly explained by the higher efficiency of auto-
matic Lc-MS/MS data analysis which was missing in the Lct 
Premier where peak lists were combined manually. It can 
only be assumed that if data handling with the Lct Premier 
had been automated, more peptides would have been 
detected with the oa-tof as well. Despite the higher amount 
of proteins and peptides identified by MS/MS, there were 54 
peptides which were identified only by oa-tof [figure 2(b)] 
(table S2 in supplementary on-line materials).

Relative quantification
Silva, et al.8 demonstrated that the average Lc-MS signal 
response for the three most intensive tryptic peptides from 
a protein is correlating with the concentration of the protein. 
this method also allows for performing absolute quantifica-
tion of proteins by spiking the cell lysate with known quantities 
of the proteins studied.

Quantification of peptides by Lc-MS using peak integration is 
not often applied to proteins separated by gel electro phoresis. 
this is most likely due to the fact that sample processing 
during in-gel digestion and differences in the activities of 
trypsin in separate reaction vessels can possibly introduce 
undesired variations in the results.13 

In the current study, SDS-PAGE separated proteins were 
quantified by comparing integrated peak areas and heights of 
the same peptides in different samples. It was assumed that 
the ratio between the average signal responses of the three 
most intensive peptides from one protein should correlate 
with the amount of the current protein. Latter hypothesis was 

Figure 1. A two-step fragmentation method was employed for peptide TIIAATNSGYTAR. (a) First, the aperture 1 voltage was set to 15 V 
and peptide molecular masses were measured. (b) Next the voltage was rapidly switched to 55 V, leading to extensive dissociation 
which allowed identifying the partial sequence of the peptide.
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positively tested with a standard protein bovine serum albumin 
(BSA). Different concentrations of BSA were loaded onto the 
same SDS gel as the samples and processed (data not shown). 
the calibration curve was found to be linear and no significant 
losses during the sample handling were observed. 

Proteome changes—comparison with 
transcriptome changes
By now it has been understood that the detection of particular 
gene products in a microarray experiments does not confirm 
the presence or absence of the resulting protein product. 
this is due to the fact that the protein amount is being influ-
enced by protein stability, translation rate, modulation of 
transcript levels by other proteins, post-translational modi-
fications, half life etc.; therefore, mrNA levels cannot always 
be considered a predictor of the respective protein amount.14 
Bad correlation between mrNA and proteome levels has 

Figure 2. Evaluation of oa-ToF (LCT-Premier) results by com-
parison of six SDS gel fractions with tandem quadrupole-ToF 
mass spectrometer (QStar Elite). (a) All proteins observed with 
LCT Premier were also found with QStar Elite. (b) Almost four 
times more peptides were found with tandem quadrupole-ToF 
MS, however 54 unique peptides were identified only by oa-ToF.

Uniprot 
 

Gene 
symbol 

Protein name 
 

Mass 
 

Relative 
ratio of 
protein

Relative 
ratio of 
mRNA

P0AfG8 aceE Pyruvate dehydrogenase 99948 0.56 1.16

P36682 acnB Aconitate hydratase 1 93498 0.31 0.45

P27550 acs Acetyl-coenzyme A synthetase 72094 0.08 0.05

P0Ac41 sdhA Succinate dehydrogenase flavoprotein subunit 64422 0.34 0.51

P0AG67 rpsA 30S ribosomal protein S1 61158 1.89 1.50

P0A7E5 pyrG ctP synthase 60374 3.48 1.62

P0Ac33 fumA fumarate hydratase class I, aerobic 60299 0.44 0.32

P08997 aceB Malate synthase A 60274 0.47 0.45

P22259 pckA Phosphoenolpyruvate carboxykinase [AtP] 59643 0.10 0.11

P02942 tsr Methyl-accepting chemotaxis protein I 59443 0.64 0.81

P0A8N3 lysS Lysyl-trNA synthetase 57603 1.96 1.12

P0A6f5 groL 60 kDa chaperonin 57329 0.66 0.65

P0Aff6 nusA transcription elongation protein nusA 54871 1.88 1.28

P25553 aldA Lactaldehyde dehydrogenase 52273 0.05 0.08

P00350 gnd 6-phosphogluconate dehydrogenase, decarboxylating 51481 2.67 1.43

P04949 flic flagellin 51265 0.62 0.79

P39180 flu Antigen 43 alpha chain 51000 0.57 0.63

P0A9P0 lpdA Dihydrolipoyl dehydrogenase 50688 0.46 0.80

Table 1. Differentially expressed (more than 1.5 fold up- or down-regulated) proteins (growth rate of 0.5 h–1 compared to 0.2 h–1) and genes 
(growth rate of 0.47 h–1 compared to 0.3 h–1) in E. coli A-stat culture.
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Uniprot 
 

Gene 
symbol 

Protein name 
 

Mass 
 

Relative 
ratio of 
protein

Relative 
ratio of 
mRNA

P0ABH7 gltA citrate synthase 48015 0.40 0.35

P0A9G6 aceA Isocitrate lyase 47522 0.26 0.38

P0c8J8 gatZ Putative tagatose 6-phosphate kinase gatZ 47109 0.32 0.24

P0A6P9 eno Enolase 45655 2.21 1.22

P0A825 glyA Serine hydroxymethyltransferase 45317 2.18 1.40

 P0A836 succ Succinyl-coA ligase [ADP-forming] subunit beta 41393 0.76 0.60

P0A799 pgk Phosphoglycerate kinase 41276 3.11 1.08

P0A9Q9 asd Aspartate-semialdehyde dehydrogenase 40018 2.41 1.29

P23721 serc Phosphoserine aminotransferase 39783 3.57 1.41

P0AD96 livJ Leucine/isoleucine/valine transporter subunit 39223 6.28 -

P02931 ompf outer membrane protein f 39333 0.48 0.75

P30178 ybic uncharacterized oxidoreductase 38897 2.50 1.29

P0AB91 aroG Phospho-2-dehydro-3-deoxyheptonate aldolase 38010 5.49 2.50

P0A9S3 gatD Galactitol-1-phosphate 5-dehydrogenase 37390 0.07 0.13

P04391 argI ornithine carbamoyltransferase chain I 36907 2.40 1.47

P76316 dcyD D-cysteine desulfhydrase 35153 1.53 1.06

P02931 ompf outer membrane protein f 39333 0.29 0.75

P61889 mdh Malate dehydrogenase 32337 0.63 0.77

P0A6P1 tsf Elongation factor ts 30423 2.12 1.18

P0A9D8 dapD tetrahydrodipicolinate N-succinyltransferase 29892 2.20 1.11

P0AGE9 sucD Succinyl-coA ligase [ADP-forming] subunit alpha 29777 0.53 0.45

P0AEK4 fabI NADH-dependent enoyl-AcP reductase 27864 1.75 1.09

P0c8J6 gaty tagatose-1,6-bisphosphate aldolase 30812 0.27 0.27

P28635 metQ D-methionine-binding lipoprotein metQ 29432 0.62 0.87

P0A7L0 rplA 50S ribosomal protein L1 24730 1.67 1.33

P0AEM9 fliy cystine-binding periplasmic protein 29039 9.08 0.81

P39831 ydfG NADP-dependent L-serine/L-allo-threonine 
dehydrogenase ydfG

27249 0.66 0.87 

P07014 sdhB Succinate dehydrogenase iron-sulfur subunit 26770 0.21 0.37

Table 1 (continued). Differentially expressed (more than 1.5 fold up- or down-regulated) proteins (growth rate of 0.5 h–1 compared to 0.2 h–1) 
and genes (growth rate of 0.47 h–1 compared to 0.3 h–1) in E. coli A-stat culture.
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Uniprot 
 

Gene 
symbol 

Protein name 
 

Mass 
 

Relative 
ratio of 
protein

Relative 
ratio of 
mRNA

P69441 adk Adenylate kinase 23586 3.39 1.48

P60438 rplc 50S ribosomal protein L3 22244 1.62 1.49

P0AcJ8 crp catabolite gene activator 23640 0.60 0.73

P0A8f0 upp uracil phosphoribosyltransferase 22533 2.90 1.54

P30126 leuD 3-isopropylmalate dehydratase small sub-unit 22487 1.98 1.10

P0A955 eda KHG/KDPG aldolase 22284 3.19 1.19

P0AGD3 sodB Superoxide dismutase [fe] 21310 3.03 0.99

P0AE08 ahpc Alkyl hydroperoxide reductase subunit c 20862 0.57 0.79

P62399 rplE 50S ribosomal protein L5 20302 2.41 1.16

P02359 rpsG 30S ribosomal protein S7 20019 2.42 0.92

P0AG55 rplf 50S ribosomal protein L6 18904 1.53 1.12

P0A862 tpx thiol peroxidase 17835 1.76 0.90

P0A7W1 rpsE 30S ribosomal protein S5 17603 2.13 1.15

P0A7f3 pyrI Aspartate carbamoyltransferase regulatory chain 17121 3.80 1.61

P0A7J3 rplJ 50S ribosomal protein L10 17712 1.66 1.02

P0ADy7 rplP 50S ribosomal protein L16 15281 3.32 1.17

P02413 rplo 50S ribosomal protein L15 14980 1.61 1.17

P0Acf8 hns DNA-binding protein H-NS 15540 2.39 0.76

P0A7J7 rplK 50S ribosomal protein L11 14875 4.77 1.67

P0A7W7 rpsH 30S ribosomal protein S8 14127 2.03 1.12

P0A7r9 rpsK 30S ribosomal protein S11 13845 2.52 1.09

P0ADy3 rplN 50S ribosomal protein L14 13541 2.62 0.94

P0A6f9 groS 10 kDa chaperonin 10387 1.57 0.87

P0A7K6 rplS 50S ribosomal protein L19 13133 2.14 1.56

P0c018 rplr 50S ribosomal protein L18 12770 3.61 1.13

P60624 rplX 50S ribosomal protein L24 11316 2.65 0.92

P0A7K2 rplL 50S ribosomal protein L7/L12 12295 1.74 1.14

P0A7r5 rpsJ 30S ribosomal protein S10 11736 2.51 1.33

P0A7t7 rpsr 30S ribosomal protein S18 8986 1.86 1.25

Table 1 (continued). Differentially expressed (more than 1.5 fold up- or down-regulated) proteins (growth rate of 0.5 h–1 compared to 0.2 h–1) 
and genes (growth rate of 0.47 h–1 compared to 0.3 h–1) in E. coli A-stat culture.
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been reported by several groups, including for organisms 
such as Plasmodium falciparum,15 Saccharamyces cerevi-
siae16,17 and mouse.18 However, it has also been reported that 
there is a good correlation between protein and transcript 
levels during exponential growth of E. coli.19 considering all 
the latter, it seems that data which monitors transcriptome 
and protein changes at the same time would give much more 
information about the physiological regulation of the studied 
microorganism.

Proteome data obtained in this study was compared with 
DNA microarray analysis results from the same experi-
ments.20 relative changes in E. coli proteome were calcu-
lated for A-stat culture, comparing specific growth rates at 
0.5 h–1 to 0.2 h–1. relative changes in the transcriptome were 
found at the comparison of growth rates at 0.47 h–1 to 0.3 h–1. 
At higher growth rates (> 0.34 h–1), overflow metabolism 
was observed indicated by acetate production and lowered 
production yield of co2. Analyzed specific growth rate points 
for transcriptome and proteome comparisons can be taken 
as similar to those at lower growth rate (< 0.34 h–1) charac-
teristics of cells (glucose, o2 consumption and co2 produc-
tion yields). However, at the growth rate of 0.5 h–1, there was 
a minor amount of glucose (1 mM) in the growth environ-
ment which may induce some additional differences between 
mrNA and protein relative ratios.

Proteins were considered to be differentially expressed 
if there was at least a 1.5-fold change (relative ratio > 1.5 
or < 0.67) (table 1). In general, the changes in proteome 
and transcriptome were found to correlate by the Pearson 
 coefficient of 0.7 (figure 3), although there seems to be a 
trend towards stronger up-regulation of proteins. this can 
be caused by a higher specific growth rate range in the case 
of protein measurement.

Main changes at higher growth rates were found in acetate 
utilization and transport genes (acs, yjcH and actP), which were 
strongly repressed in transcriptome (> 10 times), indicating 

that acetate assimilation was decreased by this pathway. the 
down-regulation of Acs at the same level was also detected in 
proteome.

Decreased amounts of tcA cycle proteins (AcnB, GltA, 
fumA, SdhAB, SuccD) were observed at higher growth 
rates, similar to transcriptome levels (acnB, gltA, fumAC, 
sdhABCD, sucABCD). Also, the glycoxylate bypass proteins 
(AceAB) were down regulated at higher growth rate which is 
in concordance with the results obtained from transcriptome 
 measurements. 

Due to carbon catabolic repression at higher growth 
rate, down-regulation was observed for proteins respon-
sible for the utilization and transport of substrates other 
than glucose: AldA, GatDyZ. the latter was confirmed by 
 transcriptome measurements showing down regulation of 
genes aldA, gatABCDYZ, lamB, malEFKMQ, manXZY, mglABC, 
rbsABCDK. 

As the growth rate increases, bacteria need to synthesize 
more cell building blocks such as DNA, rNA, proteins and 
ribosomes. At the higher growth rate, up-regulation was 
detected for proteins (ArgI, AroG, Asd, DapD, LeuD, Serc) and 
to a lesser amount for some genes (argFH, aroGH, asd, serAC) 
responsible for amino acid biosynthesis. twenty six ribosomal 
proteins were found and all of them were slightly up-regulated 
by proteomic analysis. Interestingly, mrNA levels of ribosomal 
proteins were practically constant.

Conclusion
the method presented in this paper is an alternative method 
for performing proteomic experiments. It has been demon-
strated that using a simple oa-tof-MS instrument enables 
biologically important proteins to be identified and their rela-
tive amounts to be determined by comparing mass spec-
trometry peak intensities of the same peptides in different 
runs. results obtained from single tof mass analyzer iden-
tification were in a good correlation with identifications 
achieved with the tandem quadrupole-tof mass analyzer 
although only the most abundant proteins were detected. 
the drawback of using a single tof mass analyzer for peptide 
identification is the low selectivity which is not comparable 
with tandem quadrupole-tof mass-spectrometry. As all the 
ions are fragmented without any selection, spectrums are 
often very complicated and manual identification of peptides 
is very time consuming. the performance of a single tof MS 
could be improved with software that could do automatic 
peak picking. At the moment, such software does not exist 
to our knowledge. We believe that the current method could 
be applied if comparison of high abundance proteins (for 
example over-expressed proteins) is needed and access to 
tandem mass spectrometry is limited.

comparison of proteome and transcriptome data showed 
that different data only complement each other and further 
comparative studies would be preferable to get a better picture 
of the correlation between proteome and  transcriptome.

Figure 3. Protein and mRNA expression were found to 
 correlate by Pearson coefficient of 0.7.
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Abstract

Background: The biotechnology industry has extensively exploited Escherichia coli for producing recombinant
proteins, biofuels etc. However, high growth rate aerobic E. coli cultivations are accompanied by acetate excretion
i.e. overflow metabolism which is harmful as it inhibits growth, diverts valuable carbon from biomass formation
and is detrimental for target product synthesis. Although overflow metabolism has been studied for decades, its
regulation mechanisms still remain unclear.

Results: In the current work, growth rate dependent acetate overflow metabolism of E. coli was continuously
monitored using advanced continuous cultivation methods (A-stat and D-stat). The first step in acetate overflow
switch (at μ = 0.27 ± 0.02 h-1) is the repression of acetyl-CoA synthethase (Acs) activity triggered by carbon
catabolite repression resulting in decreased assimilation of acetate produced by phosphotransacetylase (Pta), and
disruption of the PTA-ACS node. This was indicated by acetate synthesis pathways PTA-ACKA and POXB
component expression down-regulation before the overflow switch at μ = 0.27 ± 0.02 h-1 with concurrent 5-fold
stronger repression of acetate-consuming Acs. This in turn suggests insufficient Acs activity for consuming all the
acetate produced by Pta, leading to disruption of the acetate cycling process in PTA-ACS node where constant
acetyl phosphate or acetate regeneration is essential for E. coli chemotaxis, proteolysis, pathogenesis etc. regulation.
In addition, two-substrate A-stat and D-stat experiments showed that acetate consumption capability of E. coli
decreased drastically, just as Acs expression, before the start of overflow metabolism. The second step in overflow
switch is the sharp decline in cAMP production at μ = 0.45 h-1 leading to total Acs inhibition and fast
accumulation of acetate.

Conclusion: This study is an example of how a systems biology approach allowed to propose a new regulation
mechanism for overflow metabolism in E. coli shown by proteomic, transcriptomic and metabolomic levels
coupled to two-phase acetate accumulation: acetate overflow metabolism in E. coli is triggered by Acs down-
regulation resulting in decreased assimilation of acetic acid produced by Pta, and disruption of the PTA-ACS node.

Background
Escherichia coli has not only been the prime organism
for developing new molecular biology methods but also
for producing recombinant proteins, low molecular
weight compounds etc. in industrial biotechnology for
decades due to its low cost manufacturing and end-

product purification and its ability to reach high cell
densities grown aerobically [1,2]. However, a major pro-
blem exists with aerobic E. coli cultivation on glucose at
high growth rates-formation and accumulation of con-
siderable amounts of acetic acid i.e. overflow metabo-
lism. In addition to being detrimental for target product
synthesis, accumulated acetate inhibits growth and
diverts valuable carbon from biomass formation [3,4].
The acetate synthesis and utilization pathways [5] can

be seen in Figure 1: acetate can be synthesized by
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phosphotransacetylase (PTA)/acetate kinase (ACKA)
and by pyruvate oxidase (POXB). Acetic acid can be
metabolized to acetyl-CoA either by the PTA-ACKA
pathway or by acetyl-CoA synthetase (ACS) through an
intermediate acetyl-AMP. The high affinity (Km of 200
μM for acetic acid) ACS scavenges acetate at low con-
centrations whereas the low affinity PTA-ACKA path-
way (Km of 7-10 mM) is activated in the presence of
high acetate concentrations [6].
The phenomenon of overflow metabolism has been

studied widely over the years and it is commonly
believed to be caused by an imbalance between the
fluxes of glucose uptake and those for energy produc-
tion and biosynthesis [7,8]. Several explanations such as
the saturation of catalytic activities in the tricarboxylic

acid (TCA) cycle [9,10] and respiratory chain [7,11,12],
energy generation [5,13] or the necessity for coenzyme
A replenishment [14] have been proposed. In addition
to bioprocess level approaches [1,15], various genetic
modifications of the acetate synthesis pathways exten-
sively reviewed in De Mey et al. [15] have been made to
minimize acetic acid production. For instance, it has
been shown that deleting the main acetate synthesis
route PTA-ACKA results in a strong reduction (up to
80%) of acetate excretion, maximum growth rate (ca
20%) and elevated levels of formate and lactate (ca 30-
fold) [4,16-18], whereas poxB disruption causes reduc-
tion in biomass yield (ca 25%) and loss of aerobic
growth efficiency of E. coli [19]. The latter indicates that
acetate excretion cannot be simply excluded by
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Figure 1 Effect of specific growth rate on acetate synthesis and utilization pathways, selected TCA cycle and carbon catabolite
repressed gene and protein expression levels in E. coli A-stat experiments. PTA, phosphotransacetylase; ACKA, acetate kinase; ACS, acetyl-
CoA synthetase; POXB, pyruvate oxidase; PDHC, pyruvate dehydrogenase complex; TCA, tricarboxylic acid cycle; GS, glyoxylate shunt; Crp, cyclic
AMP receptor protein; Cra, catabolite repressor activator; Icd, isocitrate dehydrogenase; SucD, succinyl-CoA synthethase; SdhB, succinate
dehydrogenase; μ, specific growth rate (h-1). Thickness of red arrows denotes level of ACS and PTA-ACKA pathway repression (thick line
represents stronger repression). Protein data points are average of two independent experiments, error bars are not shown for better
visualization. Gene names are italicized. Refer to Additional file 2 for standard deviations and all the data.
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disrupting its synthesis routes without encountering
other unwanted effects. Unfortunately, no clear conclu-
sions could be drawn from batch experiments with an
acs knock-out strain [4]. It should be noted that studies
with E. coli genetically modified strains engineered to
diminish acetate production in batch cultures have not
fully succeeded in avoiding acetate accumulation
together with increasing target product production
yields and rates [15]. Additionally, these studies have
not allowed elucidating the mechanism of overflow
metabolism unequivocally [4,20,21].
Acetate overflow is a growth rate dependent phenom-

enon, but no study has specifically focused on growth
rate dependency of protein and gene expression regula-
tion, intra-and extracellular metabolite levels using also
metabolic modeling. Describing the physiology of an
organism on several ‘omic levels is the basis of systems
biology that facilitates better understanding of metabolic
regulation [22]. In this study, E. coli metabolism at pro-
teomic, transcriptomic and metabolomic levels was
investigated using continuous cultivation methods prior
to and after overflow metabolism was switched on.
Usually, chemostat cultures are used for steady state
metabolism analysis, however, we applied two changestat
cultivation techniques: accelerostat (A-stat) and dilution
rate stat (D-stat), see Methods section for details [23,24].
These cultivation methods were used as they provide
three advantages over chemostat. Firstly, these changestat
cultivation techniques precisely detect metabolically rele-
vant switch points (e.g. start of overflow metabolism,
maximum specific growth rate) and enable to monitor
the dynamic patterns of several metabolic physiological
responses simultaneously which could be left unnoticed
using chemostat. Secondly, it is possible to collect vast
amount of steady state comparable samples and by doing
so, save time. Thirdly, both A-stat and D-stat enable to
quantitatively study specific growth rate dependent co-
utilization of growth substrates. Latter advantage was
applied for investigating acetic acid consumption capabil-
ity of E. coli at various dilution rates in this study. Com-
bining changestat cultivation methods enables to study
metabolism responses of the same genotype at different
physiological states in detail without encountering the
possible metabolic artifacts accompanied when using
genetically modified strains.
Results obtained by studying specific growth rate

dependent changes in E. coli proteome, transcriptome
and metabolome in continuous cultures together with
metabolic modeling allowed us to propose a new theory
for acetate overflow: acetate excretion in E. coli is trig-
gered by carbon catabolite repression mediated down-
regulation of Acs resulting in decreased assimilation of
acetate produced by Pta, and disruption of the PTA-
ACS node.

Results
E. coli metabolic switch points characterization
In all accelerostat (A-stat) cultivation experiments, after
the culture had been stabilized in chemostat at 0.10 h-1

to achieve steady state conditions, continuous increase
in dilution rate with acceleration rate (a) 0.01 h-2 (0.01
h-1 per hour) was started. Continuous change of specific
growth rate resulted in detecting several important
changes in E. coli metabolism as demonstrated in Figure
2. Firstly, in A-stat cultivations where glucose was the
only carbon source in the medium, acetic acid started to
accumulate (i.e. overflow metabolism switch) at μ = 0.27
± 0.02 h-1 (average ± standard deviation) and a two-
phase acetate accumulation pattern was observed (dis-
cussed below; Figure 2). Cells reached maximum CO2

production and O2 consumption at μ = 0.46 ± 0.02 h-1

and metabolic fluctuations were observed at μ = 0.49 ±
0.03 h-1 followed by washout of culture at μ = 0.54 ±
0.03 h-1 (corresponding to maximum specific growth
rate at given conditions). The nature of these fluctua-
tions will be studied further and not covered in the cur-
rent publication. All A-stat results were reproduced
with relative standard deviation less than 10% with the
exception of acetate production per biomass (YOAc-)
(Table 1 and Figure S1 in Additional file 1).

Metabolomic responses to rising specific growth rate
A-stat cultivation enabled to study acetic acid accumula-
tion profile in detail with increasing specific growth rate.
Interestingly, a two-phase acetate accumulation pattern
was observed (Figure 2). Slow accumulation of acetic
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acid started at μ = 0.27 ± 0.02 h-1 with concomitant
change in specific CO2 production rate (Figure 2). Faster
accumulation of acetate was witnessed after cells had
reached maximum CO2 production at μ = 0.46 ± 0.02 h-1.
Quite surprisingly, production of the important carbon
catabolite repression (CCR) signal molecule cAMP
(YcAMP) rose from steady state chemostat level 2.45 ±
0.26 μmol/g dry cellular weight (DCW) (μ = 0.10 h-1) to
3.55 ± 0.32 μmol/g DCW (μ = 0.30 h-1) after which it
sharply decreased to 1.30 ± 0.44 μmol/g DCW at μ = 0.45
h-1 (Figure S1 in Additional file 1). This abrupt decline
took place simultaneously with the faster acetate accumu-
lation profile described above (Figure 2 and Figure S1 in
Additional file 1). In addition, similar two-phase acetate
accumulation phenomenon was observed in a two-
substrate (glucose + acetic acid) A-stat during the decrease
of cAMP around specific growth rate 0.39 h-1 (Figure S2 in
Additional file 1).
Significant fall in two of the measured pentose phos-

phate pathway intermediates ribose-5-phosphate (R5P)
and erythrose-4-phosphate (E4P) was detected with
increasing specific growth rate which could point to
possible limitation in RNA biosynthesis during growth
(Figure 3A). PTA-ACS node related compound nones-
terified acetyl-CoA (HS-CoA) level declined two-fold
simultaneously with cAMP after acetate started to
accumulate (Figure 3B). This indicates the possible
increase of other CoA containing compounds e.g. suc-
cinyl-CoA. Accumulation of TCA cycle intermediates
a-ketoglutarate and isocitrate (Figure 3B) with increas-
ing dilution rate could be associated with pyrimidine
deficiency and decrease of ATP expenditure in the
PTA-ACS cycle. Concurrently, intracellular concentra-
tions of fructose-1,6-bisphosphate (FBP) and glyceral-
dehyde-3-phosphate (GAP) from the upper part of
energy generating glycolysis increased 6- and 3-fold,
respectively (Figure 3C).

Functional-genomic responses to rising specific growth
rate
The two main known pathways for acetate synthesis
phosphotransacetylase-acetate kinase (PTA-ACKA) and
pyruvate oxidase (POXB) were down-regulated, both
on gene and protein expression levels, from μ = 0.20
h-1 i.e. before acetate overflow was switched on. At the
same time, there was a concurrent 10-fold repression
of the acetic acid utilization enzyme acetyl-CoA
synthetase (Acs). This substantial difference (5-fold)
between the acetate synthesis and assimilation path-
ways expression suggests that the synthesized acetic
acid cannot be fully assimilated with increasing growth
rates (Figure 1).
We observed the beginning of carbon catabolite

repression (CCR) induction prior to acetate accumula-
tion in parallel with Acs down-regulation. This was indi-
cated by down-regulation (3-fold on average) of CCR-
mediated components: alternative (to glucose) substrate
transport and utilization systems like galactose (MglAB),
maltose (MalBEFKM), galactitol (GatABC), L-arabinose
(AraF), D-ribose (RbsAB), C4-dicarboxylates (DctA) and
acetate (ActP, YjcH) (Figure 4C and Additional file 2).
Moreover, expression of transcription activator Crp
(cyclic AMP receptor protein which regulates the
expression of Acs transcribing acs-yjcH-actP operon)
and Cra (catabolite repressor activator; a global tran-
scriptional protein essential for acetic acid uptake [25])
were reduced 1.5 and 2 times, respectively, in like man-
ner to carbon catabolite repressed proteins mentioned
above (Figure 1). Simultaneously, components of the
gluconeogenesis pathway (Pck, MaeB, Pps) and glyoxy-
late shunt enzymes AceA, AceB (vital for acetate con-
sumption) were repressed with growth rate increase
(Figure 4B and Additional file 2). It should be empha-
sized that most of the TCA cycle gene and protein levels
were maintained or even increased up to μ = 0.40 h-1

Table 1 A-stat and chemostat growth characteristics comparison and A-stat reproducibility over the studied specific
growth rate range for three independent experiments

μ = 0.24 h-1 μ = 0.30 h-1 μ = 0.40 h-1 μ = 0.51 h-1 μ = 0.10-0.47 h-1

Chemostat A-stat Chemostat A-stat Chemostat A-stat Chemostat A-stat A-stat RSD, %

YXS
a 0.44 0.40 ± 0.01 0.46 0.41 ± 0.01 0.44 0.42 ± 0.00 0.43 0.41 ± 0.01 2.0

YOAc-
b NDE NDE 0.53 0.90 ± 0.32 1.70 1.56 ± 0.23 3.25 3.35 ± 0.82 ND

YcAMP
c 3.47 3.59 ± 0.39 3.25 3.55 ± 0.32 2.70 2.17 ± 0.07 0.86 0.71e 9.1

YCO2
d 27.56 30.12 ± 2.04 27.55 27.19 ± 1.22 26.24 23.86 ± 1.41 ND 21.19 ± 0.19 5.6

A-stat values represent the average from three independent experiments and standard deviation follows the ± sign. Chemostat values from one experiment.
NDE, not detected. ND, not determined. RSD, relative standard deviation.
aBiomass yield is given in g dry cell weight (DCW)/g glucose consumed (g DCW/g glucose).
bAcetic acid production per biomass is given in mmol acetic acid/g DCW.
ccAMP production per biomass is given in μmol cAMP/g DCW.
dCarbon dioxide (CO2) production per biomass is given in mmol CO2/g DCW.
eData from one A-stat experiment.
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followed by sudden repression simultaneous to achieving
maximum specific CO2 production rate (μ = 0.46 ±
0.02 h-1, see above; Figure 1 Figure 2 and Figure 4A).
This may allude to no limitation at the TCA cycle level
around the specific growth rate where overflow metabo-
lism was switched on.

Acetic acid consumption capability studied by dilution
rate stat (D-stat) and two-substrate A-stat cultivations
The beginning of a strong decrease in acetate assimila-
tion enzyme Acs expression before overflow switch
point implies to a possible connection between acetate

assimilation capability and overflow metabolism of acet-
ate (Figure 1). Therefore, specific growth rate dependent
acetic acid consumption capabilities were investigated
using D-stat and two-substrate A-stat methods. It was
shown by D-stat experiments at various dilution rates
that more than a 12-fold reduction in acetate consump-
tion capability took place around overflow switch point,
and its total loss was detected between dilution rates
0.45 and 0.505 ± 0.005 h-1 (Figure 5). Acetic acid con-
sumption and production was also studied in a single
experiment using two substrate (glucose + acetic acid)
A-stat cultivation (Figure S2 in Additional file 1) which
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demonstrated that acetic acid consumption started to
decrease at μ = 0.25 h-1 and was completely abolished at
μ = 0.48 h-1 which fits into the range of dilution rates
observed in D-stat.

A-stat comparison with chemostat
As could be seen from Table 1 major growth character-
istics such as biomass yield (YXS), acetate (YOAc-), cyclic
AMP (YcAMP) and carbon dioxide (YCO2) production per
biomass from A-stat and chemostat are all fully quanti-
tatively comparable. The latter results enable to use A-
stat data for quantitative modeling calculations. In addi-
tion, the two continuous cultivation methods were
examined at transcriptome level using DNA microar-
rays. Transcript spot intensities from quasi steady state
A-stat sample at μ = 0.48 h-1 and chemostat sample at
μ = 0.51 h-1 showed an excellent Pearson product-
moment correlation coefficient R = 0.964 (Figure S3 in
Additional file 1; Additional file 3). This indicates good
biological correlation between E. coli transcript profiles
at similar specific growth rates in chemostat and A-stat.
These results showed that our quasi steady state data
from A-stat and D-stat cultures are steady state
representative.

Proteome and transcriptome comparison
E. coli protein expression ratios for around 1600 pro-
teins were generated by comparing two biological repli-
cates at specific growth rates 0.20 ± 0.01; 0.26; 0.30 ±
0.01; 0.40 ± 0.00; 0.49 ± 0.01 h-1 with sample at μ =
0.10 ± 0.01 h-1 (chemostat point prior to the start of

acceleration in A-stat) which produced Pearson correla-
tion coefficients for two biological replicates in the indi-
cated pairs of comparison in the range of R = 0.788-
0.917 (Figure S4 in Additional file 1).
DNA microarray analysis of 4,321 transcripts was con-

ducted with the Agilent platform using the samples
from one A-stat cultivation. Gene expression ratios
between specific growth rates 0.21; 0.26; 0.31; 0.36; 0.40;
0.48 h-1 and μ = 0.11 h-1 (chemostat point prior to the
start of acceleration in A-stat) were calculated. Compari-
son of gene and protein expression changes (between
respective specific growth rates) revealed that compo-
nents of the PTA-ACS node were regulated at transcrip-
tional level as the absolute majority of the studied
transcripts and proteins indicated by the good correla-
tion between transcriptome and proteome expression
profiles (Figure 1 and Figure S5 in Additional file 1).
Most recent studies have either failed to find a signifi-

cant correlation between protein and mRNA abun-
dances or have observed only a weak correlation
(reviewed in [22]). It has been suggested that the main
reasons for uncoupling of mRNA and protein abun-
dances are protein regulation by post-translational mod-
ification, post-transcriptional regulation of protein
synthesis, differences in the half-lives of mRNA and pro-
teins, or possible functional requirement for protein
binding [22]. As the cells in these studies were mostly
cultured in non steady state condition, our steady state
data with very good correlation between transcriptome
and proteome implies that the physiological state of the
culture (steady state vs. non steady state) could be an
important factor in terms of mRNA and protein correla-
tion determination. Transcriptome and proteome data
are presented in Additional file 2 and at NCBI Gene
Expression Omnibus and PRIDE database (see Methods
for details), respectively.

Discussion
To gain better insights into the regulation of acetate
overflow metabolism in E. coli, we studied specific
growth rate dependent proteomic, transcriptomic and
metabolomic patterns combined with metabolic model-
ing using advanced continuous cultivation methods,
which has not been carried out before. Continuous
monitoring of the specific growth rate effect on E. coli
metabolism enabled us to precisely detect important
metabolic shift points, the most important being the
start of acetate overflow at μ = 0.27 ± 0.02 h-1 (Figure
2), and changing patterns of a number of important
metabolites e.g. acetate, cAMP. Quite surprising was the
down-regulation of the known acetate synthesis path-
ways, PTA-ACKA and POXB expression before overflow
switch with increasing growth rate (Figure 1). A similar
pattern has been seen before in chemostat cultures
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but without emphasizing the possible physiological
consequences [26-28]. A 10-fold repression of the acetic
acid utilization enzyme acetyl-CoA synthetase (Acs)
expression was observed concurrently with the down-
regulation of the PTA-ACKA pathway indicating that
acetic acid synthesis might exceed its assimilation (Fig-
ure 1). Our two substrate A-stat and D-stat experiments
directly proved that acetate consumption capability of
E. coli is specific growth rate dependent as acetate con-
sumption started to decrease at μ = 0.25 h-1 (Figure S2
in Additional file 1) and acetate consumption capability
decreased 12-fold around overflow switch growth rate
μ = 0.27 ± 0.02 h-1, respectively (Figure 5). In addition,
it was shown that activation of carbon catabolite repres-
sion (CCR) and repression of Acs take place simulta-
neously prior to the start of overflow metabolism
(Figure 1 Figure 4 and Figure 5). As a result, it is pro-
posed that acetate overflow metabolism in E. coli is trig-
gered by Acs down-regulation resulting in decreased
assimilation of acetic acid produced by Pta, and disrup-
tion of the PTA-ACS node.
We showed that Acs was concurrently down-regulated

five times more compared to the acetate synthesis path-
ways (Figure 1). In addition, the TCA cycle flux decrease
as shown by change in CO2 production at overflow
switch growth rate indicates that carbon is not metabo-
lized by the TCA cycle after the start of acetate accumu-
lation with pre overflow switch rates (Figure 2 and
Additional file 4). The latter is caused because the
amount of acetyl-CoA entering the TCA cycle decreases
after carbon is lost into excreted acetate. Stronger
repression of the acetate consuming Acs in comparison
with acetate synthesizing PTA-ACKA together with a
decline in TCA cycle flux suggest disruption of acetic
acid cycling at the PTA-ACS node (Figure 1). While this
node may seem as a futile cycle, the fact is that numer-
ous metabolic tasks involving the intermediate mole-
cules of this cycle-acetyl phosphate (acetyl-P)
and acetyl-AMP-are essential for proper E. coli growth
(Figure 6). For instance, these molecules play a crucial
role in bacterial chemotaxis regulation in which flagellar
rotation is controlled by the activation level of the
response regulator CheY [29] through either phospho-
transfer from CheA [30,31] or acetyl-P [31,32], acetyla-
tion by acetyl-AMP [33,34] or co-regulation of both
mechanisms [29]. It has been also demonstrated that
acetyl-P synthesis is vital for EnvZ-independent regula-
tion of outer membrane porins [35], pathogenesis [36]
and regulation of several virulence factors [5]. Further-
more, it has been presented that acetyl-P interacts with
phosphate concentration regulators PhoB-PhoR [37] and
NRI protein which is part of a complex nitrogen sensing
system [38]. Acetyl-P is critical for efficient degradation
of unfolded or damaged proteins by ATP-dependent

proteases [39]. Altogether, acetyl-P can influence the
regulation of almost 100 other genes [40]. Finally, pta
and/or ackA mutations were shown to affect repair-defi-
cient E. coli mutants [41] and a pta mutant has been
reported to be impaired in its ability to survive during
glucose starvation, while the ackA mutant survived as
well as the parent strain [42]. It is important to note
that the only known pathway in E. coli for acetyl-P
synthesis is the PTA-ACKA [5,31]. Taking all the pre-
vious into account, we conclude that acetyl-P as well as
acetyl-AMP are essential for cellular growth of E. coli,
and as acetic acid formation is the result of their depho-
sphorylation, acetic acid should be synthesized and con-
sumed simultaneously during growth to maintain proper
balance between metabolites of the PTA-ACS node.
This is in agreement with Shin et al. [28] who proposed
that wild-type E. coli constitutively synthesizes acetate
even when growing on non-acetogenic carbon source
succinate or at low growth rates in carbon limited cul-
tures. It also has to be mentioned that acetic acid is a
by-product in the synthesis of cysteine, methionine and
arginine, covering around 0.4 mmol/g DCW (Additional
file 4). Based on our experimental and literature data,
production and re-assimilation of acetate might be over
1 mmol/g DCW at μ = 0.2 h-1 (Text S2 in Additional
file 1) which further supports the hypothesis of the
necessity for constant acetic acid synthesis.
A similar regulation for overflow metabolism of acet-

ate was posed for Saccharomyces cerevisiae by Postma
and co-workers: they postulated that acetate accumula-
tion is the result of insufficient acetyl-CoA synthetase
activity for the complete functioning of the pyruvate
dehydrogenase bypass because of glucose repression of
ACS at high growth rates [43]. The hypothesis proposed
here is also consistent with the observation that an acs
mutant of E. coli accumulated acetate in chemostat cul-
tures at dilution rate (D) 0.22 h-1 whereas acetate

Figure 6 Acetyl-P as an important signal molecule. Ac-CoA,
acetyl-CoA; PTA, phosphotransacetylase; refer to text for other
abbreviations.
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overflow was started in wild-type at a higher D = 0.35 h-1

[28]. Furthermore, it has been shown that over-expression
of acs [44] and constitutively expressed acs together with
glyoxylate shunt repressors iclR and fadR mutant resulted
in a significant reduction in acetate accumulation in glu-
cose batch fermentations [28]. Adams and co-workers
showed that as a result of micro-evolution, E. coli
increased acetate consumption capability by over-expres-
sing Acs (not AckA) [45,46], further supporting the con-
nection between Acs activity and acetate accumulation.
As Acs down-regulation is responsible for triggering

overflow metabolism and the resulting accumulation of
acetate is detrimental to cellular growth, it bears ques-
tioning why E. coli has not evolved towards maintaining
sufficient Acs levels for acetate assimilation in all growth
conditions. Growth conditions in E. coli native environ-
ments are rough as concentrations of utilizable carbon
sources including acetate are in the low mg L-1 range
and access to nutrients is troublesome [47]. These harsh
conditions force E. coli to make its metabolism ready
for scavenging all possible carbon sources including
acetate. However, in nutrient rich laboratory conditions,
E. coli focuses on anthropic growth [48] and biomass
production rate, primarily realized by enhancing readily
oxidizable substrate (glucose) uptake kinetics which in
turn results in Acs repression through CCR and thus,
acetate accumulation [46]. This indicates that an active
Acs is not essential for rapid growth for E. coli. It seems
that maintaining high expression levels of acetate assim-
ilation components (and also other alternative substrates
ones) is energetically not favorable at higher growth
rates. Moreover, as the space on cell membrane is lim-
ited and as E. coli achieves more rapid growth probably
by increasing the number of glucose transport machin-
ery components on the membrane, using area for alter-
native substrate transport proteins is not beneficial for
faster growth. Interestingly, even in one of its natural
environments-urinary tract-where a continuous dilution
of acetate occurs, it has been shown that metabolizing
acetate to acetyl-CoA by Acs is not essential for normal
E. coli colonization as PTA-ACKA pathway and mainte-
nance of a proper intracellular acetyl-P concentration
are necessary for colonizing murine urinary tract [32].
Based on all the points discussed above, PTA-ACS

might function as a futile cycle to provide rapid regulation
of acetyl-P concentration in the cell for an active chemo-
taxis that is vital in natural nutrient-depleted environ-
ments, fighting against other organisms (acetate
production), pathogenesis, biofilm formation etc. This
hypothesis is consistent with the fact that the flagellar
assembly and regulation operon (tar-tap-cheRBYZ) was
more intensively expressed at lower growth rates (Addi-
tional file 2) where residual glucose concentration is
smaller.

Concerning Acs down-regulation, it is possible that
CCR is responsible for its repression as proposed by
Treves et al. [46] showing the link between ACS expres-
sion level and acetate accumulation. In our experiments,
it was shown that activation of CCR and repression of
Acs take place simultaneously prior to the start of over-
flow metabolism (Figure 1 and Figure 4). As it is well
known that CCR is initiated by the presence of glucose
in the medium [49,50], we propose that increasing resi-
dual glucose concentration accompanying smooth rise
of dilution rate in A-stat triggers Acs down-regulation
by CCR. The cAMP-Crp complex is one of the major
players in CCR of E. coli as cAMP binding to Crp dras-
tically increases its affinity towards activating the pro-
motors of catabolic enzymes, including Acs [6,49,50].
We measured a 1.5-fold decrease in Crp expression with
increasing growth rate (Figure 1) that is in agreement
with the data in the literature [51]. In addition, when E.
coli mutant defective in the gene crp was cultivated in
glucose-limited chemostat at a low D = 0.10 h-1, it accu-
mulated acetate whereas the wild-type did not [52].
Furthermore, it exhibited a 34% higher biomass yield
relative to the wild-type-this increase might be explained
by reduced ATP wasting in the acetate futile cycle,
which can be directed to biomass synthesis. Moreover,
Khankal et al. [53] noted that E. coli CRP* mutants that
do not require Crp binding to cAMP to activate the
expression of catabolic genes showed lowered glucose
effect on xylose consumption, 3.6 times higher acs
expression levels and secreted substantially less acetate
in xylitol producing batch fermentations. The connec-
tion between cAMP concentration and acetic acid con-
sumption capability, together with the two-phase acetate
accumulation profile observed in A-stat and D-stat cul-
tures (Figure 2 and Figure 5) suggests a correlation
between increasing residual glucose concentration
mediated cAMP-Crp repression and acetate accumula-
tion. Thus, cAMP-Crp dependent regulation of Acs
transcribing acs-yjcH-actP operon might be a reason for
acetate excretion, as also proposed by Veit et al. [10].
Our hypothesis of the CCR mediated acetate overflow
metabolism is as well in agreement with the fact that
rising glucose lowers the intracellular Crp level through
the autoregulatory loop of the crp gene [54]. However,
other mechanisms can also be involved in Acs down-
regulation, for example by Cra (Figure 1). Indeed, Sarkar
and colleagues have shown that glucose uptake and
acetate production rates increased with a decrease of
acetate consumption in an E. coli cra mutant [55].
What could be the biological relevance of the disrup-

tion of the PTA-ACS node? Firstly, decline of the ATP-
spending PTA-ACS cycle throughput with increasing
growth rate points to possible lower ATP spilling (our
model calculations). Secondly, disruption of the PTA-
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ACS node decreases the energy needed for expression of
this cycle’s components. As the disruption of PTA-ACS
cycle is CCR-mediated, repression of other alternative
substrate transport and utilization enzymes by CCR
enables to save additional energy. This could all lead to
the decrease of ATP production as was indicated by the
diminishing TCA cycle fluxes (Figure 2). Hence, it is
plausible that cells repress (by CCR) the expression
levels of alternative substrate utilization components
(including Acs) for making space on the cell membrane
for more preferred substrate (glucose) utilization and
ATP producing components to achieve faster growth
(see above).
Finally, it was demonstrated that highly reproducible

A-stat data are well comparable to chemostat at the
level of major growth characteristics and transcriptome,
hence quasi steady state data from A-stat can be consid-
ered steady state representative (Table 1; Figure S1 and
Figure S3 in Additional file 1). Furthermore, as shown
also by Postma et al. for S. cerevisiae [43], chemostat is
not fully suitable for characterization of dilution rate
dependent metabolic transitions, whereas A-stat should
be considered an appropriate tool for this. A-stat is
especially well suited for the studies of the details of
transient metabolism processes. Dynamic behavior of
acetate, cAMP etc. with increasing specific growth rate
(Figure 2 Figure 3 and Figure S1 in Additional file 1)
and change in acetic acid consumption capability in the
two-substrate A-stat (Figure S2 in Additional file 1)
could be cited as good examples of the latter.

Conclusion
This study is an excellent example of how a systems
biology approach using highly reproducible advanced
cultivation methods coupled with multiple ‘omics analy-
sis and metabolic modeling allowed to propose a new
possible regulation mechanism for overflow metabolism
in E. coli: acetate overflow is triggered by carbon catabo-
lite repression mediated Acs down-regulation resulting
in decreased assimilation of acetate produced by Pta,
and disruption of the PTA-ACS node. The practical
implications derived from this could lead to better engi-
neering of E. coli in overcoming several metabolic obsta-
cles, increasing production yields etc.

Methods
Bacterial strain, medium and continuous cultivation
conditions
The E. coli K12 MG1655 (l- F- rph-1Fnr+; Deutsche
Sammlung von Mikroorganismen und Zellkulturen, Ger-
many) strain was used in all experiments. Growth and
physiological characteristics in accelerostat (A-stat)
cultivations were determined using a defined minimal
medium as described before by Nahku et al. [51], except

4.5 g/L a-(D)-glucose and 100 μl L-1 Antifoam C (Sigma
Aldrich, St. Louis, LO) was used. The latter was also
used in dilution rate stat (D-stat) experiments as the
main cultivation medium. In addition, a second medium
was used in D-stat where the main medium was supple-
mented by acetic acid and prepared as follows: 300 ml
medium was withdrawn from the main cultivation med-
ium and supplemented with 3 ml of glacial acetic acid
(99.9%). One A-stat experiment (referred to as two-sub-
strate A-stat) was carried out with the same medium as
other A-stats, but in addition supplemented with acetic
acid (final concentration 5 mM).
The continuous (both A-stat and D-stat) cultivation

system consisted of 1.25 L Biobundle bioreactor (Appli-
kon Biotechnology B.V., Schiedam, the Netherlands)
controlled by an ADI 1030 biocontroller (Applikon Bio-
technology B.V.) and a cultivation control program
“BioXpert NT” (Applikon Biotechnology B.V.). The sys-
tem was equipped with OD, pH, pO2, CO2 and tem-
perature sensors. The bioreactor was set on a balance
whose output was used as the control variable to ensure
constant culture volume (300 ± 1 mL). Similarly, the
inflow was controlled through measuring the mass of
the fresh culture medium.
A-stat cultivation system and control algorithms used

are described in more detail in our previous works
[24,51,56]. Dilution rate stat (D-stat) is a continuous
cultivation method where dilution rate is constant as in
a chemostat while an environmental parameter is
smoothly changed [24]. The D-stat experiments in this
study were carried out with a slight modification:
instead of changing an environmental parameter, two
different media were used to keep dilution rate constant.
After achieving steady state conditions in chemostat
using minimal medium supplemented with glucose,
addition of the second medium complemented with glu-
cose and acetic acid was started. The feeding rate of the
initial medium was decreased at the same time, resulting
in constant glucose concentration in the feed. The acetic
acid concentration in the bioreactor as a result of inflow
has to be determined to enable precise acetic acid con-
sumption/production rate calculation for the bacteria.
Hence, increase of acetic acid concentration in bioreac-
tor was calculated and validated in duplicate non-
inoculatedD-stat test experiments producing an average
standard deviation of 1.24 mM between calculated and
measured acetic acid concentrations.
All continuous cultivation experiments were carried

out at 37°C, pH 7 and under aerobic conditions (air
flow rate 150 ml min-1) with an agitation speed of 800
rpm. Four A-stat cultivations were performed with
acceleration rate (a) 0.01 h-2. Duplicate D-stat experi-
ments were performed at dilution rates 0.10; 0.30; 0.505
± 0.005 h-1 and single experiments at 0.19; 0.24;
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0.40; 0.45 h-1. The acetic acid addition profile was set to
achieve 32 ± 6 mM and 58 ± 5 mM in 7 hours inside
the bioreactor for experiments at dilution rates 0.10-
0.24 h-1 and 0.30-0.51 h-1, respectively. The growth
characteristics of the bacteria were calculated on the
basis of total volume of medium pumped out from bior-
eactor (L), biomass (g DCW), organic acid concentra-
tions in culture medium (mM) and CO2 concentration
in the outflow gas (mM). Formulas were as described in
a previous study [24]. It should be noted that the abso-
lute CO2 concentrations could be error-prone due to
measurement difficulties. However, this does not influ-
ence the dynamic pattern of specific CO2 production
rate (rCO2) during specific growth rate increase.

Analytical methods
The concentrations of organic acids (lactate, acetate and
formate), ethanol and glucose in the culture medium
were determined by HPLC and cellular dry weight
(expressed as DCW) as described by Nahku et al. [51].

Protein expression analysis
Refer to Text S1 in Additional file 1 for detailed
description. Shortly, protein expression ratios for
around 1600 proteins (identified for each growth rate at
a > 95% confidence interval in average from 89,303 dis-
tinct 2 or more high-confidence peptides) were gener-
ated from mass spectrometric spectra by firstly
calculating the ratios between continuous cultivation
samples at specific growth rates 0.10 ± 0.01 h-1 (chemo-
stat point prior to the start of acceleration in A-stat);
0.20 ± 0.01; 0.26; 0.30 ± 0.01; 0.40 ± 0.00; 0.49 ±
0.01 h-1 and batch sample grown on medium containing
15NH4Cl as the only source of ammonia. Secondly, the
ratios between the mentioned specific growth rates with
chemostat point (μ = 0.10 ± 0.01 h-1) for two biological
replicates were calculated to yield protein expression
levels for respective specific growth rates. Protein (and
gene) expression measurement results are shown in
Additional file 2. Proteomic analysis data is also avail-
able at the PRIDE database [57]http://www.ebi.ac.uk/
pride under accession numbers 12189-12199 (username:
review74613, password: Ge9T48e8). The data was con-
verted using PRIDE Converter http://code.google.com/
p/pride-converter [58].

Gene expression profiling
DNA microarray analysis of 4,321 transcripts was con-
ducted with the Agilent platform using the data from
one A-stat cultivation (a = 0.01 h-2), and gene expres-
sion ratios between specific growth rates 0.21; 0.26; 0.31;
0.36; 0.40; 0.48 h-1 and μ = 0.11 h-1 were calculated.
Transcript spot intensities of chemostat sample (sample
from D-stat prior to acetic acid addition) from μ = 0.51

h-1 and A-stat μ = 0.48 h-1 were used for the two meth-
od’s comparison at transcriptome level. Gene (and pro-
tein) expression measurement results are shown in
Additional file 2. DNA microarray data is also available
at NCBI Gene Expression Omnibus (Reference series:
GSE23920). The details of the procedure are provided in
Text S1 in Additional file 1.

Metabolome analysis
Sampling was carried out by the rapid centrifugation
method. Acquity UPLC (Waters, Milford, MA) together
with end-capped HSS C18 T3 1.8 μm, 2.1 × 100 mm
column for compound separation coupled to TOF-MS
with an electrospray ionization (ESI) source was used
for detection (LCT Premiere, Waters). The details of the
procedure are provided in Text S1 in Additional file 1.

Additional material

Additional file 1: Detailed Methods (Text S1); calculation of acetate
reconsumption (Text S2); Supplementary Figures S1-S5.

Additional file 2: Growth rate dependent gene (one A-stat) and
average protein expression changes of two A-stat experiments with
Escherichia coli K12 MG1655. Transcriptome and proteome analysis
results, also with standard deviations.

Additional file 3: Gene spot intensities of A-stat at μ = 0.48 h-1 and
chemostat at μ = 0.51 h-1 experiments with Escherichia coli K12
MG1655. Data for A-stat and chemostat transcriptome comparison.

Additional file 4: Simplified metabolic flux analysis. Detailed
description of model calculations with simplified metabolic flux analysis.
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Three different label-free proteome quantification methods – APEX, emPAI and iBAQ – were
evaluated to measure proteome-wide protein concentrations in the cell. All the methods were
applied to a sample from Escherichia coli chemostat culture. A Pearson squared correlation of
approximately 0.6 among the three quantificationmethodswas demonstrated. Importantly, the
sum of quantified proteins by iBAQ and emPAI corresponded with the Lowry total protein
quantification, demonstrating applicability of label-free methods for an accurate calculation of
protein concentrations at the proteome level. The iBAQ method showed the best correlation
between biological replicates, a normal distribution among all protein abundances, and the
lowest variation among ribosomal protein abundances, which are expected to have equal
amounts.
Absolute quantitative proteomedata enabled us to evaluatemetabolic cost for protein synthesis
and apparent catalytic activities of enzymes by integration with flux analysis. All the methods
demonstrated similar ATP costs for protein synthesis for different cellular processes and that
costs for expressing biomass synthesis related proteins were higher than those for energy
generation. Importantly, catalytic activities of energymetabolism enzymeswere an order or two
higher than those of monomer synthesis. Interestingly, a staircase-like protein expression was
demonstrated for most of the transcription units.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Quantitative proteomics has become a standard method in
biological studies to measure cellular responses to environ-
mental changes at the protein level. Proteome quantification
can be carried out on a relative or an absolute scale. Rela-
tive protein quantification methods like iTRAQ [1], SILAC [2]
and label-free quantification [3,4] allow relative protein abun-
dances to be compared in samples and the proteome dynamics
to be characterized in cellular systems. However, absolute

intracellular protein concentrations at the proteome level are
essential for a quantitative and comprehensive understanding of
an organism's metabolism and for mathematical modeling in
systems biology. For instance, knowing intracellular protein
concentrations enables one to evaluate the cost of running an
active metabolic pathway, expressing enzymes for stress re-
sponses, estimate ribosomal translational capacity, etc.

Achieving absolute quantification of thewhole proteome can
be very expensive and laborious by using precise isotope dilution
based methods like stable isotope labeled peptides [5,6] or
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proteins [7]. Absolute quantification can be determined using
label-free quantification,which is cheaper and easier to perform;
however, it is a less accurate alternative to isotope dilution
based methods. In addition, several other features of label-free
quantification should be considered, mainly related to sample
handling/processing and LC-MS/MS analysis (protein extraction
and digestion efficiency [8], ion suppression during ionization
[9,10], reproducibility of retention times [11], etc.). Limitations
and concerns of label-free quantification methods are reviewed
thoroughly elsewhere [12–14].

Based on the quantification algorithms used, label-free
methods can be divided into two classes: 1) those based on
themeasurement of precursor ion current areas (e.g. MSE [15],
T3PQ [16], iBAQ [17]), or 2) those based on tandem MS data,
e.g. protein sequence coverage or spectral counting (e.g.
emPAI [18] and APEX [19]). Protein absolute abundances can be
determinedby label-freemethodswithorwithout standards. The
more cost-efficient and easier option is to exclude the standard
proteins and calculate protein abundances from the fraction of
each protein in the total protein pool. This has been done with
APEX [19], emPAI [18,20] and iBAQ [21] methods, assuming that
most of the proteins which contribute to the total protein pool
are identified and quantified. Quantification accuracy can be
increased by using a standard curve from a mixture of proteins
with known amounts, differing in size and concentration [15,17].

To date, several studies have been performed to compare
different label-free absolute quantificationmethodswith each
other [16,22] (for relative scale comparison see also a review
[12]), with some combining the alternative approaches to gain
from strengths of different methods [23,24]. A comparison of
two-dimensional gel electrophoresis and APEX for absolute
proteome quantification in Shigella dysenteriae cells showed a
reasonably good correlation (R2=0.67) for 255 protein quanti-
ties determined by both methods [22]. Spectral counting
methods APEX and emPAI have been compared previously to
the precursor signal intensity based method [16]. It was
demonstrated with samples containing different amounts of
four standard proteins or yeast extract spiked with fetuin that
for higher protein concentrations or more complex samples
the spectral counting methods suffer from saturation effects.
It was also found that the variance among the three replicates
is surprisingly large for the spectral counting methods while
the calculation method of the three most intense tryptic
peptides peak area (T3PQ) is more reproducible. However,
correlation of spectral counting and peak area calculating
methods was not evaluated on a larger scale.

Malmströmet al. combined the accuracy of spiked-in isotope-
labeled standards with the dynamic range and coverage of label-
free shotgun quantification to estimate proteome-wide protein
copynumbersper cell [23]. Cellular concentrationsof 769proteins
(accurate to ~2-fold changes) were estimated using the precursor
ion intensity of the three most intense tryptic peptides [15]. In
addition, spectral counting (APEXmethod [19]) was used to cover
low abundance proteins with an accuracy of ~3-fold for 1095
additional proteins. Correlation between spectral counting and
extracted precursor ion intensities to absolute abundance data
was found to be good on a logarithmic scale for standard
proteins (R2=0.56, and R2=0.86, respectively). No correlation
between spectral counting and precursor ion intensities was
reported.

In the current study, three different label-free approaches
were used in order to calculate intracellular protein concentra-
tions for every quantified protein. Spectral counting methods
emPAI [18] and APEX [19] were chosen mainly because of the
possibility to apply them on already existing data. The exponen-
tially modified protein abundance index (emPAI) is an appr-
oximate protein quantificationmethod based on experimentally
observed peptides and the calculated number of observable
peptides. Since emPAI is implemented in the Mascot database
search platform, it is easy to use and the method is MS
instrument independent. While emPAI employs unique peptide
counts, the absolute protein expression (APEX) method uses
redundantpeptide counts andalso the correction factorOi,which
estimates the number of expected unique peptides, calculated
from their probability of being observed. Calculation of APEX
values has been made very easy by the APEX Quantitative
Proteomics Tool [25]. Thirdly, we chose a peak intensity-based
absolute quantificationmethod iBAQ [17]. Since iBAQ is integrat-
ed into the quantitative proteomics software package MaxQuant
[26], which is capable of processing SILAC and label-free data, it
offers new opportunities for data analysiswhereby combinations
of absolute and relative quantifications are easy to perform.

In this work we evaluate existing label-free methods in order
to obtain absolute quantification of Escherichia coli proteome and
analyze the obtained results from the perspective of cell phys-
iology. We show that label-free quantification reasonably esti-
mates protein abundances in the cell, producing proteome level
data needed in systems biology for a comprehensive under-
standing of cell metabolism. Naturally, internal isotope-labeled
standards should be used if more accurate concentrations of a
few targeted proteins are required.We feel it is very important for
the proteomics and systems biology communities to evaluate
different absolute proteome quantification methods in terms of
cost and data processing time without neglecting the physiolog-
ical relevance of the quantitative data.

2. Materials and methods

2.1. Sample preparation for a label-free experiment

E. coli K-12 MG1655 (λ-, F-, rph-1, Fnr+; Deutsche Sammlung
von Mikroorganismen und Zellkulturen (DSMZ), DSM No.
18039) was cultivated on glucose minimal medium in chemo-
stat culture at a specific growth rate of 0.11 h−1 under the
following conditions: temperature 37 °C, pH 7, agitation speed
of 800 rpm, and aerobic conditions (air flow rate 150 ml/min).
Three independent cultivation experiments were performed,
which have been described in detail [27]. Proteome analysis
was conducted in two independent biological experiments.

E. coli steady state chemostat culture was harvested in a
1 ml volume, washed once with PBS and flash frozen with
liquid nitrogen until further processing. For cell lysis, cell
pellets were suspended on ice in 200 μl urea lysis buffer (6 M
urea/2 M thiourea in 10 mM Hepes, pH 8.0). Cells were
disrupted with agitation using 100 mg glass beads at 4 °C for
15 min. Unbroken cells and glass beads were pelleted for
15 min at 4 °C at 14,800 rpm in a table-top centrifuge. Protein
concentrations were determined with a 2D Quant kit (Amer-
sham Biosciences, USA).
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For proteome analysis 3 μg of protein was reduced for 30 min
at room temperature with 10 mM dithiothreitol (DTT), followed
by alkylation for 20 min with 50 mM iodoacetamide (IAA) in the
dark at room temperature. Initial digestion was performed with
endoproteinase LysC (WakoChemicals USA, VA) at an enzyme to
protein ratio 1:50 for 3 hat roomtemperature. Sampleswere then
diluted four-fold with a digestion buffer, 50 mM aqueous
ammonium and sequencing grade modified trypsin (Promega,
Madison WI, USA) was added in enzyme to protein ratio 1:50.
Sampleswere incubated overnight at room temperature. Trypsin
and LysC activitywas quenched by 0.1% trifluoroacetic acid (TFA)
and peptides were desalted using C18-StageTips [28].

2.2. HPLC and mass-spectrometry

Peptides were analyzed in three technical replicates in order to
improve the proteome coverage. LC-MS/MS analysis was per-
formed using an Agilent 1200 series nanoflow system (Agilent
Technologies) connected to a LTQ Orbitrap mass-spectrometer
(Thermo Electron, San Jose, CA, USA) equipped with a nano-
electrospray ion source (Proxeon, Odense, Denmark). Purified
peptides were loaded on a self-packed fused silica emitter
(150 mm×0.075 mm, New Objective) packed with Reprosil-Pur
C18-AQ 3 μm particles (Dr. Maisch, Germany) at a flow rate of
0.7 μl/min. Peptides were separated with a 240-minute gradient
from 2 to 40% B (A: 0.5% acetic acid, B: 0.5% acetic acid/80%
acetonitrile) using a flow-rate of 200 nl/min and sprayed directly
into an LTQ Orbitrap mass-spectrometer (Thermo Electron,
Germany) operated at 180 °C capillary temperature and 2.2 kV
spray voltage.

Full mass spectra were acquired in a profile mode, with a
mass range from m/z 300 to 1900 at a resolving power of
60,000 (FWHM). Up to five data-dependent MS/MS spectra
were acquired in a centroid mode in the linear ion trap for
each FTMS full-scan spectrum (normalized collision energy
35%, max injection time 150 ms, fill value 5×103). Each
fragmented ion was dynamically excluded for 60 s.

The data associated with this manuscript may be down-
loaded from the ProteomeCommons.org Tranche network using
the following hash: LZqGIJspJjapNouL1AVDPguIUOHZ66He5lCb/
DhK9BI0k6USd02nSZWHAfrLttgNfxOnSn6Ha3VXMQBiX2Uj1+
vICNEAAAAAAAAFoQ==.

All quantified proteins and their properties used in the
following analysis are listed in Supplementary Table 1.

2.3. Protein quantification

2.3.1. Intensity-based absolute quantification (iBAQ)
Intensity-based absolute quantification (iBAQ) was carried out
as described elsewhere [17]. Briefly, the Universal Proteomics
Standard (UPS2, Sigma-Aldrich), 10.6 μg was dissolved in a
20 μl of lysis buffer (7 M urea/2 M thiourea) and mixed with
the protein sample prior to digestion as follows: 1.1 μg
UPS2+3 μg E. coli lysate.

Raw data files were analyzed with the MaxQuant software
package (version1.1.0.36) [26]. Generatedpeak listswere searched
using the Andromeda search engine (built into MaxQuant)
against E. coli database (downloaded 12.07.2010 from http://cmr.
jcvi.org/). The database was supplemented with UPS protein
sequences as well as with common contaminants (e. g. human

keratin, trypsin). MaxQuant searches were performed with full
tryptic specificity, a maximum of two missed cleavages and a
mass tolerance of 0.5 Da for fragment ions. Carbamidomethyla-
tion of cysteine was set as a fixed modification and methionine
oxidation andproteinN-terminal acetylationwere set as variable
modification. The required false discovery rate (FDR) was set to
1% both for peptide and protein levels and the minimum
required peptide length was set to six amino acids. In addition,
“Matchbetween runs”optionwith a timewindowof 1.5 minwas
allowed, as was the iBAQ quantification option.

Protein copies per cell were calculated by multiplying the
molar concentration with the Avogadro constant and dividing
with the number of cells in the respective experiment obtained
by plate counting (8–9×109 cells/ml) [27].

2.3.2. Spectral counting based absolute quantification

2.3.2.1. Mascot search. Fragment MS/MS spectra from raw
files were extracted as MSM files and then merged to peak
lists using the Raw2MSM version 1.7 [29], selecting top six
peaks for 100 Da. MSM files for the three technical replicates
of the same sample were concatenated to generate a single
large peak list file with a MultiRawPrepare.pl script (http://
msquant.alwaysdata.net) and subsequently searched with
the Mascot 2.2 search engine (Matrix Science, London, UK)
against the E. coli K-12 MG1655 protein sequence database
downloaded 22.09.2009 from EcoGene 2.0 (http://ecogene.org),
supplemented with common contaminants. Search parame-
ters were as follows: two missed trypsin cleavage, fixed
modification was set as carbamidomethyl (C), variable mod-
ifications were set as oxidation (M) and acetyl (protein
N-term), 5 ppm precursor mass tolerance and 0.6 Da MS/MS
mass tolerance. In order to estimate the false discovery rate
(FDR) decoy search option was allowed.

2.3.2.2. Absolute protein expression index (APEX). The Mas-
cot search results were validated by the PeptideProphet and
ProteinProphet algorithms [30] before the absolute protein
expression indexes (APEX) [19] were calculated by the APEX
Quantitative Proteomics Tool [25]. An estimated false positive
rate (FPR) cut-off of less than 5% was used, which corre-
sponded to the ProteinProphet probability p>0.5. FPR <5%was
chosen, as this resulted in a reasonable number of quantified
proteins (1220), comparable with the iBAQ dataset (1334
proteins). Limiting the FPR to less than 1% would result in
the loss of more than 200 proteins.

Total concentration of protein copies per cell (at a specific
growth rate of 0.11 h−1) was calculated based on biomass
concentration, determined gravimetrically as dry cellular
weight described by Nahku et al. [31], and protein concentra-
tion measured using the Lowry method [32]. Taking into
account the weighted average molecular mass of 1000 most
abundant proteins and cell counts based on plate counts we
estimated 2.3×106 protein copies per E. coli cell at a specific
growth rate of 0.11 h−1; the value of 2×106 protein copies per
cell was used in further calculations, accounting for the 12%
loss of protein due to insufficient cell lysis, as determined by
the gap between the results obtained by the Lowry protein
measurement and the 2D kit protein measurement in the cell
lysate. Total protein copies per cell value were used as a
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normalization factor to determine individual protein copies
per cell values for all identified proteins from the APEX
indexes. Additionally, UPS2 standard curve was used as in
iBAQ calculations in order to compare the effect of different
calculation methods.

2.3.2.3. The exponentially modified protein abundance index
(emPAI). The exponentially modified protein abundance
index (emPAI) [18] values were obtained directly from the
Mascot database search. Data were filtered to the FDR
threshold less than 1%. Protein copies per cell for each protein
were calculated by dividing each individual protein emPAI value
by the sum of all emPAI values and taking into account the total
protein copies per cell value explained above (2×106 copies per
cell) as a normalization factor. As with APEX, UPS2 standard
curve was used as an alternative method to calculate cellular
abundances for each quantified protein.

2.4. Data integration and analysis

Data from three different label-free absolute quantification
experiments were merged together. All identified and quan-
tified proteins were grouped into clusters of orthologous
groups (COG) [33] and divided into transcription units and
functional complexes according to the EcoCyc database [34]
using the in-house script.

All the correlations reported are Pearson squared correlation
coefficients of logarithmized values if not otherwise stated.
Variability is characterized by the coefficient of variation (CV, %),
which is defined as the ratio of the standard deviation to the
arithmetic mean.

The codon adaptation index (CAI) values for each protein
were calculatedbasedonprotein abundances in the iBAQdataset
as follows: proteinswhichmass accounted formore than 0.5% of
the whole protein mass were chosen for codon usage table
calculation with the EMBOSS online tool [35]; the acquired codon
usage table was used to calculate CAI values using the Seqinr
package in the R environment [36].

The cost of protein synthesiswas calculated for all quantified
proteins by multiplying the respective protein's abundance in
the cell with its peptide bond count and 4.306 [37], which stands
for the cost inATP for one amino acid polymerization reaction in
the ribosome.

Apparent enzymeactivities (kcat) per protein chain or subunit
(without taking into account thenumber of proteins and catalytic
sites necessary for catalytic activity) were estimated by iBAQ
abundances (protein copies in g-DCW) and the ratios of specific
flux values inmmol g-DCW−1 h−1 (g-DCW— gramsof dry cellular
weight), using previously published values of specific fluxes
obtained in the same experiments [27]. Apparent kcat calcula-
tions were based on absolute amounts of 190 enzymes and 60
metabolic fluxes in the main metabolic network; covering
glycolysis, tricarboxylic acid cycle, pentose phosphate pathway,
respiratory chain and biopolymer monomer synthesis (see
Supplementary Table 1).

Staircase-like expression was analyzed for transcription
units with two or more components. Protein expression levels
of transcription units were sub-divided into “no staircase” and
staircase-like behavior types “up,” “down” and “others.” A
transcription unit was classified as “no staircase” if at least

half of its consecutive genes were not differentially expressed.
Two consecutive genes in the transcription unit were consid-
ered differentially expressed if their protein abundance mea-
surements for two biological replicates did not overlap.
Staircase-like behavior expression of transcription units was
classified as “up” or “down” if at least half of its consecutive
genes were differentially expressed at higher or lower levels,
respectively, in themRNA emerging direction during transcrip-
tion (5′→3′). The remaining transcription units were classified
as “others.”

3. Results and discussion

3.1. Comparison of different label-free quantification
methods

3.1.1. Validation of quantification approaches
Absolute protein abundances can be calculated by normalizing
individual protein contributions to the total proteinmass in the
sample. However, this method is dependent on the measured
total protein amount and on the number of identified proteins.
Another approach would be to add a non-labeled internal
standard mixture, which consists of proteins that are
different from those present in the sample. Therefore, we
first decided to investigate the effect of internal standard addition
on the performance of label-free quantification methods. For
that, we included (according to the intensity-based absolute
quantification (iBAQ) protocol [17]) the Universal Proteomics
Standard (UPS2, SigmaAldrich),which is amixture of 48 precisely
quantified humanproteinswith a dynamic concentrations range
spanning five orders of magnitude.

Two different approacheswere used to calculate the absolute
protein concentration: 1) using linear relationship of a standard
curve based on the known amounts of spike-in standard
proteins (UPS2, Sigma); 2) normalizing individual protein contri-
butions to the amount of protein analyzed. Comparison of
standard protein abundances calculated by the latter two
approaches revealed no difference in the Pearson squared
correlations for the spectral counting methods APEX and
emPAI (Supplementary Fig. 1B and C vs. E and F), while
correlation decreased from 0.94 to 0.92 for the iBAQ with the
normalization method (Supplementary Fig. 1A and D). Relying
on the dynamic range and linear regression of the calibration
curves, the iBAQmethodusing internal standards performed the
best: its dynamic range spanned four orders of magnitude with
R2=0.94 compared to the dynamic range covering three orders of
magnitude and R2=0.88 for APEX and 0.83 for emPAI (Fig. 1A–C).
Recent studies of spectral countingmethods have demonstrated
that optimal MS configurations are crucial in order to maximize
the number of low abundant proteins quantified while keeping
the estimates for the highly abundant proteins within the linear
dynamic range [38]. Dynamic exclusion (DE) parameters can
have a significant impact on the peptides and spectral counts
detected and identified— two studies have determined optimal
DE setting 90 s [38,39]. A 60-second dynamic exclusion was used
in the current study, which may affect the dynamic range and
quantification of low abundant proteins.

Internal standard enables to evaluate the magnitude of
absolute protein abundances: the sum of all proteins in a cell
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according to iBAQ and emPAI was 8 and 5% less than the value
derived from the Lowry total protein analysis. This very small
difference between the total protein amount measured by the
colorimetric assay and the label-free quantitative proteomics
methods (iBAQ and emPAI) indicates high confidence of our
protein abundance datasets. Interestingly, the APEX method
overestimates total protein concentration 1.5 times compared
to the Lowry, iBAQ and emPAI methods.

After comparing the correlation of biological replicates
(Supplementary Fig. 1) and equimolarity between ribosomal
proteins (Supplementary Fig. 2) we concluded that the
normalization approach suited better for the spectral count-
ing methods APEX and emPAI in terms of squared Pearson
correlation and the coefficient of variation (CV) than using
internal standards. However, for the peak intensity based
method iBAQ, quantification using calibration curve proved to
be more accurate. Therefore, we decided to quantify protein
abundances using the most appropriate approach for each
method: normalization for the APEX and emPAI, and the
internal standard calibration for the iBAQ.

3.1.2. Comparison of protein abundances calculated by
different label-free quantification methods
Correlation between biological replicates for the iBAQ was
found to be 0.92 with an average CV of 15% (Fig. 1D) while the
APEX and emPAI performed slightly worse: R2=0.83 and CV=
23% (Fig. 1E), R2=0.92 and CV=20% (Fig. 1F), respectively. This
high correlation between biological replicates can be accounted
for by the strictly controlled cell cultivation systems used in this
study, for which high reproducibility of biomass yield, product
consumption and formation rates and also gene expression
levels have been reported by us earlier for E. coli K-12 MG1655
[27,31] and Lactococcus lactis IL1403 [40,41].

We found good correlation between protein abundances
determined by different absolute label-free quantification
methods. The spectral counting method APEX versus the peak
intensitymeasurementmethod iBAQ resulted inR2=0.76 (Fig. 1G)
and the correlation between other spectral counting methods
emPAI and iBAQ was found to be 0.81 (Fig. 1H). Correlation
between the two spectral counting methods emPAI and APEX
was found to be 0.77 (Fig. 1I).
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Fig. 1 – Comparison of absolute abundances obtained by different label-free quantification methods. All data are in logarithmic
scale, R2 — squared Pearson product moment correlation; # — number of quantified proteins; CV — correlation of variation in
percentage. When different methods were compared, also proteins quantified only in one replicate were included. A–C)
Correlation between absolute amounts of UPS2 standard proteins and values calculated by different approaches of label-free
quantification methods. D–F) Correlation of replicate chemostat experiments. G) Correlation of spectral counting method APEX
to intensity based method iBAQ. H) Correlation of spectral counting method emPAI to intensity based method iBAQ. I)
Correlation of spectral counting methods emPAI and APEX.
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All the quantification methods were based at least on one
peptide quantification, sincewhen limiting quantification to the
most commonly used requirement of two peptides, no substan-
tial improvements to thequality of thedatasetwere seen. TheR2

betweenbiological replicates didnot improve significantly (Fig. 1
vs. Supplementary Fig. 3), and the averageCVbetweenbiological
replicates improved only by some percent (15 to 13% in the case
of the iBAQmethod, 23% vs. 21% in the case of the APEX; 20% vs.
19% in the case of the emPAI, Fig. 1 and Supplementary Fig. 3). If
quantificationswere limited to at least two peptides per protein,
more than a hundred mainly low concentration proteins could
not be quantified (22, 10 and 6% of all proteins for emPAI, iBAQ
and APEX, respectively).

3.1.3. Absolute proteome comparison with published E. coli
datasets

To the best of our knowledge, our iBAQ proteome dataset is
the first for E. coli; thus, no comparison could be carried out
in this case. The APEX quantification method was originally

demonstrated for proteome characterization of yeast, E. coli and
mouse T-cell lymphoma cells [19]. We compared our data to the
449 proteins quantified by the APEX method in E. coli strain
K-12N3433 reported by Lu et al. [19], a dataset containing 600
proteins less than ours, mostly lacking proteins from the lower
abundance range (Fig. 2A). Comparison of their data with our
iBAQ, APEX and emPAI values yielded squared Pearson correla-
tion coefficients of 0.47, 0.36 and 0.40, respectively (Supplemen-
tary Fig. 4A–C). Since APEX quantification is influenced by the
correction factor Oi, the low correlation between our APEX and
previously published data [19] could be explained by different Oi
values; however, the Pearson squared correlation between Oi
values was found to be very high — 0.97 (data not shown).

Ishii et al. measured absolute values for 52 enzymes by using
isotope-labeled proteins in E. coli K-12 BW25113 chemostat
culture at a specific growth rate of 0.1 h−1 [42]. Comparison of
these absolutely quantified 52 enzymes and our data resulted in
moderate Pearson correlation coefficients 0.51, 0.42 and 0.40 for
iBAQ, APEX and emPAI, respectively (Supplementary Fig. 4D–F).
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Moderate correlation (R2=0.3–0.41) was also found between
our data and those of Ishihama et al. [20] and Masuda et al. [43]
who used the emPAImethod in case of E. coli strainsMC4100 and
K-12 BW25113, respectively (Fig. 2B, C; Supplementary Fig. 4G–L).
The dynamic range of the protein abundances observed in the
current study was most comparable with the data of Masuda et
al. (Fig. 2B) [43].

Ishihama et al. [20] detected Pearson correlation coefficient
0.84 with a p-value of <10−10 (logarithmized variables; R2=
0.71) when comparing their emPAI values with the 52 enzyme
abundances determined using isotope-labeled proteins by
Ishii et al. [42]. Comparing abundances of these 52 enzymes in
our datasets with the emPAI values obtained by Ishihama et
al. [20] revealed Pearson squared correlation coefficients of
0.44, 0.52 and 0.37 for iBAQ, APEX and emPAI, respectively
(Supplementary Fig. 4G–L). As almost all correlations were in
the same range we concluded that overall moderate correla-
tions between different studies may be explained mainly by
the fact that different E. coli strains and growth conditions
were used in those studies.

Lately, protein abundances in E. coli at single cell level were
measured by yellow fluorescent protein fusion library [44].
We detected poor correlation between that and our datasets:
0.17, 0.17 and 0.14 with iBAQ, APEX and emPAI, respectively
(Supplementary Fig. 4M–O). Notably, Taniguchi et al. quantitative
values differ in average by two orders of magnitude from our
data (Fig. 2D) and the abundances translate into a hundred
times lower total protein amount in the cell compared to
our results. This is also in accordance with their comparison
with Lu et al. — almost hundred times difference in protein
abundances between the two studies was observed [44].

3.2. Escherichia coli proteome abundance analysis

Median protein copy numbers per cell were 457, 886 and 409
and for iBAQ, APEX and emPAI, respectively. We found that
the top 20% of proteins by abundance contributed to 76%, 62%
and 78% of the total protein amount in the cell for iBAQ, APEX
and emPAI, respectively. This is in accordance with the well-
known understanding that a small fraction of proteins are of
high abundance, quantitatively presented in several studies
for mammalian cells [21,45], Saccharomyces cerevisiae [46],
Leptospira interrogans [24] and Mycoplasma pneumoniae [47].

Proteome data are not expected to be normally distributed
based on studies of yeast [48], while studies of E. coli have
presented a normal distribution [19,44]. Interestingly, in our
case protein abundance distribution seems to depend on the
quantification method used: cellular protein abundances
were normally distributed for iBAQ while results tended to
cluster more towards high and low abundance proteins for
APEX and emPAI, respectively (Fig. 2E–G).

3.2.1. Protein abundance compared to protein length and CAI
It has been speculated that smaller proteins are present in

the cell at higher copy numbers compared to larger ones as a
way to minimize transcriptional and translational costs [49].
Although we found low correlation between protein abun-
dances and protein length, highly abundant proteins tend to
be shorter (Supplementary Fig. 5A–C), similarly as noticed by
Ishihama et al. [20] and Schwanhäusser et al. [17].

Translation efficiency of genes can be described by codon
usage bias forwhich the codon adaption index (CAI) [50] is a good
measure.We found R2 of around 0.19–0.27 between protein copy
numbers and CAI (Supplementary Fig. 5D–F), depending on the
quantification method used. Lu et al. reported for E. coli low
correlation R2=0.33 between protein abundance and CAI [19].
Ishihama et al. reported R=0.57 (R2=0.32) between log-copy
number and CAI for E. coli [20]. We also noted that proteins with
smaller CAI are less frequently indentified and quantified, and
proteins with CAI smaller than 0.16 were not identified and
quantified at all (Supplementary Fig. 5G).

3.2.2. Proteome coverage and distribution
Next, we analyzed our proteome datasets in more detail by
grouping all the quantified proteins to the clusters of
orthologous groups (COG) functional classes (Fig. 3A). Overall,
the different label-free quantification methods showed sim-
ilar results for COG protein abundance percentages in the
total protein pool. The only significant difference was
detected for group J, which embraces proteins involved in
translation, ribosomal structure and biogenesis. The highest
cellular abundance for group J was detected with emPAI and
the lowest with APEX methods (Fig. 3A), mostly due to high
differences of abundance for ribosomal proteins (Fig. 4C) and
elongation factor EF-Tu (57,072 and 29,430 copes/cell with
emPAI and APEX methods, respectively). Since all three
methods performed similarly and iBAQ presented the smal-
lest CVs and the best correlation for biological replicates, the
following discussion is mainly concentrated on iBAQ data.

Proteome coverage of E. coli 4333 protein encoding genes [51]
was 31% and proteome coverage of the COG classes was in
average 34% (Supplementary Fig. 6). Most abundant group J
made up 21%of the total protein cellular abundance (Fig. 3A) and
had the best COG coverage of 70% (Supplementary Fig. 6). Protein
groups involved in energy production and conversion (C),
carbohydrate transport and metabolism (G), amino acid trans-
port and metabolism (E) showed also high cellular abundances,
10%, 11% and 9%, respectively (Fig. 3A), with a COG coverage of
37% 34% and 42%, respectively (Supplementary Fig. 6).

Protein synthesis, or more specifically the polymerization of
amino acids, is the largest energy-consuming process in the cell,
withmore than 45%of the overall ATP consumption [37]. In order
to comprehend the metabolic burden of protein synthesis for
each COG class, we calculated the cost of expression of proteins
in molecules of ATP (see Materials and methods for calculation
details). This analysis yielded an interesting result: although the
group J (translation, ribosomal structure and biogenesis proteins)
showed the highest percentage from the total protein pool, the
cost for expressing group C (proteins involved in energy
production and conversion) was the highest: 15% for group J
compared to 17% for group C (Fig. 3B). The cost for expression of
proteins involved in carbohydrate, amino acid and nucleotide
transport andmetabolism (G, E and F) was altogether 28%, which
indicates that the metabolic burden for protein synthesis is
higher for biomass formation than that for energy formation.

Apparent kcat values per protein chain or subunit were
calculated in order to estimate enzyme activities without in
vivo assays (see Materials and methods for calculation
details) (Fig. 3C). We found that biosynthetic enzymes (COG
functional classes G, E, F) are working with ten times lower
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activity (median <10 s−1) than energy generating enzymes
(COG functional class C; median is 63 s−1). High enzymatic
activity for energy generating enzymes indicates a shortage
of such genes, which can be a limiting factor for biomass or
product formation rate.

3.2.3. Protein organization into transcription units
As most of the bacterial genes are organized to polycis-

tronic transcription units [52], similar absolute abundances
could be expected for proteins within transcription units. The
average CV of protein abundance for 251, 274 and 277
transcription units with APEX, iBAQ and emPAI was 53%,
60% and 60%, respectively. The CV over all quantified proteins
(1021, 1185 and 1140) was found to be 157%, 205% and 237% for
APEX, iBAQ and emPAI, respectively, which is more than three

times higher than within the transcription units (Supplemen-
tary Fig. 7A). This is in accordance with a previous study for
operons of L. interrogans proteome [24]. Ishihama et al. noted
an abundance variance within most of the operons studied
being smaller than variance over all proteins [20].

A recent genome-wide transcriptomics study has revealed
that in M. pneumoniae consecutive genes within the operons do
not have the same expression level, leading to operon polarity
[53], almost half of the 139 polycistronic operons showed
staircase-like decay behavior, following a 5′ to 3′ direction.
However, Schmidt et al. discovered staircase behavior on
proteome level for only a minority of L. interrogans operons
(~5%) [24]. E. coli has been shown to express many alternative
transcriptswithin operons under various growth conditions [54];
therefore, to exclude artificial staircase behavior of protein
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expression at the operon level we focused our analysis on
transcription units to study protein expression behavior at the
smallest transcription scale. Transcription unit protein expres-
sion levelswere sub-divided into “no staircase” and staircase-like
behavior types “up,” “down”and “others.”Our analysis revealed a
very high presence (91%, 88% and 87% for iBAQ, APEX and emPAI,
respectively) of transcription units with staircase-like protein
expression (Supplementary Fig. 8). Further subdividing of the
polycistronic transcription units by their staircase behavior and
number of members showed similar distribution between
groups of “up,” “down” and “others” (Supplementary Fig. 8). The
existence and high percentage (33%) of “up-like” staircase
behavior were surprising since these have not been observed at
mRNA level [53]. Additional analysis with mRNA abundances in
the future should shed light into the possibility of a compensa-
torymechanismbetweenmRNAandprotein expressionpatterns
within transcription units.

3.2.4. Protein complex abundances and stoichiometry
Proteins organized into complexes play an important role in

cellularmetabolic functions as enzymes, chaperones, ribosomes

or transport systems. E. coli protein complexes are relatively well
covered andmore than 270multimer complexes can be found in
the EcoCyc database at http://www.ecocyc.org [34]. It is a
challenge to cover all the complexes by quantitative proteomics
and we ended up analyzing 118 complexes where at least two
components were quantified (Supplementary Table 2). Similarly
to transcription units, we found a three times lower CV among
the complexes compared to all quantified proteins. An average
CV among the complexes was found to be 58%, 64% and 56% for
APEX, iBAQ and emPAI, respectively (if the stoichiometry was
considered) (Supplementary Fig. 7B).

Absolute protein abundances enable experimental ratios
to be compared in complexes with stoichiometries known to
exist from previous studies. We found high correlation
between known and experimental stoichiometry for some
well-known complexes. RNA polymerase core enzyme RpoA/
RpoB/RpoC, with a theoretical ratio of 2:1:1, was found to have
copies per cell ratio close to 4000:2000:2000 with all the
methods (Fig. 4A); succinyl-CoA synthase SucC/SucD, with a
theoretical ratio of 2:2, had a similar experimental ratio with
all the quantification methods used (Fig. 4A) and synthetases
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RfbD/RfbC and GltD/GltB with 1:1 ratios had also very good
correlation with theoretical stoichiometry (Supplementary
Fig. 9A).

Experimental cellular protein abundances in this study
did not mirror their functional stoichiometries for dynamic
protein complexes, such as the sigma factors RpoDEFNS
associated with RNA polymerase (Supplementary Fig. 9B) or
the nucleotide exchange factor GrpE associated with the
chaperones DnaK and DnaJ (Fig. 4B). The latter was also found
byMaier et al. forM. pneumoniae [47]. Neither couldwe confirmas
Maier et al. 1:1 stoichiometry for pyruvate dehydrogenase self-
assembling complex LpD/AceF/AceE subunits AceF and AceE
(Supplementary Fig. 9B). The third subunit protein Lpd is also
shared with other complexes (2-oxoglutarate dehydrogenase
and glycine cleavage multi-enzyme) and therefore has a more
complicated stoichiometry. Kuntumalla et al. found lower
APEX-calculated quantities than expected for ATP synthase F1
complex subunits AtpG and AtpH: ratio close to 8:1:8:1 instead of
3:1:3:1 for the AtpD/AtpG/AtpA/AtpH complex [22]. We noticed
different results for all quantitative methods, with iBAQ data
being closest to the theoretical results (Fig. 4B).

Complexes associated with membranes tend to have poor
correlation with known stoichiometry, for example, succinate
dehydrogenase SdhD/SdhB/SdhA and PTS transporters (Supple-
mentary Fig. 9B). This phenomenon is most likely caused by the
low solubility and loss of membrane proteins during the sample
preparation [43].

Ribosomes are one of the largest protein complexes working
in the cell and ribosomal proteins are expected to be expressed in
equal copynumbers; however,we couldnot find agreementwith
the theoretical 1:1 stoichiometry. We identified and quantified
53 of 54 annotated ribosomal proteins and found that they span
over one order ofmagnitudewith the iBAQmethod and over two
orders of magnitude with spectral counting methods. Median
ribosomal abundances were found to be 7063, 3987 and 5219
copies per cell with CVs of 35%, 85% and 98% for iBAQ, APEX and
emPAI, respectively (Fig. 4C). This significant difference of
variations among ribosomal protein abundances between peak
area measurement and spectral counting methods shows that
quantificationmethods have to be chosenwith great care. In the
literature, spectral counting has resulted in higher variations
than peak area measurement using labeled peptides, probably
due to the saturation effect in spectral counting for such high
abundant proteins [20,47]. As ribosomal proteins are relatively
short and have high lysine and arginine content, they produce a
lot of tryptic peptides compared to their length, which can
complicate label-free quantification of those proteins.

However, the ratio of ribosomal proteins is not clear, since
also others have encountered problems to see equimolarity in
ribosomal proteins. For instance, using the emPAI method,
Ishihama et al. found that amounts of E. coli ribosomal
proteins varied more than four orders of magnitude and did
not correlate well with their detection frequencies, which
indicate saturation effects [20]. Maier et al. quantified 43
ribosomal proteins inM. pneumoniaewith labeled peptides and
noticed cellular abundance differences of two orders of
magnitude; they suggested that ribosomal proteins are not
exclusively associated with the ribosome, instead they are
present also as free monomers and some could be associated
with different protein complexes [47].

4. Conclusion

We demonstrated by three label-free quantification methods
that it is possible to obtain estimation of absolute protein
abundances close to the realistic concentrations. Quantifica-
tion based on peak intensity (iBAQ) was superior to the
spectral counting methods (APEX, emPAI); however, all the
used methods were able to produce similar information of E.
coli proteome in terms of energy cost, distribution to COG
classes and organization of proteins into transcription units
or complexes.

We would like to encourage the generation and use of
absolute quantitative proteome data, as it is essential for
comprehensive understanding of the regulation mechanisms
in the cell. Firstly, knowing the amount of proteins present in
the cells allows us to rate energetic costs for several processes
in the metabolism. Secondly, if flux values are added,
apparent enzymatic activities can be estimated in order to
understand the so-called “metabolic bottlenecks” in metabo-
lism regulation, which could limit the overall rate of biomass
or product formation. What is more, if the latter two levels
would be accompanied also by mRNA absolute abundances,
transcriptional/translational/post-translational regulation
levels for each gene could be explained.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.jprot.2012.06.020.
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