TAL
TECH

TALLINNA TEHNIKAULIKOOL
INSENERITEADUSKOND

Elektroenergeetika ja mehhatroonika instituut

KLIIMATESTERI EHITAMINE JA
ESMASE KATSE LABIVIIMINE

CONSTRUCTION OF CLIMATE TESTER
AND CONDUCTING THE INITIAL TEST
BAKALAUREUSETOO

Ulidpilane: Voldemar Balder
Ulidpilaskood: 123713MAHB
Juhendaja: Leo Teder

Juhendaja: Risto Rosin

Tallinn 2021



AUTORIDEKLARATSIOON

Olen koostanud [6put6d iseseisvalt.
LOputdd alusel ei ole varem kutse- voi teaduskraadi vdi inseneridiplomit taotletud.
Koik to66 koostamisel kasutatud teiste autorite t66d, olulised seisukohad,

kirjandusallikatest ja mujalt parinevad andmed on viidatud.

/ allkiri /

To0 vastab bakalaureuset66/magistritddle esitatud nduetele

Juhendaja: ...coovviiiiiiii
/ allkiri /

Kaitsmisele lubatud

KaitsmiskomiSjONi @SIMEES . .oiiiiei it e e s e e anens

/ nimi ja allkiri /



Lihtlitsents 10putoo6 reprodutseerimiseks ja loputoo lildsusele

kattesaadavaks tegemiseks?

Mina, Voldemar Balder siindinud 01.10.1992

1. Annan Tallinna Tehnikallikoolile tasuta loa (lihtlitsentsi) enda loodud teose
KLIIMATESTERI EHITAMINE JA ESMASE KATSE LABIVIIMINE, mille juhendaja on Leo Teder.

1.1 reprodutseerimiseks 10putdd sailitamise ja elektroonse avaldamise eesmargil, sh
Tallinna Tehnikallikooli raamatukogu digikogusse lisamise eesmargil kuni autoridiguse

kehtivuse tdhtaja [0ppemiseni;

1.2 Uldsusele kattesaadavaks tegemiseks Tallinna Tehnikallikooli veebikeskkonna kaudu,
sealhulgas Tallinna Tehnikallikooli raamatukogu digikogu kaudu kuni autoridiguse

kehtivuse tahtaja Idppemiseni.

2. Olen teadlik, et kaesoleva lihtlitsentsi punktis 1 nimetatud Oigused jaavad alles ka

autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega

isikuandmete kaitse seadusest ning muudest digusaktidest tulenevaid digusi.

iLihtlitsents ei kehti juurdepaasupiirangu kehtivuse ajal, vélja arvatud dlikooli digus

I6putddd reprodutseerida Uiksnes séilitamise eesmargil.

(allkiri)

(kuupaev)




Elektroenergeetika ja mehhatroonika instituut
Kliimatesteri ehitamine ja esmase katse ldabiviimine

Ulidpilane: Voldemar Balder, 123713MAHB
Oppekava, peaeriala:  MAHB02/13 - Mehhatroonika

Juhendaja(d): Leo Teder, lektor
Risto Rosin, kvaliteedi ja toédkindluse juhataja

Loputoo teema:
Kliimatesteri ehitamine ja esmase katse labiviimine
Construction of climate tester and conducting the initial test

LOput66 pohieesmargid:
1. Ehitada t66tav ja kasutatav kliimatester triikkplaatide testimiseks.
2. Labi viia esimene katse.

LOputdo etapid ja ajakava:

Nr Ulesande kirjeldus Tihtaeg
1. [Testeri kirjeldus 18.03
2. |Katse kirjeldus 25.03
3. |Andmebaasi ja sinna kirjutamise kirjeldus 01.04
4. |Katse tulemuste anallts 08.04
Too keel: Inglise keel LOput6o esitamise tdahtaeg: “18”mai 2021a
Ulidpilane: Voldemar Balder oo e ST 2021a
/allkiri/
Juhendaja: Leo Teder e e Y s 2021a
/allkiri/
Juhendaja: Risto Rosin =~ e, R e 2021a

/allkiri/




TABLE OF CONTENTS

o D G PP 6
ABB REVIATIONS .ttt tite ettt ettt et e et tesan e tan e sa s e ranesaneaanesaneaanesaneaaneaaneannenns 7
INTRODUGCTION . .. et tieitite ettt et ettt e e e e et e e et e e s e s e e a e s e e e e re s e sn e e s eeaeaeananss 8
1 BUILDING OC A LA ittt ittt et tatetatetateatetanesanssanesanesarssan e san s sanesanesanesanssnnesnnesnneenes 9
3 A U 1Y =T =T 1W ] 0] 0 ¢ =T o L R 9
B 1] | o 13
1.3 EQUIPMENT UNAEr 18t it e e 15
1.4 Bringing the pieces t0gether. . ... 16

B2 I =S I 11\ P 21
2.1 AMbIent CONAItION ...vui e 22
A =] o O o == P 22

3 PROGRAMMING AND DATA SAVING ..cuvieiiiiiiie et e e e e e e eeen e e e e nenenenens 26
G2 AN @1oY 0 0 I o o T [ =T 0 0 0 1110 T RSP 26

G A DT | = T =Y= 1V A1 [ 29

N I S I 2 ] U 1 P 34
SUMM A RY Lot ananan 37
KOKKUVOTE .ttttttteee e e s e ettt ettt e e e e e e s ekttt ettt e e e e e e e e bbbttt e e e e e e e e e ettt bn et e eaaeeeeaannees 39
LIST OF REFERENGCES ...\ttt et et e e e s e e s e e s e s e e s e e s e e sn e sn e rnennennes 41
Y o o N 0 1 i 42
Appendix 1 Ocala data and control flow chart..........coiiiiii i, 43
Appendix 2 PLC in Circuit diagrami.....oeiieiiiiiiiir s 44
AppendixX 3 CirCUIt diagrami. ... et ee s 45
Appendix 4 chamber graphs. .. ..o 51
Appendix 5 PLC visualization and code ..o 55
Appendix 6 General tester programming structure..........coooiiiiiiiiiiii 58
ApPpPENdiX 7 MSS QL _EXECULE ittt e 59
Appendix 8 Server code StrUCTUrE .. ..o 60
APPENAIX O SQL COUR vttt e s e s e e e e aneaneanennenes 61



PREFACE

Climate tester Ocala is built by the request of an unnamed electronics company. Purpose
of the tester is to verify printed circuit board assembly quality through on-going reliability
testing with higher humidity and temperature than the printed circuit board assemblies
would see in the field. Environmental testing should also pinpoint weakness in the design
and used components or manufacturing process.

The following people helped building climate test Ocala and analyzing the results: Juri
Matin, Priit Reim, Hamad Aziz, Martin Onton, Andres Vdsa, Risto Rosin, Erkki-Siim Lind,
Mark Toomis, Ossi Myllyniemi, Jaan Sarap, Stanislovas Krisciunas.

Climate testing, Programmable Logic Controller, SQL, Printed Circuit Board Assembly,

Bachelor's thesis



ABBREVIATIONS

EUT
PLC
PCBA
AC
DC
ALT
THB
ORT
DT
DRC
MS
sQL
IGBT
ORT
RH
PID

Equipment under test
Programmable logic controller
Printed Circuit Board Assembly
Alternating current

Direct current

Accelerated lifetime test
Temperature humidity bias
Ongoing Reliability Test
Developers Tool

Drives reliability center
Microsoft

Structured Query Language
Insulated Gate Bipolar Transistor
Ongoing reliability test
Relative humidity

Proportional-integral-derivative



INTRODUCTION

Purpose of the thesis is to build an automatic climate tester which temperature and
humidity is controllable and conduct the initial accelerated lifetime test. Purpose of the
automatic climate tester is to conduct product reliability demonstration tests on frequency
converter PCBAs with accelerated lifetime testing to verify that there are no faulty
components used or problems in manufacturing process and to find weaknesses in the
design. This is needed to find problems in product and to reduce the number of faulty
components reaching customers. PCBAs are put into higher ambient and humid conditions
then they would see in the field and therefore their lifetime is accelerated. 24V DC, 230V
AC and 1050V DC power is also cycled to simulate real life conditions and self-heating of
the PCBAs.

Purpose of the test is to monitor PCBA quality and long-term reliability. Tester planning
began in mid-2018, building started in the beginning of 2019, initial test started in May
2019, initial test ended in August 2020. Analysis of the PCBAs finished 26.03.2021.

Ocala tester is built around Arctest climate chamber and uses AC500 PM590 PLC to control
and monitor both EUTs and test equipment. PLC also saves data to MS SQL server located

in the local computer.

End user of tester Ocala must be able to:
e easily monitor and adjust ambient conditions
e level of allowed current and voltage to EUTs
e control what parameters and sensor readings are monitored and saved to database
e get notifications when faults occur
e get minimum and maximum values of each cycle

e get a fault log.

MS SQL server is used to:
e pull data from local computer
e store data
e calculate minimum and maximum values
e create a fault log table
e summary of the tests

e notify user of faults.



1 BUILDING OCALA

Tester building starts with a list of needs from internal customer and then needed

equipment is selected and agreed upon to fulfill those needs. As we already had the climate

chamber, we were a bit limited by its capability but not too much.

ALT booking template - short general description of what, when, how and how long
will be tested.
o Test specification - in detail document describing how the test must be
carried out
o Tester specification - in detail document of how the tester will be built and
must be able to do, this is also the start point for electrical engineer
= PLC specification - document describing what the PLC must do,

usually given to outside contractor

Ocala tester is built around Arctest climate chamber and uses AC500 PM590 PLC to control

and monitor both EUTs and test equipment. PLC also saves data to MS SQL server located

in the local computer.

1.1 Used equipment

Climate chamber: ARC-1500/-40+125/RH, with JUMO IMAGO controller

PLC: AC500 PM590-ETH with AI523, DC532, AX522, CM572-DP
Computer: ThinkPad P50

DC power supply Programmable DC-Power Supply | 8 kW, 1250 V" Magna Power
XR1250-6.4-380

MUX: Keysight 34970A Data Acquisition Unit, with 3 34901A 20-
Channel Armature Multiplexer

Chiller: CLIVET WSAN-XIN 21-141

Circulation pump: Grundfos alphal | 25-40

Power meter: WM30-96 AV53HE2

Additional humidity sensor: HTM2500LF

Various other smaller components in control cabinet



=\ circulation pump
Chiller v

Accumulation tank

Climate chamber

1

Control
cabinet

Figure 1.1 Cabinet and panel placement, top view

Climate chamber ARC-1500/-40+125/RH is designed and manufactured especially for
controlled environmental testing. The chamber is constructed of three modules. Machine
module, chamber module and electronic and electricity module. Controlled by a small JUMO
controller. Could work independently supplied with coolant, distilled water, and drainage.

(2]

Figure Al1.1 Ocala data and control flow chart shows all data connections.

10



Figure 1.2 Inside view into Arctest climate chamber filled with EUTs

11



Programmable logic controller AC500 PM590-ETH is a programmable logic controller with
2MB of internal memory, 2 serial connections and 1 ethernet connection. It is
programmable form Automation builder program that uses Codesys V2. In this project three
I/0 modules are used. Figure A2.1 PLC in circuit diagram.

AI523 analog input module with 16 programmable analog inputs is used to monitor
temperature inside the chamber with 3 PT100 thermal sensors and one PT100 for both the
control cabinet and load cabinet. Coolant liquid pressure levels are also monitored.

DC532 digital input output module has 16 digital inputs and 16 configurable digital
inputs/outputs. Digital inputs are mostly used to monitor hard overtemperature faults,
statuses of more important relays and chillers and test chambers alarms. The other 16
channels are configured as outputs to control relays providing voltage to EUTs, DC power
supply, load cabinet relays, climate chamber and some not important lights.

AX522 Analog Input/Output Module has 8 configurable analog inputs and 8 configurable
analog outputs. Inputs were used to read HTM2500LF humidity sensor, outputs to control
DC power supply’s current and voltage output levels.

CM572-DP PROFIBUS DP Master is used to connect to and control EUTs and climate
chamber.

Computer ThinkPad P50 is a regular computer running windows 10. Its job is to run SQL
local server, display PLC visualization, Drive Composer and DT.

DC power supply is a programmable DC-Power Supply capable of up to 1250V voltage and
6.4A of current. Controlled by PLC analog outputs and interlock using JS1 connection.
MUX Keysight 34970A Data Acquisition Unit is used to record BDPS output voltage and
current and control board input current and voltage. It has 20*3 voltage measuring
channels that are needed to configure from the machines display and then tasked to scan
the list. 34970A saves the results into its memory where from PLC is asking the data
through 34970As RS-232 port 9 PIN D-Sub connector.

Chiller CLIVET WSAN-XIN 21-141 is used to cool down the coolant exiting the climate
chamber.
Circulation pump Grundfos alphal | 25-40 is used to pump coolant into the climate chamber

and is set in underfloor heating mode.

12



1.2 Design

As you start designing anything new you try to predict as much as possible. Calculate how
much power do you need and what control connections and feedbacks are required. The
more you design the better you become at it and usually you do not have to start from
complete scratch. But as this was the first ever climate tester built in Estonia’s testing
center we did not have that much to start with. Comparing figure A3.1 first revision of
Ocala Main Supply to figure A3.2 latest revision of Ocala Main Supply, quite a few changes
can be noticed. We knew that we need power to supply:

e 1000V DC power supply. We calculated that each EUT should require about 500W

of power so 4kW in total was needed. Magna XR1250/6.4kW sufficed. [7]

e 230V AC programmable power supply as initially it was requested that AC voltage

to supply EUTs power supply boards with 230V AC would also be adjustable.

e 4 24V DC power supplies to supply power to control boards (MCS-B 5-110-240/24)
Additional power from another circuit that would not trip if undervoltage relay would trip
was needed to supply PC, MUX and PLC with power. All in all it was not bad at all, we had
our power supplies, controls, feedbacks, PLC with AI523 for additional temperature and
humidity readings, DC532 for tester control and feedbacks, safety’s, components,
temperature triggered fans and even some indicator lights. A few more minor details to
polish over and we were ready for production. Turns out there are a lot of minor details.
Wire markings: colors, cross sections, isolation type, how to control our programmable
power supplies, layout of the components in control cabinet, how to connect all the control
cabinet wiring to EUTs. We threw away K1 and K2 contactors as there were no actual need
for them, added AX522 to control Magna power supply, added fire alarm schematics and
connections and marked PLC connection such as they would be the same on the circuit
diagrams and in the PLC, something not done before. Most of it we got done before
production but many problems still game out during the production such as small wire color
mistakes and missing terminals and worst of all some components like 1000V 2A fuses and
fuse holders and AC power supply not arriving on time. Because the problems were needed
to be solved quickly usually right there on the production, we now have terminals with
names “K1 buttons” and XT66. Magna power supply terminal and connections with PLC
logic was added as can be seen from figure A3.5 First revision of 1000V DC Supply and
figure A3.6 latest revision of 1000V DC Supply. With some more minor changes the control

cabinet was finished.

13



—— o —tp

T —— .h L -
& e seume Boemmemme

‘\77\,¥‘, e i

"

SRRE REED !‘I’&ﬂ?“'ww
R i oy \ Foy ®¥oy

]
¥
'

:

,
¥
L
N
§
A |

Figure 1.3 Half-finished control cabinet in production

14



1.3 Equipment under test

8 sets of a frequency converter PCBAs. One set consists of: Control board, Safety option

module, Memory unit, Profibus adapter module, Fieldbus kit, Interface board, Gate driver

board, Adapter board (x3), Power supply board, Fan power supply board, Communication

option module. Figure 1.4

Control board communicates with interface board, PLC, control panel, safety option
module and whatever else is necessary

Communication option module is optical option module on control board

PROFIBUS adapter module enables us to create PROFIBUS network between all EUTs
and is located on control board.

Fieldbus kit is a branching unit allowing chain connections through control boards
enabling us to control them through 1 control panel

Memory unit holding drives parameters and program.

Interface board is communicating with control board and gate driver board.

Power supply board is supplying PCBAs with 24V. Can be transform either 230V AC
or up to 1100V DC into 24V DC.

Adapter boards are controlled by gate driver board and are responsible for opening
and closing IGBTs on IGBT-Module.

Fan supply board transforms 1000V DC into 48V to supply power to DC fans

responsible of cooling the drive.

Most critical of the components are power supply boards as they will be most loaded during

the test and have capacitors on them that might not do well in high temperature and high

humidity environment.

Figure 1.4 3D model of one out of 8 EUT sets.

15



1.4 Bringing the pieces together

Control cabinet, climate chamber, EUTs and load cabinet - until now they have been in
three separate corners and connections between them are only on paper. New requirement
of needing to control and measure 24V DC supply to EUTs and measure voltage and current
output of power supply boards were requested. It turned out quite soon that we had too
many wires to route from control cabinet to EUTs in climate chamber. Difference between
initial design can be seen in figure A3.3 and latest design with relay control and shunt
measurements in figure A3.4. An additional auxiliary cabinet was added behind the control
cabinet to add additional terminals and to ease wiring between control cabinet and EUTs

inside climate chamber. Additions can be seen in figures 1.5. and 1.6

Figure 1.5 Unplanned auxiliary cabinet behind control cabinet

16



Figure 1.6 Shunt and voltage measurements connected to Keysight 34970A Data Acquisition Unit

multiplexer cassette.

We discovered that we cannot start fan supply boards with resistor load as simulated fan
loads because there is no feedback and with “always on” setting we cannot stop them
from outputting power. Easiest option seemed to add relays to connect and disconnect
fan supply boards output to resistive load. This would have been troublesome to do inside
the load cabinet because of room restrictions and might have caused us additional
problems in the future as with total power output of 3.2kW even with sufficient cooling it
might get hot. As each fan supply board has 2*200W at 48V output it meant 2*8 = 16
relay contacts. Initial idea was just to screw few DIN rails to Load cabinet wall and attach
some relays and terminals. As this would have been esthetically not pleasing and not the
safest solution an additional small electrical box was bought. Because the wiring in the

box turned out very pretty, we decided to call it "BERTA". Figure 1.7

17



-

Figure 1.7 BERTA fan supply board load relays

Unfortunately, pretty has little meaning and the relays (Weidmiller RCM370024) chosen
into BERTA to connect and more importantly disconnect the 48V DC of 4A current were not
up for the job and burned. Figure 1.9. Even though they are rated to switch 250V AC and
operate at continues current of 10A, one should remember that disconnecting AC and DC
are different things as the author will remember for as long as he may live. Because no
automatic control whether fan supply boards were working was implemented it was not
noticed that the relays are not able to open under voltage. Because of this fan supply boards
that were meant to operate 2min every 24h operated 2min to 12h as long as 1000V DC
was supplied to them. We cannot for sure determine how long each EUTs fan supply
operated. We can only trace that something was wrong from the 1000V Magna power
supply’s current feedback that should be 0.5A when fan supply boards are not outputting
power and 3.5-4A when they are. In addition to ruining their own test, fan supply boards
gave off considerable amount of heat that the climate chamber had to get rid of by cooling
its walls and water condensed on the walls causing relative humidity to fluctuate. This only

stopped at 18.03.2020 when ambient conditions of the test were rose from 65°C to 80°C

18



causing fans supply boards internal NTC to stop them from operating witch was also not
relay to control board because of the controlling method. This means that for the first part
of the test they were almost constantly running and for the second part they were not
running at all. Figure 1.9 Broken fan supply board load relay [4]

For the second test voltage measurements were added and RCM370024 relays were
switched to much stronger AF09-30-10-11 contactors, that are still not strong enough
according to their datasheet. BERTA is not as pretty as she used to be but maybe she will

cause less trouble. Figure 1.8

(=
([ 9 8ERTA

N;

!
]

Figure 1.8 BERTA upgraded with AF09-30-10-11 contactors and voltage measurements

19



Figure 1.9 Broken fan supply board load relay

20



2 TESTING

With Ocala tester we are trying to accelerate wear out failures using thermal, electrical,
and chemical stressors to find weakness in components, manufacturing, or design. Figure
2.1. As this is the first kind of this test done in Estonia’s testing center, we are not sure
what results to expect. Therefore, test is being run until failure. In the future this initial test

should help us more accurately set ambient conditions and lifetime expectations.

| |

Wear out failure

Stressors

Mechanical
. Thermal
4 | Electrical

| Radiation
Chemical

(Cumulative damage reduces strength)
Design ,
@ O
® Transportation ,§
—
-
9 Installation =
N
o =
£  Environment e
1 Appl
< ication
o PP <z>
Parametrization

Q3: INADEQUATE STRENGTH Q4: INADEQUATE DURABILITY
Component

Manufacturm |

Service

Origih of defect
Defective product

Stress within specification s nominal durabllity —
Overstress - .. Product wahkened by wear-out - e o=
Shift of distribution — Defect product with reduced durability
Overlap of distributions causing Vallole\ (wears out Jaster than nominal product)

LR

Figure 2.1 Stressor matrix

Described in PCBA ORT Specification. [3]

21



2.1 Ambient condition

Most popular ALT test done with temperature and humidity is done with 85°C and 85% RH
as this is an old standard. Recent studies/experimentation have shown that higher than
50°C ambient temperature can even reduce dendrite growth and corrosion. Studies have
also shown that the relative humidity levels are critical, with orders of magnitude changes
in time to failure with relatively minor changes in relative humidity. As dendrite growth was
something, we were interested in initial ambient conditions were set 50°C and 93% RH.
Initial test had 2 parts - soak test and application test. [1] [Internal document: “Humidity

Test Specification”]

2.2 Test Cycles

Soak test was a test to simulate and accelerate the drive starting from end control in the
production to customer starting the drive. Test was quite straight forward - turn the drive
on, make sure everything is working, turn the drive off, let it soak in 50°C, 93% RH for
30 days. Turn the drive back on and see if everything is still working and a quick visual
inspection. Initial parameters for the test:

e Temperature: 50°C

e RH: 93%

e Ttest: 720h

e Trun: 1h, Running time to verify everything is operating correctly before and after

tests

Test based on transportation/storage

Ttest

Trun
Trun

Modulat
ion

PS

22



Figure 2.2 SOAK test profile [3]

Soak test started on 25.05.2019, ended 26.06.2019 drives worked and showed no signs of
damage - nothing interesting happened.

At this point the tester was still lacking data saving that had previously been done through
a “"LAC” program in other testers that almost no one understood or was able to fix or change
if needed and it had given us considerable amount of problems and downtime. As another
department was experimenting with getting rid of this link in the chain and letting the PLC
write directly to the local MS SQL database, we did not want to start using LAC in Ocala.
More about data saving in data saving chapter. As planned after soak we were supposed to
start application test but there was no database and test was stopped to wait for the data

recording solution that was promised to us already in May.

Initial parameters for the application test:

e Temperature: 50°C

e RH: 93%
e Tcycle: 24h
e Ton: 12h
e Tmod: 60s

e T230: 15min, power supply board only supplied with 230V to ensure 230V input
works

e T1000: 15min, power supply board only supplied with 1000V to ensure 1000V
input works

e Voltage UDC: 1050V, maximum without warning/fault

e Voltage U24: 28V, increase stress

e Voltage U230: 250V, transformer

23



Test based on application profile (run

until failure)
Teycle
Ton

Uin = 1.1xUnom
PS_24V

OFF Uin = 1.1xUnom

PS_1000V ‘

OFF

Uin = 1.1xUnom

PS_230V ‘

OFF
T230
T1000

Modulat ™
iOFI o Uin=1.1xUnom
FAN on H H

Figure 2.3 Application test profile

Application test started at 5.08.2019 but looking back I would say that commissioning
continued then. Because the data saving solution did not seem to arrive any time soon, we
stared application test without it and the first 34 cycles were not recorded to database. We
could still record parameters from PLC to text files, but this could not be a permanent
solution. We got our own measurements system running in Ocala at 25.09.2019. We were
also struggling to eliminate climate chambers fluctuating humidity levels. Figure A4.1
humidity fluctuation. It now seems that there were three reason for this kind of behavior:
too much heat produced during Ton, too aggressive cooling, and bad sealing of wiring holes.
We had some trouble with accessing JUMOs PID control parameters to limit cooling and

heating power of the chamber because they were password protected.

24



We managed to crack the mighty password because it turned out to be “1”. At the start of
testing, difference between humidity minimum and maximum during 24h was about 10-
13%, by the end of the test we got it to 2-3%.

Test went on with 50°C, 93% RH for over 4 months quite smoothly only stopping because
of running out of water was soon as I went on vacation, still nothing interesting happened
to EUTs (nothing broke). We had other troubles with our test setup like MUX and PLC not
wanting to communicate and being stuck on last value read due to bad coding. Safety relay
tripping for unknown reason we believed to be caused by cooling fan for some mystical
reason. Turned out to be the way safety relays channels were connected. We ran out of
water another time causing the chamber to overheat and stop. Because it was believed
that temperatures over 50°C might kill off dendrite growth and our PCBAs were running at
about 65°C with normal 50°C ambient. These 90°C and 80°C spikes could have ruined the
test. It was decided to increase temperature from 50°C to 65°C. This small 15°C rise in
temperature increased the water consumption of the chamber remarkably. Figures A4.4
Nothing still broke during the month and it was decided to go to the golden standard of
85°C/85%RH test. Because the chamber can only control humidity up to 80°C we continued
with 80°C/85%RH. After a few months testing power supply boards finally started to break.
Test was stopped at 27.08.2020 15:16:38 after being run for 460 days. Figures A4.1, A
4.2, A4.3

Serial_number EUT_place Cycle FaultOccurrence_Cycle_step FaultDis Active_fa HEX FaultStart I
appeara ults
nce_Cycl
e_step
251
261
261
292

1 22162 |0x5692 7.06.2020 16:05
1 22145 Ox5681 16.06.2020 23:36
16.06.2020 23:36
1 22145 Ox5681 27.07.2020 1:45

1 22145 | 0x5681 11.08.2020 1:45

{|EUT_06
EUT_pa
1 EUT_02
i EUT_01
_[EUT_05

e R s o
N
-
ra
=)
ey
o
ra
=
n
=1
)
=]

Figure 2.4 Faults table

25



3 PROGRAMMING AND DATA SAVING

3.1 AC500 programming

General diagram of how tester PLC should be programmed and what it must do. AC500 PLC
is configured in Automation builder and programmed in Codesys that is built into

Automation Builder. Figure A6.1 General tester programming structure

Variable languages possible in Codesys

e LD - Ladder Diagram

e IL - Instruction List

e FBD - Function Block Diagram

e SFC - Sequential Function Chart

e ST - Structured text

e CFC - Continuous Function Chart
Ocala PLC is programmed in ST and FBD.

Controlling and monitoring EUTs is done through PROFIBUS with cyclic communication.
Control word and frequency reference values are sent to all drives to simulate running a
motor. This is called "modulation” in this test. In normal application the drives job would
be to create a sine output to drive a motor. This is done with pulse width modulation of DC
voltage. In Ocala tester however IGBTs and power electronics are not tested and special
PCBAs were designed to simulate an IGBTs gate load on the adapter boards. Drive is
modulating only twice a cycle at the beginning and end of the power on part of the cycle
for 1 minute to make sure they work. Rest of the cycle control word is still being sent but
with the missing RUN bit. 11 process data values are read from the drive plus some current

and voltage readings from MUX.

26



Table 3.1 List of parameters saved for each EUT

1 | Status word

2 | INT board temperature

3 | PU power supply temperature

4 | Fan on-time counter

5 | Inverter temperature

6 | Warning word 1

7 | Tripping fault

8 | Active warning

9 | Control board temperature
10 | DCvoltage
11 | Switching frequency
12 | Power supply output current
13 | Power supply output voltage
14 | Control board input current

[EEN
(9]

Control board input voltage

This data is saved to local MS SQL database with variable time intervals set by the user in
the rightmost column in figure A5.2 cycle settings table. PLC has no control over MUX (not
programmed so). At the start of the test, configuration is sent to the MUX describing how
data is needed and after that the internal memory of the device is being asked continuously
for read channel values. PLC scales the values before displaying them to user and saving
them to local database. Scaling values are set by user. This turned useful and necessary
as currents measured are under 1A and recording them in mA was needed. Climate
chamber itself is also being controlled through PROFIBUS. Only temperature and humidity
setpoints are wrote and their actual value read and recorded. JUMO can control the two
independently. After numerous overheating due to running out of distilled water an
additional control method of cutting control signal to chamber was added and bit of code
wrote to disconnect it if temperature in the chamber exceeds setpoint by user set limit.
Digital alarm outputs for coolant pressure inside climate chamber are monitored. There are
many digital inputs and outputs and it is not reasonable to save them all as a separate
Parameter. Do reduce database size and noise they are grouped into tester status word
(SW) and tester alarm word (AW). Figure 3.1. Status and alarm words should seldomly
come into use, but it was already confirmed that control cabinet fan had not been working
for some time causing problems for the PC inside thanks to status word bit 1. Mostly they

should help the engineer in tester fault tracing.

27



Table 3.2 List of parameters saved for the tester

Jumo humidity sensor

Jumo temperature Sensor

PT100 TC High

PT100 TC Mid

PT100 TC Low

PT100 CC

PT100 LC

0NV |A~WIN |-

TC input coolant pressure

[Yo)

TC output coolant pressure

[E
o

Magna voltage SetPoint

[y
[EEN

Magna voltage Feedback

[EEN
N

Magna current Feedback

[E
w

Chiller input coolant temperature

Chiller output coolant temperature

14
15 | AW
16 | SW

@y, ALARM_AND_STATUS_WORDS_TO_DE (PRG-5T)

[= ][5 |

0001}

0002

0001

AW_1.0:=NOT KB0_SMOKE_SI;(*Safety relay/Fire alarm*)
AW_1.1:=NOT Q1_MAIN_SW:(*Tmax in control cabinet*)
AW_1.2:= CHILLER_ALARM;(*Chiller alarm*)
AW_13:=LOW_PRESSURE_T! C underpressure*)
AW_1.4:=HIGH_PRESSURE_TC,(*TC overpressure®)
AW_1.5:=NOT K71_CC_OVER_TEMP,(*K71_CC_OVER_TEMP*
AW_1 6:=NOT K72_TC_OVER_TEMP,(*K72_TC_OVER_TEMP*)
AW_1.7:=NOT K73_LC_OVER_TEMP,(*K73_LC_OVER_TEMP*)
AW_1.8:=NOT K70_TC_DOOR_SW;(*TC Door open”
AW_1.9:=Q7_FB;(*230V to EUTs circuit breaker feedback( Tru
AW_1.10:=TC_temperature_trip;(*230V to EUTs circuit breaker fe.

#

dback( False = okey)*)

=4

SW_1.0:= HZ_RUNNING;(*Test running*)
SW_1.1:= K74_CC_FAN_ON;(**)
BW_1.2:= K75_LC_FAN_OM;(*
SW_1.3:= K3_230V_CONT_0Q;(*)
SW_1.4:= K3_220V_CONT_I;(*™
SW_1.5:= FANs_relay,(*Load resistors*)
SW_1.6:= MOT H4_EUT_FAULT (*%)
8W_1.7:=0;(*Resen*)

SW_1.8:= G10_24V_POW;(**)
SW_1.9:= G12_24V_POW, (™)
SW_1.10:= G13_24V_POW:(**)
SW_1.11:= G14_24V_POW,[*)
BW_1.12:= V110_MAG_START (**)
SW_1.13:=VI11_MAG_CLEAR;(**)
BW_1.14:= V112_MAG_STOR;(*)
SW_1.15:= V113_MAG_INTLCK;(**)

Figure 3.1 Tester status and alarm word

28

SW_1=236634
SW_1=236634
SW_1=36634
SW_1=236634
SW_1=36634
SW_1=236634
SW_1=236634
SW_1=236634

KB0_SMOKE_S!
Q1_MAIN_SW

LOW_PRESSURE_T!
HIGH_PRESSURE_TC
KF1_CC_OVER_TEMP = [z

K73_LC_OVER_TEM
KF0_TC_DOOR_S\
Q7_FB=

TC_temperature_trip

H2_RUMNING =
K74_CC_FAN_OI
K75_LC_FAN_OMN
K3_230V_CONT_O

G13_24V_POW =
G14_24V_POW =

V110_MAG_START
V111_WAG_CLEAR
V112_MAG_STOP =
VI13_MAG_INTLCK




3.2 Data saving

Starting from using AC500 MSSQL Library for writing into local database to redesigning
calculations on data to be done in server (still problems with it after 2 years).

Mostly using the MSSQL_execute function from AC500 MSSQL Library that itself was only
created in 2015 and major bug fixes done in 2017. This means there are little to no
information about it found in the internet and many e-mails had to be exchanged with
AC500 support team.

“LAC"” was the program we had before to get data from PLC to server. LAC used OPC server
and it worked most of the time somehow. But it crashed a lot and was only supported by a
guy in Riga who sometimes had time for our problems - a different way was needed.
Another team in the company had started to implement MSSQL_AC500_V24.lib on one of
the testers and solution was promised to us as well. Unfortunately, their efforts mounted
to not much. PLC was constantly crashing and the whole code was unreadable not to even
talk about a universal solution. Ocala was our newest and cleanest tester and in need of
data saving protocol, testing begun. One of the problems in both previous solutions in my
mind was that PLC had to also save minimum and maximus values and create the fault log.
Because all the needed info was already present in the measurements table. This was
something that could be calculated by the server. It also allowed to change only one table
in case of user or machine mistakes instead of 3. There were also cases when users had to
copy data from server to their computers excel table to do some simple calculations. This
took about an hour a week per tester and information sharing was manual. The new logic
would have PLC only record measurements data. Raw measurements data would be pulled
from global server and calculation be performed on it constantly and easily be shared with
whomever needed it. There were some problems, however.

Too much data - calculation times are too long. End user tables inaccessible when pulling

and calculating new rows. Still quite annoying to fix data.

dbo. Summary dbo. Measurements dbo. Measurements volli dbo. PCBA Serials

Id int IDENTITY < 1d t IDENTITY K Id big IDENTITY K Id IDENTITY PK

Serial_number € Serial_number 50 Serial number  varchar(58 Serial number
EUT_place EUT_place EUT_place

Target cycles int
Added_on ime Parameter_value va Parameter_val
Time_stamp da Time_stamp
Active faults a Active faults ) NULL
User_modified User_modified ) NULL

Figure 3.1 Local SQL tables out of which only Summary and Measurements are truly needed.

29



PCBA_serials table is just a table where to store Serial numbers of EUT PCBAs and takes
part in no further logic. Measurements_Volli is a duplicate structure of Measurements and
is used for testing. Measurements_Volli data is not pulled to server nor shared.
Measurements_Volli table evolved into Measurements_commissioning table into all testers

to be used as testing and setting up tests so as not to record invalid data into main tables.

o. Measurements

1d Id

Id
Serial_number 58
EUT_place Serial_number
EUT_place

serial_number
EUT_place

Faultstart
FaultEnd

o. Min_Max

Id

= Serial_number
" EUT_place
Cycle
ameter_name

':' e_end_time

Figure 3.2 Server-side end user sees schemas dbo-s 4 tables

e Measurements which is only a copy of the measurements table from the local server
¢ Min_max table where server has calculated minimum and maximus values for each
cycle
e Faults table where server has calculated the fault log
e Summary
It gets a bit more complicated on the server side to pull and calculate the data. Because
there are up to hundreds of millions of lines of data in each tester it not practical to copy it
all and do all the calculations for all the data each time local data is pulled into server. For
the initial test in Ocala 47 million lines were recorded. To cut time and server resource
different shortcuts are implemented and 4 schemas created to pull and calculate the data:
e Raw - Before each data pull, schema tables are truncated, raw data from local
database is pulled into, Measurements, Summary
e Stage - tables that are used to aid calculations
e Dev - additional aid tables

e Dbo - final tables seen by users

30



Local measurements table data is first pulled into [Raw].[Measurements]. Only chosen
amount of data is pulled each time. For hourly pulls past 48h data is chosen. From
[Raw].[Measurements] in server [stage].[Measurements] and [dbo.][Measurements] are
updated with a MERGE command.

For minimum and maximum values calculations [Stage].[Min_Max] is first truncated and
then filled with stages of grouping and sorting the values. After [Stage].[Min_Max] is
calculated, [dbo].[Min_Max] is updated with merging.

Faults table. We had most troubles with faults table and still do. We wanted to get 8 columns
+ Id:

[1d]

,[Serial_number]

,[EUT_place]

[Cycle]

,[FaultOccurrence_Cycle_step]

,[FaultDisappearance_Cycle_step]

,[Active_faults]

,[FaultStart]

,[FaultEnd]

Id is the primary key and self-incrementing, no problems. Serial_number is the base of
calculation or owner of data. EUT_place is actually nonrelevant info and could be looked up
from Summary table, but since end users will be using the dbo directly without any user
interface it was added for ease of use and could be useful if EUTs swapped places during
testing, also could come handy if you notice that different EUTs keep failing to same faults
in the same test place. Might be that something is wrong with the wiring of the test setup.
Most relevant is the moment when the fault appeared, after how much testing (cycles) it
failed and what was going on at the time of fault in the test cycle (cycle_step).

This information is obtainable when comparing Active_faults from the previous recording
and the next recording. If on the previous line Active_faults = 0 and on the next line it is
something different than 0 then this must be the moment when the fault occurred. For
comparing lines there is a LAG function in SQL that allows access to previous row without
joining tables, which we tried as well. LAG function is slow, and it was needed to speed it
up somehow or find another solution. What we did was look for only 1 Parameter_name
that would be present in all tester. We came close enough with “Status word”. As parameter
names were entered into PLC user interfaces by users, we saw 6 different ways you can
spell “Status word”. So even after it was changed the same in all testers, we knew that
making calculation logic dependent on some name users can change is a slippery slope
where I have slipped many times already. It was also requested that fault end time would

be recorded. Here lies the real problem. There is a logic error where server inserts the

31



found fault into [Stage].[Faults] only after it has ended, because it does not know otherwise
as what to mark FaultDisappearance_Cycle_step and FaultEnd. There snowballs another
error of user not being notified of the fault because notification procedure is called out
before [Stage].[Faults] is merged into [dbo].[Faults]. Notification procedure sends out
notification mail if there are new faults in Stage that are not yet in dbo. But if the fault has
not ended it never reaches [Stage].[Faults]. It also means that if an EUT dies and is never
put back to work its fault never ends and its final, often most crucial fault, is never recorded
to database.

INSERT INTO [Ocala 2020].[Stage].[Faults]

select A.Serial number, A.EUT place, A.Cycle, A.Cycle step as FaultOccurrence Cycle step,

MIN(B.Cycle step) as FaultD:i_:—:appearance_CycLe_step,

A.Active faults, A.Time stamp as FaultStart, MIN(B.Time stamp) as FaultEnd

from [Stage].[FaultsSourceData] A, [Stage].[FaultsSourceDatal] B

where A.Active faults <> A.Previous_ fault and A.Active faults <> '

and B.Active faults <> B.Previous fault and B.Active faults = '

and A.Serial number = B.Serial number

and A.Time stamp < B.Time stamp

group by A.Time stamp, A.Id, A.Serial number, A.EUT place, A.Active faults, A.Cycle, A.Cycle step
ORDER BY A.Time stamp ASC

EXEC [dbo].[OCH]a_New_FaU]t_Notification]

Figure 3.3 Faults saving problem

Id  Seral_number EUT place Cycle FautOccumence_Cycle_step FaultDisappearance_Cycle_step Active_faults  FaultStart FaultEnd
1 1 EUT_01 1 100 1 1 25766.0 2019-11-2908:34:42  2015-11-29 09:45.28
2 2 EUT_04 4 16 4 1 206240 201912-1516:16:46  2015-12-16 08:34.28
3 3 EUT_03 3 16 4 1 206240 2019-12-1516:20:46 201512416 08:34.28
4 4 EUT_06 & 16 4 1 206240 2019-12-1516:28:46 20151216 08:34:28
5 5 EUT_08 8 16 4 1 20624.0 201912-1516:31:47  2019-12-16 08:34:29

Figure 3.4 Faults table.dbo

Summary table is a combination of user inserted info about EUT and some summarized
data about how the EUT survived or is surviving the test. Most interesting would be
Bad_cycles and Simulated_lifetime columns. Bad_cycles keep track of cycles where EUT
did not perform as expected. Mostly it checks if any output was generated during a cycle
as no direct fault code might not be generated in these kinds of “bad cycles” they might
slip by unnoticed. Simulated_lifetime calculates how much each test cycle aged the EUT
and then sums them up. Calculations behind it are different because accelerating factor in
the test is calculated against some mission profile in what environment and with what load
the drive is expected to operate for the next 10-30 years. Visual dashboard was created in

Microsoft Power BI to display how testers and EUTs are doing from Summary and Faults
table.

32



Min_Max
Id

Serial_number ) P Serial_number
. rial_number s EUT_place

EUT_place e

Cycle
Cycle_step
Cycle_saving

Type

Parameter_name
Min_value
Max_value
Cycle_start_time
Cycle_end_time

Number_of_faults
Simulated_years
. Active_fault
Min_Max

Id Serial_number
EUT_place
Serial_number archa serial_number C Active_faults
EUT_place EUT_place t Cycle

cycle i Cycle

Cycle_step
Cycle_step

Parameter_name arc @ Time_stamp
EEmeshy L Min_valu ) archar(5e serial_number
Parameter_name c 8 Max_value ) EUT_place
Cycle_start_time a FaultsSou
Cycle_end_time
cle_start_time
User_modified -
Serial_number
Measurements EUT_place
e ——— Active_faults ar (58 Summary

1a Serial_number va
Serial_number
EUT_place
Cycle
Cycle_step
Cycle_saving

p
:_stamp
Previous_fault

Serial_number
EUT_place
Type

Serial_number ar (s Serial_number
EUT_place
User_modified
Number_of_faul
Simulated vea
Active_fault

FaultStart Last Foult

Serial_number varcha FaultEnd

Figure 3.5 All server tables

33



4 TEST RESULTS

Plastic on all the option modules was destroyed but it did not affect the working of the
PCBAs enclosed in them. Turns out plastics absorb too much water in humid environments
that are over 70°C thus losing their tensile strength and becoming brittle. This corresponds
what was seen from the test. During the first 5 months when temperature was kept at 50C
and humidity at 93% RH nothing remarkable happened to the plastics but after only 6
weeks in environment of 80°C/85% RH, plastics became brittle and deformed. Although
unlikely that drives are installed in such harsh environments, deformation and study of
these plastics might imply strong discard of required installment conditions.[6]

Main failure was film capacitors casings being cracked and eventually destroyed.

Capacitance loss was measured on many of capacitors. Metallic contact layer escaped and
caused short-circuits on the delaminated parts of the circuit.

)

'

' \
i
v

-
-
-
-
-
-
-
-
-
-
-,
-

Ay

Figure 4.1 Broken capacitors on PCBA

34



Figure 4.2 Conductive dust from capacitors

Some problems were found in MOSFETs that are responsible for 1000V DC to 24V

conversion. But main failure in all EUTs was due to broken film capacitors.

Possible future actions: different type capacitors and better coating of PCBAs.

AF = ((_HUMfield)‘z'“) ¢ o)) (4.1)
HUMtest

where,

AF - Acceleration factor

HUM;s 4 - field humidity level, % RH

HUM,,,, - test humidity level, % RH

Ea - activation energy in electron-volts, eV

K - Boltzmann’s constant (8.617385 x10-5 eV/K)

T1 - Field maximum temperature (K)

T2 - Test maximum temperature (K)

[5,6,8]

35



HUM_field
HUM_test
AF_hum

T_field{C)
T_test(C)
AF_temp_ambient

AF_total (humidity * temperature)

TIME_in_test (days)
Accelerated lifetime (years)

Accelerated lifetime (years) total

Well conditioned electrical room, ideal test

Tropical ambient conditions, minimum measured

conditions humidity values in test

First part Second Part  |First part Second Part First part Second Part  |First part Second Part

{ambient {ambient {component (component {ambient {ambient {component (component
temperature) temperature) |[temperature temperature) temperature) temperature) |[temperature temperature)
50 50 50 50 85 85 85 85
93 85 93 85 82 85 82 85
5.21 4.10 5.21 4.10] 0.91 1.00 0.91 1.00|
30 30 50 50 30 30 50 50
50 80 70 100 50 80 70 100
6.65 76.38 5.34 46.97 6.65 76.38 5.34 46.97]
34.68 313.33 27.80 192.66| 6.05 76.38 4.85 46.97|
150 100 150 100 150 100 150 100
14.25 85.84 11.43 52.78 2.49 20.93 1.99 12.87]

100.09 64.21 23.41 14.86

Figure 4.3 Authors accelerated lifetime calculations, Ea = 0,8eV

Dependent on the ambient conditions of the drive in field and whether ambient or

component temperature is taken into calculation the 250 days in test gives the accelerated

lifetime of around 15-100 years which gives the author confidence to say the PCBAs did

pretty good and failed due to wear-out.

36



SUMMARY

We set out to build an automatic climate tester, conduct the initial climate test in it and to
control the data saving process. It was a project of many firsts. All three goals were never
attempted in our testing facility and they were all achieved. Many obstacles were needed

to be overcome in the process.

Tester design and build: I would like to think that we thought of almost everything and did
not overdo it. Some slip ups naturally happened, and it might not even be practical to try
to be flawless with initial proto design. On the downside we hurried going to production and
should have waited for all the components to arrive first. Apart from underestimating the
amount of connections needed to be done between equipment under test and control
cabinet and choosing wrong relays for fan supply boards output, I will say the result is near
superb. Especially considered that it was authors first tester build. I am especially happy
that at least during the initial test all hardware changes were also updated on the circuit
diagrams. Something often forgotten after commissioning is over. Quite many

improvements can and should be still done but mostly to the PLC code.

Testing: Could have been better. Most notable failure was failure to see that fan supply
boards were not working as meant to therefore ruing their own intended test and causing
problems with chamber humidity due to dissipation of heat into testing chamber. Job of
filling the tester with distilled water was forgot several times causing unwanted ambient
conditions and lost testing time. This temporary system of filling the tester manually has
now been fixed with a permanent water supply. Considerable amount of data was lost
because of bad programming connecting PLC and Data Acquisition Unit. Mostly
programming issue but was still unnoticed by the engineer. As the author was in both roles
it is hard to blame anyone else. All serial numbers were saved to database that should also

become a standard in PCBA tests.

PLC programming: I had not done it before, and the responsibility became mine out of
necessity. Looking back at the code changes and improvements I did I cannot say they are
the best or that I would do it similarly again. Even so tester parameters and status word
were created that had not been done before. Luckily the code I started with was relatively
clean and understandable and I was walked through all the processes and had all the help

I asked for. Now that I have become expert at AC500 programming I should really find the

37



time and add some additional safety features so events such as the fan supply fiasco are

less likely to repeat.

Database recording: Idea was simple and clean. Record only measurements table and let
the server calculate the rest. Implementing AC500 MSSQL Library seemed tricky at first
but was quite easy once we got it rolling. Some mistakes with the architecture were made
both in PLC and in databases that are still causing problems today. Since all testers in our
facility are impacted by any change they should really be thought out and tested before
any bigger update on the whole system can be attempted. We were surprised how
complicated our simple minimum and maximum and fault calculations got when we tried
to implement them in the server just not in our local computers.

Most important fix still lacking in data saving system is in fault calculation so that faults are

recorded as soon as they appear, not only when they disappear.

Test results were satisfying: Unfortunately, no PCBA faults were found yet but a few weak
points were found and in next tests they can be focused on earlier. Wear-out failures in 5
out of 8 PCBAs in relatively narrow timespan at least confirms that the stressors are

working, and more precise lifetime calculations can be made in the future.

In conclusion all goals were achieved well, but in the light of lessons learned many
improvements can still be done to Ocala and to future testers either based on Ocala or not.
I am sure that Ocala will be ageing and braking PCBAs for years to come finding

manufacturing, component, and design flaws.

38



KOKKUVOTE

Me seadsime eesmargiks ehitada automaatne kliimatester, teostada esmane katse ja
saavutada kontroll info salvestamise ile. See oli paljude esimeste projekt. Uhtegi kolmest
eesmargist ei ole oldud meie testimiskeskuses varem (ritatud ja nad kdik said saavutatud.

Selleks tuli Gletada hulgaliselt takistusi.

Testeri disain ja ehitus: Ma tahaksin arvata, et me motlesime peaaegu kdige peale ja ei
teinud liiga palju. Loomulikult oli mé6daminekuid ja motlematusi, aga ma arvan, et esmase
prototliibi disainimisel ei peagi tadiuslikkust jahtima. Miinuspoolelt me kiirustasime
tootmisesse minekuga ja oleksime pidanud ootama kuni kdik komponendid kohale jouavad.
Valjaarvatud Uhenduste ja juhtmete hulga alahindamise ja valede ventilaatoritoiteplaadi
valjundi releede valikule, sai tulemus suureparane. Eriti arvestades, et tegemist oli autori
esimese testeri ehitusega. Ma olen eriti rahul, et kogu ehitamise ja esmase testimise kaigus
sai riistvara taiendused ja muudatused ka skeemidele margitud. Midagi, mis tihti parast
esmast kaivitust ununeb. Jatkuvalt saab ja peaks testrile tegema palju tdiendusi, aga

Uldiselt kontrolleri programmeerimisel.

Esmane katse: Oleks vdinud minna paremini. Kdige markimisvaarsem viga oli
ventilaatoritoiteplaadi mitte korrektne té6tamine, mis rikkus nende endi katse ja pohjustas
probleeme sest nad kiirgasid palju soojust kliimakambrisse. Mitmeid kordi unustati taita
testrit destilleeritud veega, mis pohjustas soovimatuid kekskonnatingimusi ja pdhjustas
testi mitte to66tamist. See ajutine slisteem on nlldseks parandatud pideva vee toitega
testimiskeskuses. Arvestatav hulk infot ldks kaduma halva programmeerimise tottu, mis
tottu side kontrolleri ja andmete hankimise masinaga katkes. Suuresti programmeerimise
probleem, mis jai siiski inseneri poolt markamata. Kuna autor on mdlemas rollis siis on
kedagi teist slilidistada raske. Koik triikkplaatide seerianumbrid salvestati andmebaasi, mis

peaks muutuma trilkkplaatide testimise standardiks.

Loogikakontrolleri programmeerimine: Ma ei olnud seda varem teinud ja vastutus langes
minule vajadusest. Tagasi vaadates koodi muudatustele ja taiendustele ei saa ma delda,
et nad oleks kdige paremad olnud v0i et ma nii sarnaselt uuesti teeksin. Siiski said tekitatud
testeri parameetrid ja staatussdna, midagi mida varajasemates testrites ei olnud olnud.
Onneks kood millega ma alustasin oli Gisnagi puhas ja arusaadav ning mind aidati labi k&igi

protsesside ja sain nii palju abi kui ma kisisin. NGid kui ma olen muutunud AC500

39



eksperdiks peaksin ma leidma aega, et lisada turvafunktsioone, et ventilaatori
toiteplaadifiasko ei korduks.

Andmebaasi salvestamine: Idee oli puhas ja lihtne. Salvestame ainult mddtetulemusi ja
server arvutab (lejdanu. AC500 MSSQL raamatukogu kasutuselevott tundus alguses
keeruline, kuid kui me algusega hakkama saime léks edasi lihtsalt. Andmebaasi ja
kontrolleri arhitektuuris sai tehtud modned vead, mis siiani tdli pdhjustavad. Kuna
muudatused andmebaasi loogikas mdéjutavad kdiki meie testreid tuleb iga muudatus enne
pohjalikult Iabi modelda ja katsetada, enne kui teda saab kasutusele vdtta. Me olime
Gllatunud kui keeruliseks meie lihtsad miinimumi ja maksimumi tabeli ja vigade tabeli
arvutused muutusid vorreldes sellega, mida me endi arvutites proovisime.

Kdige tahtsam parandus on endiselt puudu. Selleks on loogikaviga serveris, kus viga

salvestatakse alles tema kustumisel, mitte tekkimisel.

Testitulemused olid rahuldavad: Kahjuks Uhtegi trikkplaadi viga ei leitud, kuid moned
ndrgemad kohad avaldusid ja neile saab jargmises testis juba alustades rohkem tahelepanu
podrata. Kulumisvead viiel kahekast katsetavast lGisnagi vdikeses ajavahemikus kinnitavad,

et stressorid to6tavad ja tulevikus saab sooritada tapsemaid eluea arvutusi.
Kokkuvottes said kOik eesmargid edukalt saavutatud, kuid Opitutu valguses tuleks

hulgaliselt tdiendusi teha Ocalale ja tulevastele testeritele. Ma olen kindel, et Ocala

vanandab ja I6hub trikkplaate veel aastaid leides tootmise, komponentide ja disainivigu.

40



LIST OF REFERENCES

1. https://www.dfrsolutions.com/hubfs/Resources/services/Qualifying-for-Moisture-
Containing-Environments.pdf?t=1503583170559

Climate chamber manual [2]
ORT specification xxx PCBAs (Internal document)

4. https://catalog.weidmueller.com/catalog/Start.do?localeld=en&ObjectID=869004
0000

5. https://www.desolutions.com/blog/2017/09/accelerated-temperature-humidity-

testing-using-the-arrhenius-peck-relationship/ [5]
6. MECHANICAL PERFORMANCE OF POLYAMIDES WITH INFLUENCEOF MOISTURE
AND TEMPERATURE - ACCURATE EVALUATIONAND BETTER UNDERSTANDING

https://www.researchgate.net/publication/284257135 Mechanical Performance o

f Polyamides with Influence of Moisture and Temperature -

Accurate Evaluation and Better Understanding [6]

7. Magna power supply https://magna-

power.com/assets/files/manuals/manual xr 1.3.pdf

8. COMPREHENSIVE MODEL FOR HUMIDITY TESTING CORRELATION by D. S. Peck
(1986)
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary%?20Papers/1986%2
OPeck%?20Comprehensive%20Model%?20for%20Humidity%20Testing%20Correlati
0n%20IRPS%2004208640.pdf

41


https://www.dfrsolutions.com/hubfs/Resources/services/Qualifying-for-Moisture-Containing-Environments.pdf?t=1503583170559
https://www.dfrsolutions.com/hubfs/Resources/services/Qualifying-for-Moisture-Containing-Environments.pdf?t=1503583170559
https://catalog.weidmueller.com/catalog/Start.do?localeId=en&ObjectID=8690040000
https://catalog.weidmueller.com/catalog/Start.do?localeId=en&ObjectID=8690040000
https://www.desolutions.com/blog/2017/09/accelerated-temperature-humidity-testing-using-the-arrhenius-peck-relationship/
https://www.desolutions.com/blog/2017/09/accelerated-temperature-humidity-testing-using-the-arrhenius-peck-relationship/
https://www.researchgate.net/publication/284257135_Mechanical_Performance_of_Polyamides_with_Influence_of_Moisture_and_Temperature_-_Accurate_Evaluation_and_Better_Understanding
https://www.researchgate.net/publication/284257135_Mechanical_Performance_of_Polyamides_with_Influence_of_Moisture_and_Temperature_-_Accurate_Evaluation_and_Better_Understanding
https://www.researchgate.net/publication/284257135_Mechanical_Performance_of_Polyamides_with_Influence_of_Moisture_and_Temperature_-_Accurate_Evaluation_and_Better_Understanding
https://magna-power.com/assets/files/manuals/manual_xr_1.3.pdf
https://magna-power.com/assets/files/manuals/manual_xr_1.3.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary%20Papers/1986%20Peck%20Comprehensive%20Model%20for%20Humidity%20Testing%20Correlation%20IRPS%2004208640.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary%20Papers/1986%20Peck%20Comprehensive%20Model%20for%20Humidity%20Testing%20Correlation%20IRPS%2004208640.pdf
http://web.cecs.pdx.edu/~cgshirl/Documents/Supplementary%20Papers/1986%20Peck%20Comprehensive%20Model%20for%20Humidity%20Testing%20Correlation%20IRPS%2004208640.pdf

APPENDICES

42



Appendix 1 Ocala data and control flow chart

Detwork

'3| .
e i - T e ﬂ}g.
: :: | Power meter Firewall
e . .y j 34970A 400V
— . DMZ
network

Magna power 1250VDC

g e, A Partofthetester  NDBU. osc  Russ2 ' _"ﬁ_
: NDBU-95C _R_UiB:O2 i =) i

g As3
i £ = | eCoatch
: i —Optical connection— = AL DRI : :

- -~ o) PowerBl
| c . |
| = 2 . | . = ‘
i Frequecny § g & :

converter o g 3
| S Tester PC 2 !
| ,,b |
| e i e
| I
I e Drive composer, |
I Asomanion Budder L

I : S| SQL Server
| |
| b USB coonection — - — - — - — .= — | =
! 8pc - full set’s of PCBA’s 2
! - g PLC
I —
| 8pc
|
|
|
| o —— Analog/digital —_—
I
|
|
|
|
|
I
I
I
|
|
|
|
|

Figure Al.1 Ocala data and control flow chart

43



Appendix

2 PLC in circuit diagram

-A1 -AlZ -A13
CM572 ’n\{H} PM590 AIS23 ’n\{H; DC532 ’n\{H; AX522
- o O Q
=0 OF=| ETH = - .
Tl o =
eSS Mﬁjg rﬁ#r%:#k:ﬁ' ‘Jhur‘hll' :rr: E?JM .0 O o = 10 20 cuf]) Jae ] 1w w|[ |a M O |#o ==
T e yo-Bus [ <10 ittt oE COM; 2.1 O |+ =] 12 I B EET==11 | EER = 11wl |2 1 |0 |er o T
BT PR RUN ERR 22 wo|[] 1 12 R (B EE=— 12 w|[] [z M O [+= oee”
EN /—\D 0 [u] 23 a 13 Zl 2 w0 oz el 13 |l |2 0 O |#3 o
B t > Camy (omey /IR 20 12| 14 Zlfpe ool o el 14 w|[] [24 0 #|0 e oz
EI o L (“'Di“:/ i | 2.5 | 15 s ]| 15 o 15 =[] [ BN EREED
D (I‘) Cfrﬁj' [ | 15 i} L8 s ]| [12 o 15 e[ [ L 0 [ owee_
— — I.I .l EE i 50| 17 ws_| far el a7 e PR 1 PR EEE
(\__E:I_) C_!:) 0 28 w|[] [a= u~||:| 12w | [z8 Jl‘||:| 22 w|[] [a= |.|~||:| 18 up _| 22 u.'||:| w(d |8 Jl‘||:|
P . o |0 1= :nll 13 ‘l‘l ED BEE) ;:l. 45 | 19 ?n||:| 25 F.'l. w0 [ea =
\--E—/ (-\_l Ijj:" CH-ERR4 — CH-ERR1 J CH-ERRZ J CH-ERRI — (H-ERR4 J CH-ERR2 — CH-ERR4 J
[T weecion o e | e
o] O Output 24VDC 0,54 'e) Anaing Output
Qs B O =L O =00 =0 O <0 [@ RV || ey [ [ | [y [@RCY || Ry || ] || [y
o[ Wz 2 \rr1 -Qu O=O CI.'.ID -Qu _' =[] OD -Qu[l _'mD o O Q‘).ID Qul:‘ O1|:|
OffH(= = | lo=gfo=0Ollo=0Olo-g| | |[o=0O|lc=Ollo=O|c-0| | |[o=0O|c-0|o-0||c-0
& SR o O =IO =IO = OO = OIS =OC =00 O C=Oo=-=OC=0O|C O
] ~ Ol = Pl C=O|C=0O)o=a)c -0 O=Oo=Ojo-o O O=Oe=Od|o=-0djo«Od
g ~ 8 e L. : OO === Ol = C=OO=0OlC=0O|C -0 C=OC=C =01
g SITEE 8]0 O-=Oo=0)o-0|o O O=0|o=0O|o-=Onc -0 C=Qc-O)o--gjoc-td
O[ =] Lot O-Oo=0)0=0|C O O«Ooc=0Ojoc-0)jo-0d O=Oc-4a|o--a)o~Od
8 : Cﬁ:}_' (e[ QD O == Qu.:D O == Qul:‘ C_)D O=|O =0 C_)uD
oI o o-glo-Ollo-allo-al | lo-allo-ollo-alo-dl | lo-alo-alo-allo-O
ABB TB511-ETH ABB TUS16 ABB TUS16 ABE TUS16
-A11X1 -A12.X1 -A13.X1
o
=02+22 3
TEST| CABINET CONTROL SECTION ]
A
-KEYSIGHT 349704
-JuMo 1 (AGILENT) |
FROFHBUS MOD-8US

Figure A2.1 PLC in circuit diagram

44



Appendix 3 Circuit diagram

1 2 I 3 4 5 3 7 [ 8
5
N SWITGH
INPUT1 FROM BEHIND UVR - $ MAIN CONTACTCR
-INPUT 1 1
o wom L N N
A “u el EIGIRE 3 3 s A
" 48126 N N N
M) - Xioz 11 z 5 94
o sui8/28m3 N N N .
3 o X103 1 7 e Ty
8/2E
| In=0,7xln 5 ||
¢ e ] "|15‘
N \11
=
2
=
=
B 1 3 B
- -
o1k
1684 = ™
z 4
INPUT2 FROM COMMON(NOT IN UVR CIRCUIT) I
E-STOP,PLC, PC, SWITCH SUPPLY I
PR
1 3
-Q12 I8[2E |m |am |em
-INPUT 2 2 b - -\ —
: P T » /0128 ) 131 a N c
T \ -Q8:3 .
mMm 02
2
613 k] - ~ ™
REREEE
] - Ho Fu U |
3
4 /62 Yy v
C 03
° D
1000VDC SUPPLY
X1 bt n i ]
<
-EMS SIGNAL INPUT U=7777 53
17138 58
L KT30:7 b
: o e - E
N KT30:8 gL g
a 7
-SMOKE DETECTOR SIGNAL INFUT U=2772 = g =92 g% g E
p ! X 3 R T H]
L : *
] ) o & o L
‘ Z
' I A
2
F Pre Tite  EUT Main Supply Ttem Des. F
App. SAP Dec. Mo =01
Praject OCALA EPLAN Doc. No.

Figure A3.1 First revision of Ocala Main Supply

45



1 2 [ 3 4 3 [ 7 [ 8
INFUT1 FROM BEHINDG UVE
FROM WASPNEST TMAX o1
CABLET CABINET UNTIL SWITCH IN Q
RED/ORANGE HEAT SHRIMK SLEEVE
rT ] ]
-INPUT L BE —_—
A ¢ 0 EIN 1 0 .
L - |
8K 6—&—6—9
e 10 4 ] i) -X1L1 1
L AT
B
" 10 6 5 5 10 X112 1
b &
— In=0,7xIn S04 ™ -X1L3 1 -
¢N 10 KOL
) KN T . - .
GNYE GNYE S O L T
& 1 15 g [203A - B BK 0 10
fi
= . GHYE """l SIE w “ a to 3 s
L 25 5 g F22 ;% — =
164
X1PE 1 : i s
B Bk |Be |eu
[ ] INPUTZ FRY MMON{NOT IN UVR CIRCUIT) 25 25 J25 25 1
E-STON [TTCH SU
CABLE T £ CABINET UNTIL SWITCH IN ur (e |sE N M
RED/ORANGE HEAT SHRINK SLEEVE s P - - %o %o\ _\ f
INPUT 2 i I
c " m 5 jefon y c
Yu | R CER T L
42| gz
B Bk |me |eu
| 25 f25 a5 |25
613)_as|s3
— . -
H
i [
a
1000VDC SUPPLY =
G’ GHYE
- Hoj2c s 25 /6/6D
e = = 2 H
D p[10/4C . 25 2 B D
25 25 &
i 1 -Xcg |2
B
-EMS_SIGNAL_INPUT_U=230V 25
17138
- > > 1> L
/7138 z : B 2]
U - 25
25 LT BU
SMOKE DETECTOR SIGNAL OUTPUT wt q‘ < 1 25 5
kX80 = 5
E 12 S a E
15 1 s m
-KTes 1 - 11/2 25 b e
?ﬁ U1 11/28 g E g r ¥
B - 21 /&
XT66 2 B~ 2 /2160 : ) 7 2 g g
|| -KX80 z w W o g & L
2 EE 3 z z
2R & &
s 2 A = = 5 £ &
-¥Tes ¥ o m o o &
15
XT66 4
F Priit Reim 2016.11.08 e Des. F
SAP Doc. Mo =01
OCALA PCB TESTER EPLAN Doc. Mo,

Figure A3.2 Latest revision of Ocala Main Supply

46



-¥1:22
A
& L
0 11 12 1
HPE ]t L &
2 3 4
-G10 BN G12 EE E 13 L L2 1 -Gl4 EN N
IS AN ARSI IS
POWER SUPPLY POWER SUPPLY POWER SUPPLY POWER SUPPLY
B MCS-B 5-110-240/24 MCS-B 5-110-240/24 MCS-B 5-110-240/24 MCS-B 5-110-240/24
b+ DC- [ =3
Q o o
5 4 4
C
) , s L
-XE24 |1 Iz ] 10 3 4 u 12 s 3 13[4 7 Ia 15 Im
_XE24 |1 2 3 10 s T4 u [z s (s 13 | 7 [ 15 [18
D
.ll .
gle 8
gl ol . =f. == = .. = .3
Y Y Y Y y \
E
F | cus pec ho P e EUT 24V Supply Tt Dess.
Ref. N, A, SAP Doc. No. =01
Customer Prajact OCALA EPLAN Doc. No.

Figure A3.3 First revision of EUT 24V DC supply

47



2 3 4 5 6 B
A T T
wlew | wl e wyl
re] I} o 2| D
A == = = = A
= = =
0 11 fF) 13
% 5
L] gf T 2 3 4 ||
=
) |
&
w [WEL | bee B B | B GNYE e [HEL [dwe Eve B | BU @
35 {38 35 25 15 |25 15 35 |28 25 25 25 {38 35
B -G10 s &t -G12 oA : -G13 & 42 Lt G14 Az &t B
L W [ [ BE [ FE L W BE
POWER SUPPLY POWER SUPPLY POWER SUPPLY POWER SUPPLY
MCs-B 5-110-240/24 MCS-B 5-110-240/24 MCS-B 5-110-240/24 MCs-B 5-110-240/24
Dc+ DC- DC+ - DC+ DC- Dc+ DC-
a o o [e] o] o a o
5 4 5 4 5 4 5 4
XPEL 13 -XPEL 16
c C
12 (14 12|14 12 (14 12 (14
-KG10 L\ -KG12 L\ -KG13 L\ -KG14 L\
j22f2c 11 C 11 J22feC 11 fa3f7c 11
— A B | RO | K o B | —
5 15 |15 15 15 J 15 15 15 J 15 15 15 |15
-XE24 2 10 FER FH 13 |14 ] 15 |16
D 2 s T 1 T2 o7 8 15 715 D
RD BE B B B B BK BX BK
5 15 15 15 15 15 15 15 15 15
- X s -
- a
lohm 1ohm
o ﬁ] n] ﬁ]
E E
4 od
24 B4
o wy [ wi of o [
A = = = A =
- g [ a-9 3 9 9 —
= =5 = = =
v Y 0 r A
F prep.  Priit Reim 2018.11.08 | THe EUT 24V Supply F
OCALA SAP Dioc. Mo
OCALA PCB TESTER EPLAN Dee. No.

Figure A3.4 Latest revision of EUT 24V DC supply

48



[ 4 5 [3
=
T/
1
9% o8
i
A
HPE [t
G20 ot Iy
a2 G [
MAGNA
XR1250-5,4/3807772 (BkW) NEED TO GD OVER 1000V
B8 DATA
o
o
@
=]
c 25
58
r PLUG TYPE NEEDED FOR 1000V connections
SUCCEST Phoenix 5T6 terminal with Plug
-XE1000 8 ,_i_I_T_‘i_ti
, -XE1000 l
-XE1000 |1 2 3 5 [ 7 8
b He000 |3
A
o 3= dod.d
a5 . S
B o I
h
E
F | cust pec no. Freg Twe EUT 1000V Supply BFPS e De.
Cust Red. No. . SAP Doc. No =01
Cussomer Profct oep) A EPLAN Doc. No.

Figure A3.5 First revision of 1000V DC Supply

49




1 2 3 4 5 [] 7 |
u|u
w113 L\
A [23/eB n
gc@gs @ ] ~ R Ao d -vi12 L\
Ao A= - 12 14/ 2358 11
V111 L'\
1214 j23/4B 11 22 |24
T V110 L\ K2 L\
[23/38 u 3/3E 22
8K 8K B e | [ac s [ B a [
15 15 s J1s Jus Ju 15 fus 15 15 15 L5
- v
& G20 Ld ) O ed el gd dwd w1 sd s 5d B sc]J 3 §o 20 ) N
o o 4a FE ml wz hzn g; gfl o | I gt B2 po S5 on ) gu p® E!?
MAGNA 7 = £ E B 1
*R1250-6,4/350 ANALOG INPUT O-10V AJO 0-10V
I DI 5V 10kohm imp
oc+ o
o Q
c
NEHUAFD
B
25
| [Erres)
B
25
N O
D 1 1 1
7 BRI
=) m n =1
2 2 2
-¥E1000 +3 +H +5 -XE1000
E
= | - | et
= L = ) =
g R g
A y Y Y 9 L
Preo.  Priit Reim 2018.11.08 | Te EUT 1000V Supply BFPS Item Des.
app. OCALA SAF Doc. o, =01
Pt oem a0 PCB TESTER ELAN Doc. Mo

Figure A3.6 Latest revision of 1000V DC Supply

50




Appendix 4 chamber graphs

Humidity fluctuation problem
100

r88.2

Lg15

70

50 ————.

30

10

1]
25.09.201912:00 25.059.201913:12 25.09.201914:24 2509.201915:36 25.09.2015916:48 25.09.201918:00 25.00.201915:12 25.09.201920:24 25.09.201921:36 25.05.201922:48

Jumao humidity sensor

Jumo temperature Sensor

Figure A4.1 humidity fluctuation

51



C/RH%

100

90

80

70

60

50

40

Ocala, simplified

-~

Figure A4.2 Chamber ambient test setpoints

52

93 £2:5) 93
85
80 80
65 i]
50 50
0 25 50 75 100 125 150 175 200 225 250 275 300
Cycle
=—Temperature == Humidity



Ocala, Real measurements

- 300

- 250

- 200

- 150

- 100

- 50

o

'l

100

50

50

g

00:00202°60°9¢

00:0 0702'80°LE

00:0 0Z0Z"L0'8E

00:0 0Z0E"90°8C

00:0 0Z0E"SO6L

00:0 0Z0Z"P0'6T

00:0 0T0Z'E0°0E

00:0 0T0Z°T0'6EL

00:0 0Z0Z'TO0E

00:06TOTET'TE

00:06T0ZET'T

00:06T0Z'TT'T

00:06TOZOT'T

000 610C°60°C

Cyde

Humidity —— Temperature

Figure A4.3 Ambient test conditions measured

53



23.02.2020, running out of distilled water

- 10

100

a5

a0

1

75

70

65

55

50

45

35

30

25

20

15

10

=}

00-TT0T0TT0FT

00:6 02027002

00:90202°20°F2

00°E0T0TTO'FT

00:00202°20'%2

00 TTOTOTTOET

00°8T0T0T'Z0°ET

00 ST OZOZTTOET

00:TT0T020°ET

00°6 0T0T'TO'ET

00'90202°20°€2

00°E0TOT'TO'ET

00:00Z0ZT0°ET

00 TTOZOTTOIT

00:8T0Z0ZT0ZT

00-ST0Z0CZ0EE

00:ZTO0TOZT0ET

00602022022

00:90Z0Z 70T

00-E0E0ETOET

00:00Z0Z 70T

00-TZOZ0TT0TE

08T 0ZOZZOTE

00°STO0Z0TT0TET

00ZT OZOZ'ZO'TE

00°6 02020 TE

00'9020Z'20'TL

00°E0Z0ET0TE

00:00Z0Z'70'TL

—Cycle_Step

~—— PT100 TC Mid

—— Agilent humidity reading

Jumo humidity sensor

Jumo temperature sensor

Figure A4.4 Changing from 50°C to 65°C ambient and running out of water

54



Q. CoDeSys - Application. AC500PRO™ - [_99_Drive_Master]

& file Edit Project Insert Extras

Online

Window Help

Appendix 5 PLC visualization and code

E| B|®]edm|S (A5 *(=

B3 DBShr
~[E] Andmebaas [PREG)
[ coMMECTION (FE)
~[Z] COMMPROP [FUN)
DB_COMM_2 [FB]
@ ping_pong [FUM]
~[Z] SCAN_ROWS [FB]
STR_FORMAT [FE)
~[Z] STR_LEN [FUN]
B3 Function_Blacks
~[€] DEC_To_IEEE754 [FB)
[ DO_BLINKER FE]
IEE7S4_Ta_DEC [FE]
= INT_Changed [FB]
Profilirive FB]
~[E] Temp_ol_CYCLE [FB)
{23 HumSens
[} HTM_SENSOR (FE)
(2] HUM_MY_TO_PRC (FUN)
TEMP_MY_TO_DEGC [FUM)
~[Z] W_DENORM [FUN)
~[Z] W_NORM [FUN]
023 Main_Programs
-] BODI_MAIN_PRG (FRE)
Edit_FZD_List (PREG)
[ EUTO1 (PRG)
-] EUTO2 (PRG)
HH EUTO3 [PRG)
-] EUTO4 (PRG)
i EUTOS PRG)
[ EUTOB (PRG)
-] EUTO7 (PRG)
i EUTOB [PRG)
-] JUMO_Cortrols (PRG)
@ Magna_scaling [PRG]
~-[g] PLC_PRG [PRG]
~[E] Scale_PZD: PRE)
Status_table (PRG]
~[Z] VBS [PRG)
B3 String functions
ADD_SRST_CHAR [FUN)
CHR (FUN)

B3 Stuff to Database

ADD_Read Agilent (PRG)

ALARM_AND_STATUS_WOR
EUT_serials [PRG)
Global_values_ta_DB [PRG)
FZDs_to_DE (PRE)

Figure A5.1 PLC MAIN visualization

55

DC Vaoltage DC Current Voltage Trip Current Trip Test Cablnet
s | et | 1050 ‘ 50 | Sefpoint ‘ 11000 6.0 | CI T e
40 20 0 20 60 B0 100 120 140 160 :
Start | 1054.0 ‘ ‘ 0.3 | Feedback I | 251
10 20 30 40 50 60 70 80 90 100 '
[ Modulaing ] EUT01 | EUT02 | EUT03 | EUT04 | EUTO5 | EUTOA | EUTO7 | EUTOR
Communication fault PB fault | PB fault | PB fault | PB fault | PB fault | PB fault | PB fault | PB fault SRRruSr
Freg. conv. fault EUT fault|EUT fault|EUT fault| EUT fault|EUT fault|EUT fault|EUT fault| EUT fault| .
PZD01 Status word (HEX) 0x12b1 | 0x12b1 | 0x12b1 | 0x1261 | 0x12b1 0x0 | 0x12b7 | Ox1207 | g
PZD02 INT board temperature(P5.15)) 82.0 840 840 840 82.0 0.0 83.0 81.0
PZD03 PU power supply temperature 920] 970 970 san| san oo 950 970 Jumo_Temp_Trip_High_Limit
PZD04 Fan on-time counter(P5.4) 330]  330[ 330] 300 330 00[ 300 300 = TEST 85
PZDO05  Inverter temperature(P11) 17.0 17.0 16.0 16.0 16.0 0.0 17.0 190) | cHILLER CHAMBER
PZDOG Warning word 1(P4.31) 16.0 16.0 16.0 16.0 16.0 0.0 16.0 16.0 é]—
PZD07  Tripping fault(P4.1) 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 COOLANT [ 0% HUM
PZD0& Active wamning(P4.8) 0xa4b0 | 0xa4b0 | Oxa4b0 | 0xa4b0 | Oxadbl 0x0 0xa4b0 | Oxa4b0 INPUT 9.4 C AGILENT
PZD09 Control board temp(5.10) 920/ 9e0] 900 990 es0 oo 960 980 SENSOR 9.0%
PZD10 DC voltage(P1.11) 10463| 10467| 10497| 10487| 10497 oo| 10464| 10477 mobile HUM
PZD11 Test1000 00 00 00 00 00 00 00 00 Y
PZD12 Switching frequency(P5.17) 0.0 0.0 0.0 00 0o 0o 0o 0.0 COOLANT [ 85 % HUM
ouT92C | CHAMBER
current -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000 E & SENSOR
2383 | 0028 | 0008 | 0015 | 0038 | 0010 | 0.002 | 0025 - 1.4 bar
urrent 0618 | 0627 | 0581 | 0634 | 0588 | -0000 | 0569 | 06O =
oltage 27.030 | 27.030 | 27.050 | 27.050 | 27130 | 27.130 | 27.030 | 27.040
voltage 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
voltage 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 TEETTHEL Clear alarm table
Cycle count 57 57 57 57 57 54 57 57
EYUT InUse Inuse | Inuse | Inuse | Inuse | Inuse Inuse Inuse | Inuse STUFFS I Dats Time I Message
E— 1 K3_230V_CONT_|
EditPZD 2 K74_CC_FAN_ON
Temperature [C] | Humidity [%] | AC Voltage [V] | DC Voltage [V] | Duration [s] | 230V_in |FAM resistors| DC24V |DB_interval[s] 3 K75_LC_FAN_ON
1 30 85 0.0 0.0 200 TRUE FALSE TRUE 15 4 G10_24V_POW
2 30 85 400.0 1050.0 60 TRUE TRUE TRUE 5 5 G12_24V_POW
2 30 85 0.0 1050.0 21120 TRUE FALSE TRUE 60 8 H2_RUNNING
4 30 85 0.0 1050.0 21120 TRUE FALSE TRUE 60 7 FANs_relay
5 80 85 0.0 1050.0 900 FALSE FALSE TRUE 15 8 G13_24vV_POW
6 80 85 400.0 1050.0 60 TRUE TRUE TRUE 5 g K3_230V_CONT_O
7 80 85 00 00 20 FALSE FALSE TRUE 5 10 V110_MAG_START
8 30 85 0.0 0.0 21000 FALSE FALSE FALSE 60 " V111_MAG_CLEAR
9 30 85 0.0 0.0 21100 FALSE FALSE FALSE 60 12 V112_MAG_STOP
10 30 85 0.0 0.0 120 FALSE FALSE FALSE 50 13 W113_MAG_INTLCK
14 G14_24V_POW
[ Active Step: 4 ] [ ElapsedTime: 330935 || Elapsed Time: T#63m29s847ms Next Step



Temperature [C] | Humidity [%] | AC Voltage [V] | DC Voltage [V] | Duration [s] | 230V _in |FAM resistors| DC24Y  |DB_interval[s]
1 80 85 0.0 0.0 900 TRUE FALSE TRUE 15
2 80 85 400.0 1050.0 60 TRUE TRUE TRUE 5
3 80 85 0.0 1050.0 21120 TRUE FALSE TRUE 60
4 80 85 0.0 1050.0 21120 TRUE FALSE TRUE 60
5 80 85 0.0 1050.0 900 FALSE FALSE TRUE 15
6 80 85 400.0 1050.0 60 TRUE TRUE TRUE 5
7 80 85 0.0 0.0 20 FALSE TRUE TRUE 5
8 80 85 0.0 0.0 21100 FALSE FALSE FALSE 60
g 80 85 0.0 0.0 21000 FALSE FALSE FALSE 60
10 80 85 0.0 0.0 120 FALSE FALSE TRUE 50

Figure A5.2 cycle settings table

56




1= ll@#j*l%i{@ e # na%%ﬁl

= PO o . |f”E”£| @, VES (PRG-ST)
33 DBSh W” 1= 144 ==01b3f0c0
avdmebass PRG] 0002 time_IeR_to_save = TE21s80ms - sELE R ~
[G) CONMECTION (F8) %Cma change_values_D5 = I j=9
CONNPROR (FUN) “ooos| par_save_blinker agi_line_nr=33
0005  bAllow_par_saving = IR0 agi_line_nr_FAN = 49
~[E] DE_COMM_v2[FE) 0008 DB_saving_time = T#58s800ms D8 line = 124
- @ ping_pang (FUN) 0007]  ajasaastja = 1200 Cyde._saving = 118
STE:NFSE;“ET[[T;] —%g :ﬁg‘i—:‘rgi; temp_Cycles_Count=1817
0010 - v
STR_LEN [FUN] _ooiof
530 Functian_Blacks 0011 IF Cycles_Count ﬂ.>tempfcvc\esfcnumTHEN Cycles_Count = 1817 ~
DEC_To_IEEE7S4 [FB) bAllow_par_saving := Panel_Start, .| Panel_Si Cycle_saving = 1; Cycle_saving = 118
1 @ DOT_BLINKER (FE] temp_Cycles_Count ;= Cycles_Count, temp_Cycles_Count=1817
1 (*Turns down chamber and test if tempreature exceeds setpoint(Default 75C)*) END_IF
IEE754_To_DECIFE) IF Jumo_Temp_Sensor = Jumo_Temp_Trip_High_Limit (*OR Jumo_Humd_Sensor = Jumo_Humd_Tri| Jumo_Temp_Sensor = 80.30402 Jumo_Tg
[E] INT_Changed (FE) TC_CONTROL := FALSE; TC_CONTROL FOR := 0 TO rows_in_table DO i=17
PrafDiive (FB] Panel_Start = FALSE; Panel_Start = [ StrArRowsA[[3] := WORD_TO_STRING(Cycle_Step_Count); strATRowsAfi[3] =3
Temp Volt_CYCLE [FB) TC_temperature_trip = TRUE; TC_temperature_trip = [ StrArRowsA [[[4] = UINT_TO_STRING(Cycle_saving); strARowsAfi[4] = 118"
-3 HumSens O00B|END_IF StrArrRowsA[l[8] = '$'Ocalas”; strArrRowsA[il[8] = "3'Ocalas”
3 END_FOR i=17
HTM_SENSOR [FE] -
@ HUM_My_TOLPAC (FUN] DB_saving_time := INT_TO_TIME(Cycle_Step_Saving_time[Cycle_Step_Count] * 1000 - ajasaastja); DB_saving_time = T#585800ms Cycle_St|
- par_save_blinker(ENABLE:=bAllow_par_saving, TIMELOW:=DB_saving_time, TIMEHIGH:=T#1mz= , OUT| bAllow_par_saving = DB_savil
. TEMP_MY_TO_DEGL [FUN] FORj:=1T08 DO i=9
"wi_DENORM [FUN] [ime_lefi_to_save =par_save_blinker CLOCK.PT - par_save_blinker CLOCKET; time_lef_to_save = T#21s60ms par_save FORI:=1T012D0 i=17
W_NORM [FUIN) VBS_smi[]lil.para_val := vaheaadress?; VBS_smif]].para_val = 141610195
=3 Main_Programs IF change_values_DB THEN change_values_DB = vaheaadress = vaheaadress + 2, vaheaadress = =01b3f0c0>
[ BOD1_MAIN_PRG [FRG)
- Edit_PZD_List [PRG] (*No need to save EUT data when power is not on®) VBS_smililil.para_scaled := DWORD_TO_REAL(VBS_smilillil.para_val);, | VBS_smillilpara_sc.. =9.66372
IF Cycle_Step_Count = 8 OR Cycle_Step_Count = 9 THEN Cyele_Step_Count=3 IFi=10THEN i=17
EUTOT [PRG)
@ ELITO2 [PRG) FORi:=0TO143BY 100 i=144 i=144 VBS_smi[]lil para_scaled = DWORD_TCO_REAL(VBS_smi[][].para_va| VBS_smi[][] para_sc.. =9.66372
EUITAR (FRG) strAmRowsA[i[12] =TRUE; strAmRowsA[i)[12] = FALSE" END_IF
EUITOL PRG) END_FOR i=144 END_FOR i=17
ELSE
EUTO3 [FRG) FORi:=0TO143BY 100 i=144 i=144 FORi:=1TO6D0 i=17
EUTOE [PRG) strArmRowsA [i|[12] :='FALSE; serrrRowsk[l][ﬂz] "FALSE" IFi<5THEN i=17
EUTO? [PRG] END_FOR i=14 VBS_smililli+ 12 ].para_scaled := Agilent_Readingslagi_line_nr.ROU| Agilent_Readingsfagi... =0
..... @ ETO8 [PRE) END_IF agi_line_nr .= agi_line_nr+ 1, agi_line_nr=33
ELSE
] JUMO_Controls (PRG) .
M ing [FREG (*Insert VBS here* VBS_sml[jll i + 12 |.para_scaled := Agilent_Readings{agi_line_nr_FAN].| Agilent Readings[agi.. =8.6
] Pf;";;:;?;fa[] ! VBs(); agi_line_nr_FAN = agi_line_nr_FAN +1: agi_line_nr_FAN = 48
! END_IF
Seale_FZDs [PRG) change_values_DB = FALSE; change_values_DE END_FOR i=17
- tatus_table (PRG) maailmamuutja := TRUE;
- TC_temperature_trip .= FALSE; FORi:=1T018 DO i=17
23 Stiing functions StrArrRowsA[DB_line][0] := Draiv{j]. Serial, strArrRowsA[DB_line][0] = "§'Global:
ADD_SRET_CHAR (FUN) 0035END_IF StrArRowsA[DB_line][1] == BYTE_TO_STRING(j); strArRowsA[DB_line][1] ="0°
CHR [FUN) StrArRowsA[DB_line][2] := DWORD_TO_STRING(Draiv{j] Cycle); strArrRowsA[DB_line][2] ="1817"
123 Siuif to Database IF deny_write THEN deny_write = StrArrRowsA [DB_line][5] := ping_pong(VBS_smi[1]il.para_name); strArrRowsA[DB_line][5] = '$Jumo
) ALARM_AND_STATUS_WORDS_TO_DE [PRG) deny_write := FALSE; deny_write = StiArRowsA[DB_line][6] = ping_pong(REAL_TO_STRING(VBS_smi[]li].pz| strArRowsA[DB_line][6] = "§'85.68"
= = - - FORi:=0 TOrows_in_table DO i=144 rows_in_| StrArrRowsA [DB_line][7] := ping_pong(REAL_TO_STRING(VBS_smi[j][7]1.p| strArrRowsA[DB_line][7] ="5'0.08"
r E"J;—‘SE”E“S [FRE]DE - strAmRowsA[i][12] =TRUE, strAmRowsA[l[12] = FALSE' DB_line := DB_ling + 1; DB_line = 144
: labal_values_ta | END_FOR i=144 END_FOR i=17
[E] PZDs_ta_DE (PRG) 0042|END_IF END_FOR i=9
A001_Read Aglent [PRG)
IF allow_global THEM allow_global =
allow_global == FALSE; allow_global = FORi:=1T016 DO i=17
FORi =144 TO 159 DO i=144 i=144 StrArRowsA[143 + i|[0].="FGlobal$",
strAmRowsA[i][12] :=FALSE’; StrATRowSA[[12] = ‘FALSE’ StrArRowsA[143 + i[[1]= 0"
END_FOR i=144 StrArrRowsA[143 + il[2]:= DWORD_TO_STRING(Cycles_Count); Cycles_Count = 1817
0049(END_IF StrArrRowsA[143 +il[5]:= ping_pong(Tester_data. aReadings_namelil); Tester_data.aReading... ="
StrArRowsA[143 + i][6].= ping_pong(REAL_TC_STRING(Tester_data.aReadin| Tester_data.aReading... =0
StrArrRowsA[143 + i][7].= ping_pong(REAL_TO_STRING(Tester_data.aReadin| Tester_data aReading... =0
= END_FOR i=17
Puus]_'t: Daata types| V\suallzatlu.E Resources] a > ||z 3 5 |l )

Figure A5.3 PLC Code example

57



Appendix 6 General tester programming structure

PLC Software
specification
for DRC tester's

ll C" mmunicatio w

Figure A6.1 General tester programming structure

58



Appendix 7 MSSQL_Execute

7.4.2 MSSQL_Execute
MS50L_EXECUTE
SIZEQF MEE0L _EXECUTE
arrByte—] TRUE—EHN DOMNE M5S30L_Execute Done
SELECT ™ FROM table’ _{STATEMENT ERRl M550 _Execute Error
ADR MNE ERNOL—MSE0L_Evecuts_Emo
arrhiyte_| DIATA SOL_ERNOL MSS0L_Execute_S0L_Emo
connechon_pointsr—CON » OHPACKET—MS501_Executs OK_Packet
RESULTSET|—MSS0L_Fxecute_ResuftSet

Executes the given MS5QL statement and returns the ResultSet{Query) or the
acknowledgment packet (NonQuery). A Query could be SELECT; a NonQuery could be
INSERT, DELETE and UPDATE etc. The FB will set the content of the received response
to the address DATA and the corresponding length. We can receive a maximum of 250

columns.

Block Data

Available as of PLC runtime system:

Included i library:

Block Type

V24x

Remark:

MSSQL_ACS500_V24.Lib

Function block with historical values.

Parameter
EN Input BOOL Enable function block by FALSE--TRUE
edge
STATEMENT Input STRING(300) Executable MSSQL statement
NB Input WORD MNumber of data to be read
DATA Input DWORD Address of the array where the response data
are stored
CON In'Out  POINTER Connection handle to the MS SQL server
DONE Output  BOOL Execution finished when output DONE =
TRUE
ERR Output  BOOL Error occurred during execution when output
ERR=TRUE
ERNO Output  WORD FError code
SQL ERNO Cutput  WORD SQL Error code. Please check here for more
information.
OKPACEET Output  MSSQL_OKPAC Response to a NonQuery statement (INSERT,
KET TYPE UPDATE, ..)
RESULTSET Cutput  MSSQL_RESUL  Response to a SELECT statement. Can be
TSET _TYPE read by MSSQL GETVALUE

Figure A7.1 MSSQL_Execute

59



Appendix 8 Server code structure

Oczlz data synchronzation sequence 2020 =
L‘j‘i TRUNCATE Raw Measurements table i"i Locsl EEV1S_Mszsurements

Oczlz data caleulation seguence "
Mezsurements difference compute n

Secondary table caleulztion saguence

Mir Max table caleulztion s=quence

ﬂa TRUNCATE Stage Min_Max table ﬁ-i COMPUTE Stage Min_Max table g‘-i INSERT into DBO Min_Max table

Faults tzble calculztion sequence

. Ocalz =ble calculation sequance

Figure A8.1 Server code structure

60



Appendix 9 SQL code

TRUNCATE TABLE [Ocala_2020].[Raw].[Measurements]
SELECT [Id]
,[Serial number] COLLATE Latinl_General CI_AS [Serial_number]
,[EUT_place]
,[Cycle]
,[Cycle_step]
,[Cycle_saving]
,[Parameter_name] COLLATE Latinl_General CI_AS [Parameter_name]
,[Parameter_value] COLLATE Latinl_General CI_AS [Parameter_value]
,[Time_stamp]
,[Active_faults] COLLATE Latinl_General CI_AS [Active_faults]
,[User_modified] COLLATE Latinl_General CI_AS [User_modified]
FROM [Ocala].[dbo].[Measurements]
WHERE Time_stamp > ?

MERGE [Ocala_2020].[dbo].[Measurements] AS TARGET

USING [Ocala_2020].[Raw].[Measurements] AS SOURCE

ON TARGET.[Id] = SOURCE.[Id]

WHEN NOT MATCHED BY TARGET

THEN INSERT ([Id], [Serial_number], [EUT_place], [Cycle], [Cycle_step], [Cycle_saving],
[Parameter_name], [Parameter_value],[Time_stamp], [Active_faults], [User_modified])
VALUES (SOURCE.[Id], SOURCE.[Serial_number], SOURCE.[EUT_place], SOURCE.[Cycle],
SOURCE.[Cycle_step], SOURCE.[Cycle_saving], SOURCE.[Parameter_name],

SOURCE. [Parameter_value],

SOURCE.[Time_stamp], SOURCE.[Active_faults], SOURCE.[User_modified]);

MERGE [Ocala_2020].[Stage].[Measurements] AS TARGET

USING [Ocala_2020].[Raw].[Measurements] AS SOURCE

ON TARGET.[Id] = SOURCE.[Id]

WHEN NOT MATCHED BY TARGET

THEN INSERT ([Id], [Serial_number], [EUT_place], [Cycle], [Cycle_step], [Cycle_saving],
[Parameter_name], [Parameter_value],[Time_stamp], [Active_faults], [User_modified])
VALUES (SOURCE.[Id], SOURCE.[Serial_number], SOURCE.[EUT_place], SOURCE.[Cycle],
SOURCE.[Cycle_step], SOURCE.[Cycle_saving], SOURCE.[Parameter_name],

SOURCE . [Parameter_value],

SOURCE.[Time_stamp], SOURCE.[Active_faults], SOURCE.[User_modified]);

3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 5k >k 3k 3k 3k 3k 3k >k 3k 3k 3k 5k 3k 3k 3k 5k 3k 5k >k 3k 5k >k 3k 5k 5k 5k 3k %k >k 3k 3k %k 3k 3k 5k >k 3k 3k %k 5k 3k 3k 5k 3k %k >k 3k 3k >k 3k %k k %k k %k x

TRUNCATE TABLE [Ocala_2020].[Stage].[Min_Max]

IF OBJECT_ID('tempdb..#Min_Max_1 Ocala') IS NOT NULL DROP TABLE #Min_Max_1_Ocala
IF OBJECT_ID( 'tempdb..#Min_Max_2 Ocala') IS NOT NULL DROP TABLE #Min_Max_2_Ocala

-- Stage 1

SELECT [Serial_number],
[Cycle],
[Parameter_name]

61



INTO #Min_Max_1 Ocala
FROM [Ocala_2020].[Stage].[Measurements]
WHERE [Serial_number] <> "'
AND [Time_stamp] > ?
GROUP BY Cycle, Parameter_name, Serial_number

-- Stage 2
SELECT [MM1].[Serial_number],

MAX([M1].[EUT_place]) [EUT_place],

[MM1].[Cycle],

[MM1].[Parameter_name],

MIN([M1].[Time_stamp]) [Start],

MAX([M1].[Time_stamp]) [End]

INTO #Min_Max_2_Ocala
FROM #Min_Max_1 Ocala [MM1]
INNER JOIN [Ocala_2020].[Stage].[Measurements] [M1] ON [MM1].[Serial_number] =
[M1].[Serial_number]
AND [MM1].[Cycle] = [M1].[Cycle] AND [MM1].[Parameter_name] = [M1].[Parameter_name]
GROUP BY [MM1].[Serial_number], [MM1].[Cycle], [MM1].[Parameter_name]

-- Stage 3
INSERT INTO [Ocala_2020].[Stage].[Min_Max]
SELECT [MM2].[Serial_number]
,[MM2].[EUT_place]
,[MM2] . [Cycle]
,[MM2] . [Parameter_name]
> (
SELECT MIN(CAST([Parameter_value] AS DECIMAL(18,1)))
FROM [Ocala_2020].[Stage].[Measurements]
where Serial_number = [MM2].[Serial_number] and Parameter_name
[MM2].[Parameter_name] and Cycle = [MM2].Cycle
AND TRY_CAST([Parameter_value] AS DECIMAL(18,1)) IS NOT NULL
) [CalculatedMinAbsolute]

> (
SELECT MAX(CAST([Parameter_value] AS DECIMAL(18,1)))

FROM [Ocala_2020].[Stage].[Measurements]
where Serial_number = [MM2].[Serial_number] and Parameter_name =
[MM2].[Parameter_name] and Cycle = [MM2].Cycle
AND TRY_CAST([Parameter_value] AS DECIMAL(18,1)) IS NOT NULL
) [CalculatedMaxAbsolute]
,CAST([MM2].[Start] AS DATETIME2(®@)) [Cycle_start_time]
,CAST([MM2].[End] AS DATETIME2(@)) [Cycle_end_time]
,CAST([MM2].[Start] AS DATETIME2) [Cycle_start_time_Sort]
FROM #Min_Max_2_Ocala [MM2]
ORDER BY [MM2].[Start] DESC

IF OBJECT_ID('tempdb..#Min_Max_1") IS NOT NULL DROP TABLE #Min_Max_1_Ocala
IF OBJECT_ID('tempdb..#Min_Max_2"') IS NOT NULL DROP TABLE #Min_Max_2_Ocala

MERGE [Ocala_2020].[dbo].[Min_Max] AS TARGET
USING
(SELECT TOP (100) PERCENT [Serial_number]
,[EUT_place]
»[Cycle]
, [Parameter_name]
,[Cycle_start_time]

62



,[Cycle_end_time]

,[Min_value]

, [Max_value]
FROM [Ocala_2020].[Stage].[Min_Max] ORDER BY [Cycle_start_time_Sort] ASC) AS SOURCE
ON (TARGET.[Serial_number] = SOURCE.[Serial_number] AND TARGET.[EUT_place] =
SOURCE.[EUT_place] AND TARGET.[Cycle] = SOURCE.[Cycle] AND TARGET.[Parameter_name] =
SOURCE . [Parameter_name])
--When records are matched, update the records if there is any change
WHEN MATCHED AND TARGET.[Min_value] <> SOURCE.[Min_value] OR TARGET.[Max_value] <>
SOURCE . [Max_value]
OR TARGET.[Cycle_start_time] <> SOURCE.[Cycle_start_time] OR TARGET.[Cycle_end_time] <>
SOURCE. [Cycle_end_time]
THEN UPDATE SET TARGET.[Min_value] = SOURCE.[Min_value], TARGET.[Max_value] =
SOURCE. [Max_value] ,
TARGET. [Cycle_start_time] = SOURCE.[Cycle_start_time] , TARGET.[Cycle_end_time] =
SOURCE. [Cycle_end_time]

--When no records are matched, insert the incoming records from source table to target
table

WHEN NOT MATCHED BY TARGET

THEN INSERT ([Serial_number], [EUT_place], [Cycle], [Parameter_name],
[Cycle_start_time], [Cycle_end_time], [Min_value], [Max_value])

VALUES (SOURCE.[Serial_number], SOURCE.[EUT_place], SOURCE.[Cycle],

SOURCE . [Parameter_name], SOURCE.[Cycle_start_time], SOURCE.[Cycle_end_time],

SOURCE. [Min_value], SOURCE.[Max_value]);

3k 3k 3k 3k >k 3k 3k %k 3k 3k 3k 3k 3k %k >k 3k 3k >k 3k 3k %k 3k 3k 3k 3k 3k %k >k 3k 5k %k 3k 3k >k 3k 3k %k 3k 3k 3k >k 3k 3k %k 3k 3k 3k 5k >k 3k 3k %k 5k 3k 3k 3k 3k %k >k 3k 3k >k 3k 3k %k >k 3k >k >k 3k 5k >k 3k 3k %k 3k %k %k 3k 3k %k %k %k k k%

TRUNCATE TABLE [Ocala_2020].[Stage].[Faults]

--There should now somewhere be a TRUNCATE TABLE [Ocala_2020].[Stage].[ActiveSn] sql
line after Stage truncate

INSERT INTO [Ocala_2020].[Stage].[ActiveSn]

SELECT DISTINCT [Serial_number]

FROM [Ocala_2020].[dbo].[Measurements]

WHERE [Serial_number] <> 'Global' AND [Serial_number] <> "'

AND CAST([Time_stamp] AS DATE) >= ?

INSERT INTO [Ocala_2020].[Stage].[FaultsSourceData]
SELECT [Id], [Serial_number], [EUT_place], [Active_faults], [Cycle], [Cycle_step],
[Time_stamp],
[Previous_fault] = LAG([Active_faults]) OVER (ORDER BY [Serial_number], [Id])
FROM [Ocala_2020].[dbo].[Measurements]
WHERE [Serial_number] IN (
SELECT [Serial_number] FROM [Ocala_2020].[Stage].[ActiveSn]
) AND [Parameter_name] LIKE 'Status word%'

INSERT INTO [Ocala_2020].[Stage].[Faults]

select A.Serial_number, A.EUT_place, A.Cycle, A.Cycle_step as
FaultOccurrence_Cycle_step, MIN(B.Cycle step) as FaultDisappearance_Cycle_step,
A.Active_faults, A.Time_stamp as FaultStart, MIN(B.Time_stamp) as FaultEnd
from [Stage].[FaultsSourceData] A, [Stage].[FaultsSourceData] B

where A.Active_faults <> A.Previous_fault and A.Active_faults <> '@’

and B.Active_faults <> B.Previous_fault and B.Active_faults = '0’

and A.Serial_number = B.Serial_number

and A.Time_stamp < B.Time_stamp

group by A.Time_stamp, A.Id, A.Serial_number, A.EUT_place, A.Active_faults, A.Cycle,
A.Cycle_step

63



ORDER BY A.Time_stamp ASC

EXEC [dbo].[Ocala_New_Fault_Notification]

--Notification procedure

USE [Ocala_2020]

GO

/¥*¥*¥*¥** Object: StoredProcedure [dbo].[Ocala_New_Fault_ Notification]
SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

ALTER PROCEDURE [dbo].[Ocala_New_Fault_Notification]

AS

BEGIN
-- SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ON;

-- Insert statements for procedure here
IF (SELECT IIF((SELECT COUNT([Serial_number]) FROM
[Ocala_2020].[Stage].[Faults]) = (SELECT COUNT([Serial_number]) FROM
[Ocala_2020].[dbo].[Faults]

WHERE
CHECKSUM([Serial_number], [EUT_place], [FaultOccurrence_Cycle step],[Active_faults], [Faul
tStart]) IN

(SELECT
CHECKSUM([Serial_number], [EUT_place], [FaultOccurrence_Cycle _step], [Active_faults], [Faul
tStart]) FROM [Ocala_2020].[Stage].[Faults])), @, 1) [IsNewFault]) =1

BEGIN
DECLARE @xml NVARCHAR (MAX)
DECLARE @body NVARCHAR(MAX)

SET @xml = CAST ( ( Select td = [Serial_number],'’,
td = [EUT_Place],'’,
td [Cycle],'",
td [FaultOccurrence_Cycle_step],'’,
td = [Active_faults], '',
td [FaultStart]
FROM [Ocala_2020].[Stage].[Faults]

where
CONCAT([Serial_number], [EUT_place], [FaultOccurrence_Cycle_step],[Active_faults], [FaultS
tart]) NOT IN

(SELECT
CONCAT([Serial_number], [EUT_place], [FaultOccurrence_Cycle step],[Active_faults], [FaultS
tart]) FROM [Ocala_2020].[dbo].[Faults])

ORDER BY [FaultStart] DESC

FOR XML PATH('tr'), TYPE
) AS NVARCHAR(MAX))

SET @body ='<html><body><H3>0cala - New fault found</H3>

<table border = 1>
<tr>

64



<th>Serial_number</th><th>EUT_Place</th><th>Cycle</th><th>FaultOccurrence_Cycle_
step</th><th>Active faults</th><th>FaultStart</th></tr>"

SET @body = @body + @xml +'</table></body></html>"

EXEC msdb.dbo.sp_send_dbmail
@profile_name = 'V15_LVDTESTER_SQL@xxx"',
@recipients = 'martin.onton@xxx',
@copy_recipients = 'voldemar.balder@xxx',
@Execute_query_database = 'Ocala_2020',
@subject = 'New fault row found in [Ocala_2020].[dbo].[Faults]',
@body = @body,
@body_format ='HTML'

MERGE [Ocala_2020].[dbo].[Faults] AS TARGET
USING (SELECT TOP 100 PERCENT [Serial_number]

,[EUT_place]

»[Cycle]

,[FaultOccurrence_Cycle_step]

,[FaultDisappearance_Cycle_step]

,[Active_faults]

,[FaultStart]

,[FaultEnd]

FROM [Ocala_2020].[Stage].[Faults]
ORDER BY [FaultStart] ASC) AS SOURCE

ON (TARGET.[Serial_number] = SOURCE.[Serial_number] AND TARGET.[Active_faults] =
SOURCE. [Active_faults] AND TARGET.[Cycle] = SOURCE.[Cycle]
AND TARGET.[FaultOccurrence_Cycle_step] = SOURCE.[FaultOccurrence_Cycle_step] AND
TARGET. [FaultStart] = SOURCE.[FaultStart])
--When records are matched, update the records if there is any change
WHEN MATCHED AND TARGET.[FaultStart] <> SOURCE.[FaultStart] OR TARGET.[FaultEnd] <>
SOURCE . [FaultEnd]
THEN UPDATE SET TARGET.[FaultStart] = SOURCE.[FaultStart], TARGET.[FaultEnd] =
SOURCE . [FaultEnd]
--When no records are matched, insert the incoming records from source table to target
table
WHEN NOT MATCHED BY TARGET
THEN INSERT ([Serial_number], EUT_place, [Cycle], [FaultOccurrence_Cycle_step],
[FaultDisappearance_Cycle_step], [Active_faults], [FaultStart], [FaultEnd])
VALUES (SOURCE.[Serial_number], SOURCE.[EUT_place], SOURCE.[Cycle],
source.[FaultOccurrence_Cycle_step], SOURCE.[FaultDisappearance_Cycle_step],
SOURCE.[Active_faults], SOURCE.[FaultStart], SOURCE.[FaultEnd]);

3k 3k 3k >k >k 5k 3k >k 5k 3k >k 5k 5k %k >k 5k >k >k 5k 3k %k >k 3k >k >k 5k %k >k 5k >k >k >k >k >k 5k >k %k >k >k >k >k 5k >k >k >k >k >k >k 5k >k 3k >k >k 3k >k >k >k %k %k 5k >k %k >k >k >k >k 5k >k >k >k >k >k >k >k %k > >k %k > >k k *k >k %k *k *k

TRUNCATE TABLE [Ocala_2020].[Raw].[Summary]

MERGE [Ocala_2020].[Stage].[Summary] AS TARGET
USING (SELECT TOP 100 PERCENT [Id]
,[Serial_number]
,[EUT_place]
,[Type]

65



,[Frame_size]

,[Project]

,[Target_cycles]

,[Added_on]

FROM [Ocala_2020].[Raw].[Summary]) AS SOURCE

ON (TARGET.[Id] = SOURCE.[Id] AND TARGET.[Serial_number] = SOURCE.[Serial_number] AND
TARGET. [EUT_place] = SOURCE.[EUT_place])
--When records are matched, update the records if there is any change
WHEN MATCHED AND TARGET.[Type] <> SOURCE.[Type] OR TARGET.[Frame_size] <>
SOURCE.[Frame_size] OR TARGET.[Project] <> SOURCE.[Project] OR TARGET.[Target_cycles]
<> SOURCE.[Target_cycles] OR TARGET.[Added_on] <> SOURCE.[Added_on]
THEN UPDATE SET TARGET.[Type] = SOURCE.[Type], TARGET.[Frame_size] =
SOURCE.[Frame_size] , TARGET.[Project] = SOURCE.[Project] , TARGET.[Target_cycles] =
SOURCE. [Target_cycles] , TARGET.[Added_on] = SOURCE.[Added_on]
--When no records are matched, insert the incoming records from source table to target
table
WHEN NOT MATCHED BY TARGET
THEN INSERT ([Id], [Serial_number], [EUT_place], [Type], [Frame_size], [Project],
[Target_cycles], [Added_on]) VALUES (SOURCE.[Id], SOURCE.[Serial_number],
SOURCE. [EUT_place], source.[Type], SOURCE.[Frame_size], SOURCE.[Project],
SOURCE. [Target_cycles], SOURCE.[Added_on]);

MERGE [Ocala_2020].[dbo].[Summary] AS TARGET
USING (SELECT TOP 100 PERCENT [Id]

,[Serial_number]

,[EUT_place]

> [Type]

,[Frame_size]

,[Project]

,[Target_cycles]

,[Added_on]

FROM [Ocala_2020].[Raw].[Summary]) AS SOURCE

ON (TARGET.[Id] = SOURCE.[Id] AND TARGET.[Serial_number] = SOURCE.[Serial_number] AND
TARGET. [EUT_place] = SOURCE.[EUT_place])
--When records are matched, update the records if there is any change
WHEN MATCHED AND TARGET.[Type] <> SOURCE.[Type] OR TARGET.[Frame_size] <>
SOURCE. [Frame_size] OR TARGET.[Project] <> SOURCE.[Project] OR TARGET.[Target_cycles]
<> SOURCE.[Target_cycles] OR TARGET.[Added_on] <> SOURCE.[Added_on]
THEN UPDATE SET TARGET.[Type] = SOURCE.[Type], TARGET.[Frame_size] =
SOURCE. [Frame_size] , TARGET.[Project] = SOURCE.[Project] , TARGET.[Target_cycles] =
SOURCE. [Target_cycles] , TARGET.[Added_on] = SOURCE.[Added_on]
--When no records are matched, insert the incoming records from source table to target
table
WHEN NOT MATCHED BY TARGET
THEN INSERT ([Id], [Serial_number], [EUT_place], [Type], [Frame_size], [Project],
[Target_cycles], [Added_on]) VALUES (SOURCE.[Id], SOURCE.[Serial_number],
SOURCE.[EUT_place], source.[Type], SOURCE.[Frame_size], SOURCE.[Project],
SOURCE. [Target_cycles], SOURCE.[Added_on]);
IF OBJECT_ID('tempdb..#Summary_ Latest_SN') IS NOT NULL DROP TABLE #Summary Latest_SN
IF OBJECT_ID('tempdb..#Measurement_Latest_SN_ID') IS NOT NULL DROP TABLE
#Measurement_Latest_SN_ID
IF OBJECT_ID('tempdb..#Summary_Update') IS NOT NULL DROP TABLE #Summary_Update

TRUNCATE TABLE [Stage].[Summary_Latest_SN]

INSERT INTO [Stage].[Summary_Latest_SN]
SELECT DISTINCT (

66



SELECT TOP 1 [Serial_number] FROM [Stage].[Summary] [S2] WHERE [S].[EUT_place] =
[S2].[EUT_place]

ORDER BY [Id] DESC

) [Serial_number]
FROM [Ocala_2020].[Stage].[Summary] [S]

SELECT [M2].Serial number, MAX([M2].Id) [LastId]
into #Measurement_Latest_SN_ID

FROM [Ocala_2020].[dbo].[Measurements] [M2]
group by [M2].Serial_number

SELECT [SLSN].[Serial_number]

, (SELECT MAX([Cycle]) FROM [Ocala_2020].[dbo].[Measurements] [M1] WHERE
[SLSN].[Serial number] = [M1].[Serial_number]) [Cycles_done]

, (SELECT [M2].[Active_faults] FROM [Ocala_2020].[dbo].[Measurements] [M2] WHERE
[M2].[Id] = (select [mid].[LastId] from #Measurement_Latest SN_ID [MID] where
[SLSN].[Serial_number] = [MID].Serial_number)) [Active_Fault]

,IIF((SELECT CONVERT(int, convert(real, (SELECT TOP 1 [Active_faults] FROM
[Ocala_2020].[dbo].[Faults] [F1] where [SLSN].[Serial_number] = [F1].[Serial_number]
ORDER BY [Id] DESC)))) IS NULL, @, (SELECT CONVERT(int, convert(real, (SELECT TOP 1
[Active_faults] FROM [Ocala_2020].[dbo].[Faults] [F1] where [SLSN].[Serial_number] =
[F1].[Serial_number] ORDER BY [Id] DESC))))) [Last_Fault],
[TestStart].[Test_start],

[TestEnd].[Test_end],

[FaultCount].[Number_of_faults],

[BadCycleCount].[Bad_cycles],

[Simulated_lifetime] = --CODE removed, it is a secret

INTO #Summary_Update

FROM [Stage].[Summary_Latest_SN] [SLSN]

CROSS APPLY [dbo].[TestStart]([SLSN].[Serial_number]) [TestStart]

CROSS APPLY [dbo].[TestEnd]([SLSN].[Serial_number]) [TestEnd]

CROSS APPLY [dbo].[FaultCount]([SLSN].[Serial_number]) [FaultCount]

CROSS APPLY [dbo].[BadCycleCount]([SLSN].[Serial_number]) [BadCycleCount]

UPDATE #Summary_Update SET [Cycles_done] = IIF([Cycles_done] IS NULL, O,
[Cycles_done]),

[Active_Fault] = IIF([Active_Fault] IS NULL, @, [Active_Fault]),
[Simulated_lifetime] = IIF([Simulated_lifetime] IS NULL, @, [Simulated_lifetime])

MERGE [Ocala_2020].[dbo].[Summary] AS TARGET
USING
(SELECT TOP (100) PERCENT [Serial_number]
,[Cycles_done]
,[Active_Fault]
,[Last_Fault]
,[Test_start]
,[Test_end]
--,[EUT_in_use] [EUT_Active]
, [Number_of_faults]
,[Bad_cycles]
--,[Good_cycles]
,[Simulated_lifetime]
FROM #Summary_Update) AS SOURCE
ON (SOURCE.[Serial_number] LIKE TARGET.[Serial_number])
--When records are matched, update the records if there is any change
WHEN MATCHED

67



THEN UPDATE SET TARGET.[Cycles_done] = SOURCE.[Cycles_done], TARGET.[Active_Fault] =
SOURCE.[Active_Fault] , TARGET.[Last_Fault] = SOURCE.[Last_Fault] , TARGET.[Test_start]
= SOURCE.[Test_start] , TARGET.[Test_end] = SOURCE.[Test_end] ,

TARGET. [Number_of_faults] = SOURCE.[Number_of_faults] , TARGET.[Bad_cycles] =
SOURCE.[Bad_cycles], TARGET.[Simulated_years] = SOURCE.[Simulated_lifetime];

MERGE [Ocala_2020].[Stage].[Summary] AS TARGET
USING
(SELECT TOP (100) PERCENT [Serial_number]
,[Cycles_done]
,[Active_Fault]
,[Last_Fault]
,[Test_start]
,[Test_end]
--,[EUT_in_use] [EUT_Active]
, [Number_of_faults]
,[Bad_cycles]
--,[Good_cycles]
,[Simulated_lifetime]
FROM #Summary_Update) AS SOURCE
ON (SOURCE.[Serial_number] LIKE TARGET.[Serial_number])
--When records are matched, update the records if there is any change
WHEN MATCHED
THEN UPDATE SET TARGET.[Cycles done] = SOURCE.[Cycles_done], TARGET.[Active Fault] =
SOURCE.[Active _Fault] , TARGET.[Last_Fault] = SOURCE.[Last_Fault] , TARGET.[Test_start]
= SOURCE.[Test_start] , TARGET.[Test_end] = SOURCE.[Test_end] ,
TARGET. [Number_of_faults] = SOURCE.[Number_of_faults] , TARGET.[Bad_cycles] =
SOURCE.[Bad_cycles] , TARGET.[Simulated_years] = SOURCE.[Simulated_lifetime];

IF OBJECT ID('tempdb..#Summary Latest SN') IS NOT NULL DROP TABLE #Summary Latest_SN
IF OBJECT ID('tempdb..#Summary Update') IS NOT NULL DROP TABLE #Summary_ Update

68



