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Chapter 1

Introduction

Information is the resolution
of uncertainty.

Claude Shannon

A cyber-physical system is a combination of computational, communication
and physical processes, integrated into the physical environment of the sys-
tem’s operation domain [6,137]. The defining characteristic of cyber-physical
systems (CPS) lies in their interaction with their environment and objects
(and/or subjects) in that environment, as opposed to computer systems,
which only provide a service and can only be acted upon [123]. CPS are pri-
marily feedback systems, consisting of many distributed interconnected com-
ponents, which gather information about the state of the environment and
the objects of interaction in order to determine the system’s response [64,88].
The situation assessment is performed based on either the information ac-
quired by the sensor components, or explicit information provided by an
operator (if one exists) [88].

Accurate situation assessment is crucial for system state and course of ac-
tion establishment, and also for satisfying the adaptive and predictive prop-
erties of CPS [63]. Real-time operation is another important requirement of
CPS [83,134]. Therefore, situation assessment must be performed in a timely
manner in order to ensure high responsiveness of the system [139]. Taking
into consideration that the components of modern CPS are typically imple-
mented on embedded hardware with limited computational resources, the
methods of information and signal processing must be designed specifically
to meet both computation time and complexity restrictions [80].

This thesis summarizes the research experience and the principal results
achieved by the author in the field of signal processing and information in-
terpretation methods for situation assessment in CPS. The signal processing
methods presented in the thesis are applicable to band-limited signals, such
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as acoustic or vibration (acceleration) signals. The majority of the consid-
ered methods are applied to acoustic signal analysis. The main considered
tasks for situation assessment consist of detection, property identification
and trajectory estimation of objects residing in the environment governed by
a CPS. In regard to detection and identification, the thesis presents several
single-sensor solutions of signal time and frequency domain analysis, feature
extraction and pattern recognition [14,15,18,19]. Multi-sensor solutions con-
sist of acoustic localization [10, 12, 21] and object trajectory estimation [11].
Several application specific data fusion methods are also presented [9, 18].
System state and action determination in response to the assessed situation
are not discussed in the thesis.

The operation domains of the considered CPS consist of both indoor
and open environments, where the independent sensor components are dis-
tributed to be able to observe an area, where some process takes place. The
sensor components then perform situation assessment of the observed area,
produce local assessments independently and transmit their gathered infor-
mation through a Wireless Sensor Network (WSN) to information aggre-
gation components, where a global situation assessment is made through
data fusion [64, 77]. The thesis handles this system structure in a more ab-
stract manner during the examination of the considered signal processing
and information analysis methods, and presents specific system architecture
and sensor implementation examples for several applications, such as vehicle
identification and tracking [18], industrial machinery operation state moni-
toring [14,19] and shooter acoustic localization [9, 22].

1.1 State of the Art

The term “cyber-physical system” emerged and became used in the past
decade, describing systems that integrate computer systems with the physi-
cal processes of the real world [6,137]. The term is closely situated with the
Internet of Things [151], Industry 4.0 [73], Machine-to-Machine (M2M) [162],
and several others [63]. All these concepts reflect on a vision of deep con-
nection between our physical world and the information world. However,
while the Internet of Things is concerned with interconnection and integra-
tion between computer systems and smart components (e.g., appliances with
computational and network capabilities), and Industry 4.0 is concerned with
industrial applications, CPS describe the foundation of physical-computer
world interaction. The concept of CPS utilizes such paradigms as ubiqui-
tous computing and non-deterministic modeling to account for high levels of
complexity and uncertainty of the physical world [64,134,140].

The history of computer systems integrated with physical processes spans
much further back than the inception of the modern vision of CPS. Au-
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tomation and process control has long become an integral part of industry
and everyday life. Advances made in manufacturing and robotics, energy
production and logistics help to increase productivity while reducing pro-
cess latency and cost [110]. Modern health care instruments with integrated
computer components increase the efficiency of patient diagnosis, health state
monitoring and surgery [96]. Advanced munitions, like guided missiles and
autonomous drones rapidly change modern warfare [131]. Although impres-
sive, computer automation of the past years relies on feedback control loops,
where specific information about the controlled process is gathered and the
control influence is calculated in a deterministic manner in order to achieve
the desired dynamic state of the process. These system usually have a narrow
field of operation, greatly depend on the preset bounds and usually require
supervision of a human operator. Modern CPS, on the other hand, tend to
a higher level of autonomy, where the computer components possess greater
intelligence, adaptive and predictive properties, and are able to perform more
complex decision making [78, 106, 139]. As a result, the scope of operation
of any given modern CPS is far wider, and the intervention of the human
operator is less critical, if at all required [88,140].

Research and development of CPS for various applications has been gain-
ing pace in the past decade [63]. The application range of CPS covers almost
all aspects of modern life. CPS for smart industry organize the production
process and integrate it with enterprise to lower costs of production, logistics
and management [42, 135]. The above mentioned Industry 4.0 concept [73]
serves a good example of CPS applications in industry. Emergency response
and disaster management systems built on CPS are intended to reduce the
response time and optimize resource management for disaster situation han-
dling [54,139]. Critical infrastructure CPS include Smart Grids [104], which
are developed for the Smart City architecture [99], are intended to optimize
the urban infrastructures by reducing energy consumption of buildings and
in the city streets (e.g., by applying the smart lighting technology) [53], opti-
mizing city traffic, etc. Building energy consumption is reduced by applying
building automation CPS with smart utility networks [38, 60], which are
integrated with the Smart Grids [53]. Intelligent traffic management com-
prises adaptive traffic management by traffic light and driveway load control,
smart vehicles and the vehicle-to-vehicle, vehicle-to-pedestrian and vehicle-
to-infrastructure interaction, built on wireless, cellular and satellite compo-
nents [63, 122]. CPS incorporated in air transportation systems aid with
airspace control and regulation, and air traffic control at airports [31]. The
applications of CPS in health and medicine include advanced home care and
assisted living possibilities, autonomous heath monitoring, smart prescription
systems, and smart operating rooms [7, 65, 85]. The military applications of
CPS include autonomous Intelligence Surveillance and Reconnaissance (ISR)
systems for threat detection, identification of friend or foe and other tasks of
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battlefield situation reporting and agile resource management [66,88,111].
To support higher levels of intelligence of CPS, they must possess high

levels of situation awareness [137]. Situation awareness is provided through
advanced sensing, information aggregation and fusion [64]. In contrast to
classical computer automation systems, which acquire information of strictly
specified modalities and only from certain measurement points, CPS employ
multi-modal data acquisition from distributed sensor components in order
to assess the state of the observed object, process or environment as fully
as possible [88,94]. Increased situation awareness also implies knowledge ac-
cumulation and knowledge base creation to enable predictive and proactive
behavior [64, 88]. The rapid development of embedded computer systems
has paved the way for ever more compact and computationally powerful
smart sensors, which constitute the information acquisition and situation as-
sessment components of modern CPS [80, 84]. The state of the art system
architectures are composed of decentralized standalone smart sensors, in-
terconnected through ad-hoc WSN, performing cooperative situation assess-
ment [64, 152]. Multi-modal signals are acquired from many measurement
points by sensors with separate or overlapping Fields of View (FOV), signals
are aggregated through signal fusion or processed separately to extract in-
formation and perform situation assessment through information fusion [88].
Sensor types vary from classical binary sensors (i.e., sensors with two discrete
states), acceleration, pressure, magnetic, infrared, chemical, etc., to more so-
phisticated, e.g., video, acoustic, radio frequency, hyperspectral, etc. Sensors
with narrow FOV, e.g., acceleration and magnetic, provide highly localized
information, whereas sensors with wide FOV, e.g., video and acoustic, allow
for large area coverage [94]. Advanced methods of signal processing and pat-
tern recognition methods allow to expand beyond the typical applications of
these kinds of sensors [78, 106]. For example, video and hyperspectral sen-
sors are used in a wide range of applications from face recognition [86], living
tissue analysis [43], ground [70] and aerial [109] traffic monitoring, to multi-
layer ground mapping [143] and object identification [40,93] from aerial and
satellite images. Applications of acoustic sensors span from speech recog-
nition [154] to engine diagnostics [67], underwater craft detection [141] and
sniper positioning [4].

1.2 Motivation and Problem Statement

The main problems situated with situation assessment in CPS arise from
their distributed structure [156]. If a large number of components is inter-
connected through a common fabric of WSN, large data quantities cannot
be transmitted between components, as this can overload the network and
disrupt real-time operation [107,152]. Therefore, raw data transmission is sel-
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dom possible, and signal processing and initial information extraction must
be performed locally. Inter-node synchronization also poses a problem in
WSN and is unreliable in a dynamic ad-hoc topology [107]. Furthermore,
synchronous transmission creates a bottleneck on the information aggrega-
tion nodes, which can also disrupt real-time operation and cause information
loss. Thus signal processing and data fusion techniques for distributed CPS
should not require precise synchronization in order to increase system relia-
bility. Soft synchronization or node clock drift estimation is still needed for
the system to be able to distinguish between observed events and changes in
the observed process dynamics, however, strict and continuous synchronicity
should not be implied.

Signal processing and data fusion methods also need to be inexpensive
in terms of computational resources and power consumption [80]. As sev-
eral CPS components may be implemented on a single hardware platform,
the signal processing algorithms need to be computationally lightweight to
allow for real-time processing, while allocating enough resources for other
functions, like communication management. In terms of data fusion method
implementation, the solutions should not imply fixed size structures, where
the number of smart sensors (WSN nodes) is constant [107]. For many appli-
cations the standalone components are deemed disposable, as the strength of
distributed CPS comes from the number and variety of smart sensors and not
from any sensor in particular. Therefore, it can be implied that a sensor will
cease to exist or come out of operation, e.g., due to loss of communication,
and other sensors may be added to the WSN at any given time.

In state of the art distributed CPS video and image analysis is the most
popular choice for wide area coverage [94,140]. Numerous algorithms for the
applications of computer vision and robotics are being adopted for automated
monitoring and object recognition [64, 106]. The main topic of this thesis is
situated with the development of signal processing methods for acoustic sig-
nal analysis, which can increase the robustness of video and other information
based situation assessment. Acoustic signal acquisition does not require suf-
ficient luminosity or direct line-of-sight (due to acoustic diffraction) of the
observed objects. Furthermore, high definition image processing requires sig-
nificantly more resources than single dimension signals. Although acoustic
signals are more prone to noise pollution, especially in open environments,
false detection rate can be reduced if information of other modalities is used
in conjunction with acoustic information. In this regard acoustic sensors
complement video sensors well in situations, when objects are indistinguish-
able visually, e.g., due to camouflage, but emit sound. Camouflaged military
vehicles serve a good example of this situation [150]. On the other hand, if
the FOV of a video sensor is blocked by the observed object, acoustic signals
may provide information on the situation behind this object. Several signal
analysis methods discussed in this thesis may also be applied to other types of
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band-limited signals, e.g., vibration. The thesis handles several approaches
of band-limited signal analysis, feature extraction and pattern recognition
implementable on embedded hardware of smart sensors.

Multi-sensor acoustic systems provide additional possibilities to detec-
tion and identification of acoustic processes performed by single-sensor so-
lutions [28]. Microphone arrays allow for acoustic localization and noise
attenuation via beamforming [28, 33]. Both procedures are based on the
analysis of phase delays between signal channels to estimate the Time Dif-
ference of Arrival (TDOA) and Direction of Arrival (DOA) of the acoustic
wavefronts [28]. If a microphone array is implemented on a single physi-
cal device, beamforming is performed on the same device and no raw data
transmission is required. Acoustic localization, on the other hand, operates
better if the microphones are well separated spatially. Thus they cannot be
implemented on a single compact device, and acoustic localization thus poses
a problem for distributed CPS. No well established methods for distributed
acoustic localization currently exist. The thesis proposes an asynchronous
method of approximate localization and trajectory estimation in a WSN of
multi-channel smart sensors.

1.3 Author’s Contributions

The main contribution of the author of the thesis lies in the development of
single and multi-channel signal processing procedures of acoustic and other
band-limited signals for implementation in distributed systems. The contri-
bution comprises three consecutive parts:

• Single channel : Study of band-limited signal processing and feature
extraction techniques in the time and frequency domain. Feature set
specification for non-harmonic signals with highly spread spectral den-
sities. Application specific pattern recognition techniques for stationary
and non-stationary process state estimation and their implementation.

• Multi-channel : Development and implementation of microphone array
smart sensors, one- and two-dimensional DOA estimation techniques.
Proposal of a computationally lightweight distributed localization pro-
cedure, which can serve as an initial search region bound for precise
synchronous localization or an approximate localization approach for
asynchronous distributed sensors. Development of a data fusion tech-
nique for localized object trajectory estimation and prediction based
on localization data and Kalman filter estimates.

• Applications: Industrial machinery operation state monitoring and ab-
normal state detection by means of acoustic noise emitting region esti-
mation and acoustic pattern analysis. Development and implementa-
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tion of a multistage procedure of acoustic signal analysis and pattern
recognition for vehicle detection and identification. Object detection
and movement speed estimation by means of passive infrared sensor sig-
nal analysis. Shooter position estimation using shot detection and shot
acoustic component identification techniques combined with a novel
data fusion approach of shot trajectory estimation and shooter local-
ization.

All studied and proposed methods are verified on real-life signals acquired
during in situ experiments by or with participation of the author of the
thesis. Smart sensor embedded hardware implementations are proven to be
able to operate in real-time.

1.4 Thesis Outline

Each chapter begins with a summary of the research problems discussed and
ends with concluding remarks on the theoretical and practical results ob-
tained in the corresponding chapter. The last chapter of the thesis comprises
general concluding comments and discusses prospects of future research. The
summary of each chapter is provided below.

Chapter 2

This chapter considers the preliminaries of time and frequency domain sig-
nal analysis, signal filtering, feature extraction techniques and classification
basics for pattern recognition, and discusses the problems of acoustic local-
ization and trajectory estimation of localized acoustic sources. The chapter
forms the theoretical basis for the signal processing methods discussed and
proposed in the latter chapters of the thesis.

Chapter 3

The chapter is devoted to single-sensor solutions of pattern recognition for
stationary and non-stationary process state estimation and object identifi-
cation. The first part of the chapter introduces the common approach to
pattern recognition, which includes the extraction of representative features
from a single-sensor signal, feature selection from a set of time and frequency
domain features, and classification of processes or objects based on the ex-
tracted features. This common approach is presented on an example of sta-
tionary process state estimation for the application of industrial machinery
operation state identification. The second part of the chapter presents a pro-
posed multistage identification procedure for the non-stationary process of
moving vehicle pattern recognition. Experimental evaluation of the consid-
ered procedures is provided along the way of discussion.
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Chapter 4

The chapter is dedicated to multi-channel signal analysis, and the methods
of acoustic sensor array signal processing in particular. The chapter begins
with the discussion of DOA estimation methods for the linear and conical
geometries of the acoustic arrays, presents the proposed approaches to DOA
estimation, and evaluates their accuracy and computational efficiency. Later
the proposed approach to distributed acoustic localization is presented and
evaluated on experimental data. The last part of the chapter presents the mi-
crophone array implementations on embedded hardware and evaluates their
ability to operate in real-time based on the implementation test results. The
DOA estimation and distributed acoustic localization procedures are tested
for the application of indoor speaker localization.

Chapter 5

The topics of this chapter comprise the discussion of problems situated with
data fusion and communication issues in the distributed WSN of system
components. The considered methods of signal processing are reviewed from
the data fusion perspective, and a fusion procedure for trajectory estimation
of localized objects is presented. The aspect of data concurrency and the
challenges of data temporal and spatial evaluation for data alignment are
discussed along with the problems of message communication in a WSN
with an ad-hoc topology. An example of a network management and data
temporal alignment approach is reviewed.

Chapter 6

The chapter discusses the considered applications of the proposed signal pro-
cessing and data fusion approaches. The methods of stationary process state
estimation along with the method of distributed acoustic localization are
applied to the civil application of industrial machinery operation state iden-
tification and malfunction detection. The methods of non-stationary process
analysis and acoustic localization are applied to the military application of ve-
hicle identification and trajectory estimation for military reconnaissance pur-
poses. A proposed method of object detection and speed estimation based on
passive infrared sensor signal analysis is presented later in the chapter. The
final application considered in the chapter is situated with gunshot detection
and shooter acoustic localization by a system of distributed multi-channel
acoustic sensors. Experimental evaluation of the employed procedures is
provided for every considered application.
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Chapter 2

Preliminaries

This chapter introduces the core concepts and algorithms used in the thesis.
The chapter begins with an overview of a generic smart sensor structure.
Next, the concepts of time and frequency domain signal analysis are reviewed,
and a number of relevant signal features is presented. A short introduction
to signal filtering is made. Then, pattern recognition is discussed along with
one particular fuzzy logic based classifier mainly applied in this work for
classification purposes. Finally, the concepts and tools of acoustic localization
and object trajectory estimation are presented.

2.1 Smart Sensor Component Structure

Smart sensors constitute the perceptional part of the CPS [107]. The basic
tasks of every smart sensor lie in data acquisition, processing and information
communication. Depending on the hardware limitations, a sensor may per-
form only these basic tasks and transmit certain information, extracted from
a signal, or perform local situation assessment and send assessment results
for further information fusion. Usually it is a good practice to distribute
a large number of low computational power (and thus cheap) sensors with
narrow FOV, e.g., proximity sensors, to gather highly localized information
and forward low level information (binary state or simple signal parameters)
for further fusion [80]. The Smart Dust system [69], for example, takes this
notion to the extreme by applying very small (down to a few millimeters)
MicroElectroMechanical systems (MEMS), called motes, for extremely lo-
calized measurements. More powerful nodes with more complex sensors or
multi-sensor solutions with wide FOV are usually distributed more sparingly.
These nodes may also perform the tasks of intermediate data aggregation and
fusion if sufficient resources remain. Of course, every node in a multi-hop
WSN may perform the tasks of data aggregation and forwarding, as discussed
in Section 5.3.
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Figure 2.1: Smart sensor data processing principle diagram.

Wireless smart sensors all have a similar principle structure, presented
in Figure 2.1. The process starts with signal acquisition, where if analog
sensors are concerned, the continuous analog signal is sampled and quan-
tized by an Analog to Digital Converter (ADC) and the discrete time series
is then used during processing, or if the sensor produces digital outputs,
they are read directly through a certain interface. Analog signal condition-
ing (i.e., amplification, normalization, bias removal, etc.) is performed by
analog circuitry [142] prior to conversion in order not to impose quantiza-
tion errors onto the signals (e.g., if the signal is amplified in digital form,
the error of quantization will be magnified accordingly). If the ADC does
not support parallel conversion, consecutive channel selection is performed
by a multiplexer, the switching delay of which has to be accounted for if
the applied signal processing methods are phase sensitive. After conversion
the data is buffered for frame-by-frame processing. For signal buffering a
circular buffer is more preferable for real-time implementation to, e.g., clas-
sical queue or stack, because it allows to read the latest sample values more
efficiently. Specifically, if some delay occurs and the samples are not read in
time, the new incoming samples will simply overwrite the older ones without
any additional buffer clearing manipulations.

The block denoted as the Arithmetic Logic Unit (ALU) performs all the
tasks situated with signal processing, information extraction, etc. The pro-
cessed data intended for transmission is then handled by the communication
module and communicated. Whether the ADC, ALU and the communica-
tion module are located on a single processor or microcontroller, or separate
entities exist for each task, depends entirely on the implementation of the
embedded platform [83, 156]. For example, the signal processing tasks may
be assigned to a Digital Signal Processor (DSP) with a Reduced Instruc-
tion Set Computing (RISC) architecture optimized for signal processing, or
a Field-Programmable Gate Array (FPGA), while process management tasks
are run on the Central Processing Unit (CPU).
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2.2 Time Domain Signal Analysis

A one-dimensional digital signal is described by a frame of samples x[k],
k = 0, . . . , N−1, where N is the finite frame length: [x[0], x[1], . . . , x[N − 1]].
In a multi-channel system consisting of M channels sampled at the same
sampling frequency fs, e.g., a microphone array, the two-dimensional frame
will consist of N ×M samples:

x =




x1[0] x2[0] · · · xM [0]
x1[1] x2[1] · · · xM [1]
...

...
. . .

...
x1[N − 1] x2[N − 1] · · · xM [N − 1]


 . (2.1)

If a multi-channel system acquires multi-modal signals at different sampling
rates, the total signal will combine the separate signal frames, where the
frame lengths will usually not be equal, N1 6= N2 6= · · · 6= NM . The signal
frame (2.1) is combined of separate measurements, and thus any sample is in-
dependent of the neighboring samples, as opposed to, e.g., a two-dimensional
video frame [147]. However, in a general case it cannot be guaranteed that
the vectors of (2.1) will be linearly independent.

2.2.1 Signal Envelope
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Figure 2.2: Upper and lower envelopes of an acoustic signal of a passing vehicle sampled
at fs = 20 kS/s.

Time domain signal analysis focuses on the shape and amplitude of a
signal. Signal enveloping is the most popular procedure to estimate the
signal shape [133]. Figure 2.2 portrays the upper and lower envelopes of an
acoustic signal, calculated by performing positive and negative peak detection
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Figure 2.3: Envelope of a passive infrared sensor signal calculated by applying the Hilbert
transform.

and applying interpolation. Another approach of calculating the absolute
envelope lies in applying the Hilbert transform

Hi{x} =
1

N

N−1∑

k=0

x[k]
[
1− (−1)k−i

]
coth [(k − i)π/N ] , (2.2)

for i = 0, . . . , N − 1, and taking its absolute value |H{x}|. An example of
the absolute envelope of a passive infrared (PIR) sensor signal is presented in
Figure 2.3. The rise in amplitude then signifies the detection of some event
being observed, and the dynamics of amplitude change can be estimated by
the Attack Decay Sustain Release (ADSR) portions of the envelope [147].

Implementation-vise the Hilbert transform approach to calculating the
signal envelope is computationally expensive and requires longer signal frames
to be effective. The peak detection approach is more applicable for frame-
by-frame signal analysis, usually used on embedded hardware. In general an
envelope gives an adequate estimate of signal shape for highly oscillating and
thus more symmetrical signals. For signals with lower dynamics the envelope
may misrepresent the signal shape, as shown in Figure 2.3.

2.2.2 Time Domain Features

Besides the signal envelope, other widely used features of time domain signal
analysis include instantaneous features [115], calculated for each short signal
frame xt at acquisition time t. These features include, but are not limited
to:

• Zero Crossing Rate (ZCR), which is defined as the ratio of zero cross-
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ings, i.e., sign changes in a signal frame, and is expressed by

ZCRt(xt) =
1

N − 1

N−1∑

k=1

[xt[k] · xt[k − 1] < 0] , (2.3)

where [·] denotes the Iverson bracket, i.e.,

[P ] =

{
1, if P is true;
0, otherwise,

(2.4)

where P is a statement, which can be true or false. The interval between
successive zero crossings can also be considered a rough representation
of the half-period of oscillation for weakly oscillating signals.

• Autocorrelation, which is the cross-correlation of a signal frame with
itself. Autocorrelation represents the signal spectral distribution in the
time domain and is computed as

ACFt(xt, i) =
1

xt[0]

N−i−1∑

k=0

xt[k] · xt[k + i], (2.5)

for i = 0, . . . , N − 1, where 1/xt[0] normalizes the autocorrelation at
zero lag to exactly 1.

• The Root Mean Square (RMS) energy:

RMSt(xt) =

(
1

N

N−1∑

k=0

(xt[k])2

)1/2

. (2.6)

These features may be used for event detection and, in more trivial cases,
event identification, or used in conjunction with spectral features. Some
information extraction methods operate strictly in the time domain. Time
Encoded Signal Processing and Recognition (TESPAR), for example, counts
the so-called real and complex zeroes (i.e., interval duration and the number
of inflection points between every two successive zero crossings) and codes
them into a single vector of values using a non-linear coder [92]. However,
the majority of signal processing techniques relies on time series transforms
and analysis of frequency domain features [147].

2.3 Frequency Domain Analysis

Time domain analysis is well applicable to weakly oscillating and harmonic
signals, however, if the signal is non-harmonic or highly polluted by noise,
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which foremost influences the signal amplitude and shape, time domain fea-
tures prove to be of little use. Frequency domain analysis offers a much wider
range of signal analysis possibilities, e.g., examining harmonic frequencies,
analysis of specific frequency bands, evaluation of frequency shifts due to the
Doppler Effect, etc.

2.3.1 Discrete Fourier Transform

The discrete time domain signal is converted to the frequency domain by the
Discrete Fourier Transform (DFT). For a finite duration discrete signal x[n]
of length N , n = 0, . . . , N − 1, the DFT function is given as

X[k] = F{x[n]} =

N−1∑

n=0

x[n] · e−j 2π
N
kn, (2.7)

where k = 0, . . . , N − 1. The transform is performed along two integer
dimensions n (discrete time indices) and k (discrete frequency indices), i.e., it
can be presented as a linear system transformation, which requires N(N−1)
multiplications and a similar number of additions. Algorithms that reduce
the computational complexity of DFT are known as Fast Fourier Transform
(FFT) methods. They utilize the periodic and symmetric properties of the
Fourier basis function e−j2π/N to avoid redundant calculations. Numerous
implementations of the FFT exist; one of the most widely used and applied
in MATLAB and also in the implementations considered in this thesis is
FFTW, developed by Frigo and Johnson [57].

The complex frequency spectrum [X[0], X[1], . . . , X[N − 1]] contains both
amplitude and phase information and is symmetrically divided into complex
conjugate “positive” and “negative” frequencies, the positive ones residing
in the interval [X[0], . . . , X[N/2 + 1]] with X[0] being the signal DC com-
ponent, which is ignored in this thesis. In order to obtain the absolute
magnitude spectrum, the absolute values of this portion of the spectrum are
calculated as

|X[k]| = |F{x[n]}| /N, k = 1, . . . , N/2 + 1. (2.8)

Thus, abiding the Nyquist-Shannon sampling theorem [133], the magnitude
frequency spectrum of a signal frame of length N consists of N/2 frequency
components, each of which is multiple to the frequency resolution given by
∆f = fs/N Hz, where fs is the sampling rate. An example of the absolute
magnitude of a periodic vibration signal is presented in Figure 2.4. The
frequency resolution here is equal to ∆f = 1 Hz, thus magnitudes of the
frequency components are represented correctly. However, if the resolution is
low, the magnitude of frequency components not multiple to the resolution
will get distributed between the consecutive discrete frequency bands. To
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solve the problem of magnitude disproportionate representation due to low
resolution, a windowing operation, acting as a low-pass filter, is applied.
Implementation-vise the division by N in (2.8) performs scaling, but does
not add to the quality of further processing. Thus, it can be omitted, which
will result in unscaled magnitude values (see Figure 2.4).
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Figure 2.4: Vibration signal frame acquired at fs = 1 kS/s (top), its DFT (bottom). Signal
frame length N = 1000, spectrum length N/2 = 500 samples, the frequency resolution is
equal to ∆f = 1 Hz.

2.3.2 Time-Frequency Domain Analysis

Frequency domain analysis on embedded hardware is performed in a frame-
by-frame manner by converting every acquired time domain signal frame
through DFT and analyzing the frames separately. To ensure high refresh
rates (less than one second) for monitoring highly dynamic processes and
reduce the amounts of used memory, the frame length N is chosen accord-
ingly to meet the functional and hardware limitations. If precise spectral
distributions are required, and the frequency resolution ∆f does not allow
them to be achieved, a larger N may be chosen and the frames processed in
a sliding window fashion (i.e., with non-zero frame overlap).

For manual signal analysis during system development it is important to
establish the frequency domain signal analysis parameters. For this purpose
spectrograms are used, which portray the changes in the frequency compo-
nents of the signal in time. A spectrogram is obtained by applying the Short
Time Fourier Transform (STFT) to a series of consecutive frames with the
following parameters:
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• window length in samples,

• window function (e.g., rectangular, Hamming, Hann, etc.),

• window overlap in samples.

The window function softens the disproportionate representation of frequency
components due to low resolution ∆f and reduces energy leakage between
the short window frames [133,147]. An example of a logarithmic scale spec-
trogram is presented in Figure 2.5. In this simple example the dynamical
properties of the vibration process are visible in both the time and frequency
domains with the signal amplitude rising according to the rise of the vibration
fundamental frequency. The spectrum presented in Figure 2.4 corresponds
to the 70th second of this spectrogram. In both figures the fundamental (at
approximately 40 Hz) and one of its harmonics (at approximately 120 Hz)
are well distinguishable.
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Figure 2.5: Vibration signal acquired at fs = 1 kS/s (top), and its spectrogram calculated
by applying STFT with the window length of w = 512 samples and using a rectangular
windowing function (bottom).

2.3.3 Frequency Domain Features

If the observed signal is harmonic, event identification is reduced to the trivial
detection of the fundamental frequency corresponding to any of the observed
process states. On the other hand, if the signal is non-harmonic with a
widely spread spectral distribution, other methods of analysis are applied.
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What follows is a short list of some of the available spectral features, by
which the observed process states can be distinguished.

Mel-Frequency Cepstral Coefficients (MFCC) is a popular method of
acoustic signal feature representation mainly used in speech signal coding
and recognition [159]. The process of MFCC feature extraction is presented
in Figure 2.6. Mel-frequency scaling mimics human perception of sound,
where lower frequencies are more distinguishable than higher frequencies. An
alternative to mel scaling is Bark scaling, which also may be used in MFCC
and on its own. The absolute power spectrum is mel-scaled according to

Mel(f) = 2595 · log10 (1 + f/700) , (2.9)

where f is the linear frequency, using a number of triangular filters, which
produces an average scaled power value per filter (see Figure 2.7). Cepstral
coefficients (describing harmonic properties of the spectrum) are calculated
from these scaled power values by applying the Discrete Cosine Transform.
The dynamic and transitional properties of consecutive spectra are described
by delta coefficients, i.e., derivatives obtained by polynomial approximation
over a finite succession of cepstral coefficient vectors.

|spectrum|^2Signal frame

Mel energies

Mel scaling

DCTDifferentiator

Static cepstral coefficientsDelta coefficients

Differentiator

Double delta coefficients

Logarithm

FFT

Figure 2.6: Mel-Frequency Cepstral Coefficients procedure steps.

Instantaneous frequency domain features [115] for the absolute magnitude
spectrum |Xt[k]|, k = 1, . . . ,K, of lengthK = N/2 acquired at time t include,
but are not limited to:

• Spectral centroid, which is the first central moment in respect to fre-
quency in a magnitude spectrum. It is calculated as the frequency
averaged over the absolute magnitude spectrum:

SCt (|Xt|) =

∑K
k=1 k · |Xt[k]|
∑K

k=1 |Xt[k]|
. (2.10)

• Spectral skewness, which is the third central moment in respect to
frequency:

SSt (|Xt|) =
1

K

K∑

k=1

(
|Xt[k]| − |Xt|

σ|Xt|

)3

, (2.11)
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Figure 2.7: Mel-scaling of the linear frequency by a 24 band MFCC filterbank.

where σ|Xt| is the standard deviation of spectrum |Xt|, and |Xt| is its
mean value. Skewness is a measure of asymmetry of a distribution
around its mean value.

• Spectral kurtosis, which is the fourth central moment in respect to
frequency:

SKt (|Xt|) =
1

K

K∑

k=1

(
|Xt[k]| − |Xt|

σ|Xt|

)4

. (2.12)

Kurtosis gives the measure of flatness of a distribution around its mean
value.

• Spectral decrease, which is a measure of decrease of the spectral mag-
nitude:

SDt (|Xt|) =
1

∑K
k=2 |Xt[k]|

·
K∑

k=2

|Xt[k]| − |Xt[1]|
k − 1

. (2.13)

It represents the slope of the spectrum from left to right.

• Spectral roll-off specifies the frequency band below which a η amount of
spectral energy resides, where η ∈ R | 0 < η < 1 is the ratio threshold.
Spectral roll-off is another measure of skewness of the spectrum and is
computed as

SRt (|Xt| , η) = arg max
p

[
p∑

l=1

|Xt[l]|2 ≤ η ·
K∑

k=1

|Xt[k]|2
]
. (2.14)
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• Spectrum spread, also known as effective bandwidth, measures the
width of the spectrum portion where the effective quantity of energy
resides. It is calculated by employing the spectral centroid (2.10) as

BWt (|Xt|) =

(∑K
k=1 [k − SCt (|Xt|)]2 · |Xt[k]|2

∑K
k=1 |Xt[k]|2

)1/2

. (2.15)

• Band energies measure the energy of the power spectrum at the defined
bands. The band energy for the i-th band is computed as

BEt (|Xt| , i) =

∑
l∈Si |Xt[l]|2∑K
k=1 |Xt[k]|2

, (2.16)

where Si is the set of power spectrum samples belonging to the i-th
band.

• Spectral slope is a measure of spectral energy decrease in the direction
of higher frequencies. It is determined by the gradient and y-intersect
parameters of a straight line calculated applying linear regression to
the magnitude spectrum. For a set of K data points (k, |Xt[k]|), k =
1, . . . ,K, the gradient of the best fitted straight line is denoted as

at (|Xt|) =
K
∑K

k=1 k · |Xt[k]| −∑K
k=1 k

∑K
k=1 |Xt[k]|

K
∑K

k=1 k
2 −

(∑K
k=1 k

)2 , (2.17)

and the y-intersect is denoted as

bt (|Xt|) =

∑K
k=1 |Xt[k]|∑K

k=1 k
2 −∑K

k=1 k
∑K

k=1 k · |Xt(k)|
K
∑K

k=1 k
2 −

(∑K
k=1 k

)2 . (2.18)

• Spectral flux, which determines the rate of change of successive mag-
nitude spectra:

SFt (|Xt| , |Xt−1|) =
K∑

k=1

||Xt[k]| − |Xt−1[k]|| . (2.19)

• Spectral variation, or sometimes also referred to as spectral flux, is
another way to determine the rate of change between successive spectra.
It is calculated as a normalized zero lag cross-correlation between two
successive amplitude spectra as

SVt (|Xt| , |Xt−1|) = 1−
∑K

k=1 |Xt−1[k]| · |Xt[k]|
∑K

k=1 |Xt−1[k]|∑K
k=1 |Xt[k]|

. (2.20)

It tends to 0 in case of similar successive spectra and to 1 otherwise.
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2.4 Signal Filtering

Analog filtering is performed during analog signal conditioning prior to AD
conversion (see Figure 2.1). Basically any operation on the signal (e.g.,
amplification) can be considered as a filter with a specific transfer func-
tion [133]. Analog filters are implemented on analog circuitry and are thus
hard-wired [142]. Digital filters are applied to the signals after conversion
and can be redesigned for specific applications, even at runtime.

2.4.1 Static Digital Filters

Filters are generally divided into two categories of either recursive Infinite
Impulse Response (IIR), or non-recursive Finite Impulse Response (FIR). IIR
filters require lower filter orders than FIR filters to achieve similar frequency
and phase responses. Consequently IIR filters require less operations, com-
pared to equivalent FIR filters. On the other hand, IIR filters have varying
phase delays (constant phase delay design is difficult and not always achiev-
able), can be unstable, and can produce limit cycles (i.e., impose fluctuations
on steady-state signals) due to their recursive structure [133]. Constant phase
delay is essential to phase-based signal analysis, so for phase-sensitive opera-
tions (e.g., phase shift estimation between channels) FIR filters are preferred.
Filters of even order may be designed to have a zero phase delay. A more
straightforward, but more computationally expensive approach lies in run-
ning the filter on a signal frame both forward and backward. This will result
in the phase delay of the forward pass being canceled out during the backward
pass. This approach, however, is not applicable to signal streams.

For other applications the choice between IIR and FIR filters depends
on the desired frequency roll-off, amount of ripple in the pass band and
the quality of attenuation in the stop band. IIR filters in general require a
lower filter order to achieve better performance, however, any IIR filter can
be approximated by a FIR filter of greater order. For low pass filtering a
windowing function applied during DFT may be sufficient for filtering low-
noise signals. For frame-by-frame processing of individual short time frames
the amount of phase lag and residual fluctuations must be reduced in order
not to distort frame to frame signal transitions. While applying both time
and frequency domain signal analysis, the filter should be designed not to
disrupt time domain signal features. For example, if the observed event
produces a signal with a wide spectral distribution and a low pass filter is
applied, it may reduce the time domain signal amplitude and make the event
indistinguishable in the time domain, e.g., by envelope.

An example of low pass filtering of the vibration signal presented in Fig-
ure 2.5 is portrayed in Figure 2.8. Noise attenuation of 100 dB is achieved
by applying a 12th order equiripple FIR filter with the cutoff frequency of
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Figure 2.8: Result of low pass filtering of the signal presented in Figure 2.5.

50 Hz, transition band of 50–80 Hz and constant phase delay of 6 samples.
The frequency and phase response (in normalized frequency) of the applied
filter are presented in Figure 2.9. Although the vibration fundamental fre-
quency on the logarithmic scale is more distinguishable in Figure 2.8 than
in Figure 2.5, such a large attenuation combined with low filter order result
in attenuation of 80 dB in the pass band and large ripples in the stop band.
As a result the signal loses a great amount of energy, and its amplitude is
reduced by several orders of magnitude. This trade-off is completely permis-
sible if event identification is performed by only analyzing the fundamental.
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Figure 2.9: Frequency and phase response of the filter used in Figure 2.8.
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Other signal features, on the other hand, can be corrupted to the extent of
being unusable.

2.4.2 Adaptive Filtering

Applying pre-designed filters for the duration of system on-line operation is
considered static filtering. It is useful if the noise band is known in advance
and does not change dramatically during system operation. Adaptive filters,
on the other hand, have the ability to tune their parameters at system run-
time by applying an optimization algorithm with a specifically designed cost
function in a feedback loop [1]. Highly correlated noise (e.g., echo or channel
cross-talk) is reduced by applying adaptive feedback cancellation [28]. An-
other approach to adaptive filtering lies in adaptive noise cancellation, which
requires knowledge of the signal and noise properties. The properties may be
established by acquiring the signal from several process observation points
with noise being significantly more powerful at one of these points [28].

However, in complex and unpredictable environments the signal and noise
parameters may change rapidly, and thus reliable continuous adaptive fil-
tering poses a problem. In an ever-changing environment the optimization
options (e.g., the cost function) may become obsolete, which will result in
optimization divergence and disrupt further signal processing. On the other
hand, adaptive noise cancellation would be a viable option, as it uses the
physical and not approximated noise reference, however, it is applicable only
when the measurement points can be covered by one smart sensor in order
not to transmit raw signals between WSN nodes.

Distributed systems with a large number of nodes have an advantage in
regard to handling unexpected noise. While signal analysis in one group of
sensors may get corrupted by unexpected noise types and signal masking,
another group may not acquire the same noise and produce reliable results.
Furthermore, in multi-modal systems a noise source that disrupts operation
of sensors of one modality, may be totally unnoticed by sensors of other
modalities. Therefore, in distributed CPS the negative influence of unex-
pected noise is overcome during the stages of data fusion, rather than during
filtering and noise suppression on individual nodes [156].

2.5 Pattern Recognition

Local situation assessment in terms of identifying an event or a state of the
observed process is performed via pattern recognition [106]. The general steps
of pattern recognition performed at system runtime and the information re-
quired at every step are presented in Figure 2.10. Depending on whether
the signal is analyzed in the time, frequency, or both domains, parameters
for signal filtering, FFT, or any other transformation, e.g., signal fusion, are
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provided to the smart sensor. Signal representations ready for analysis are
then put through feature extraction, which computes a compact set of signal
parameters (i.e., features) that represents the signal patterns corresponding
to the events of interest, while being influenced by noise as little as possi-
ble. The extracted feature vector is then classified and a decision, usually
represented by a class label, is made for the time instance at hand.

Feature ExtractionSignal frame ClassificationProcessing Decision

Parameters of
filter, FFT, etc.

Set of features,
transforms, e.g., PCA,

etc.

Reference information,
classifier structure,

knowledge base, etc.

Signal representation
ready for analysis

Feature vector

Figure 2.10: General steps of signal processing for pattern recognition.

2.5.1 Feature Extraction

During feature extraction a feature vector χ = [χ1, χ2, . . . , χL] of length L
(which is considered the dimensionality of the feature space) is generated for
every incoming signal frame (or set of consecutive frames). It may contain
features derived from both time and frequency domains; at this stage all
features can be viewed as source invariant information. The feature vector
may thus contain any set of time domain features, e.g., (2.3)–(2.6), frequency
domain features, e.g., (2.10)–(2.20), MFCC features, or any other signal pa-
rameters that describe the classified pattern.

Combining features of different origin instead of using, e.g., spectral dis-
tribution described by MFCC or band energies (2.16), can lead to unbalanced
feature sets with significant variance differences between features and highly
correlated features. As a result features with greater variance will influence
the classification decision more, and the correlated features will most likely
be redundant. The problem is solved by either rigorously analyzing and
choosing the best fit features, or applying feature selection algorithms, e.g.,
Differential Evolution Feature Selection (DEFS) [79], Least-Squares Feature
Selection (LSFS) [74], or Multi-Cluster Feature Selection (MCFS) [35], and
orthogonal transformations, e.g., Principal Component Analysis (PCA), or
Independent Component Analysis (ICA) [147].

Feature selection methods determine the best fit and least correlated fea-
tures from a set of features by, e.g., applying a population based method
for confining an optimal subset of features (DEFS), or minimizing the least-
squares mutual information between features (LSFS). PCA transforms the
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feature vectors to new sets of orthogonal dimensions with a diagonal covari-
ance matrix, reducing the dimensionality L of the new vectors if required, and
leaving only the most important components. However, PCA assumes normal
distribution and de-correlates only the second-order feature statistics. ICA,
on the other hand, de-correlates the feature vectors in higher-order statistics
(usually the fourth order, i.e., kurtosis) of the feature set and assumes non-
normal feature distribution. Both transforms also bring the features to unit
variance.

Feature selection and derivation of the transformation matrices for PCA
or ICA are performed offline during system design on a pre-acquired set of
features. During online system operation the transformation matrix is then
applied to each feature vector χ at every discrete time instance. Online
feature selection and transformation matrix derivation is complicated due to
a large amount of features needed to be gathered on the embedded device for
statistical analysis correctness and the risk of procedure divergence from an
optimal solution due to unexpected noise sources and unknown events arising
in the monitored environment. Furthermore, changes made to the features
must be accounted for during classification, thus the classification procedure
needs to be appended to account for these changes.

2.5.2 Classification

Classification can be performed in various ways, from calculating the simi-
larity metric (e.g., correlation, maximum likelihood) between the reference
and the incoming feature vectors, to applying model-based classifiers (e.g.,
Artificial Neural Networks [113]) and multistage classification trees (e.g.,
CART [127]), or probabilistic classifiers and predictors (e.g., naive Bayes [81],
Hidden Markov Models [55]). The simplest approach to classification lies in
calculating the correlation between the feature vector χ = [χ1, χ2, . . . , χL]
and C reference vectors ri = [ri(1), ri(2), . . . , ri(L)], i = 1, . . . , C, as

ρi =
L
∑L

l=1 χl · ri(l)−
∑L

l=1 χl
∑L

l=1 ri(l)√
L
∑L

l=1 χ
2
l −

(∑L
l=1 χl

)2
√
L
∑L

l=1 (ri(l))
2 −

(∑L
l=1 ri(l)

)2
, (2.21)

where the winning class y is defined as

y = arg max
1≤i≤C

(ρi) . (2.22)

Model-based classifiers divide the feature sub-spaces occupied by features of
different classes and during classification estimate the degree of belonging of
the L-dimensional feature (i.e., feature vector of length L) to each of these
L-dimensional sub-spaces [106]. Classification trees separate the feature sub-
spaces by bounds, one feature component at a time, forming a decision tree.
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Probabilistic classifiers use conditional probability properties to estimate the
probability of the class label at any time instance, given the history of pre-
vious classifications. The application of Bayesian estimators, like Hidden
Markov Models (HMM), to classification tasks allows to identify finite state
non-stationary processes, e.g. spoken phrases [145].

Classifier structure is derived during the training stage using training
datasets containing P feature vectors

X =




χ1,1 χ1,2 · · · χ1,L c1

χ2,1 χ2,2 · · · χ2,L c2
...

...
. . .

...
...

χP,1 χP,2 · · · χP,L cP


 , (2.23)

where a reference class label ci may be added to each feature vector for su-
pervised learning procedures. If the reference class labels are not a priori
known, the feature space is divided using unsupervised learning procedures,
e.g., clustering [2]. Initial classifier training is performed during system de-
sign and can be updated during online operation by applying online machine
learning procedures. However, self-learning tends to reduce the classification
accuracy over time in situations where high uncertainty is involved [106].
In multi-component systems, where the decision is made based on the as-
sessments from many observation points, the nodes with higher certainty of
correct classification can provide the reference class labels to nodes with un-
certain classifier outputs in order to maintain overall classification reliability.

2.5.3 Fuzzy Logic Based Classification

The main classification algorithm applied in this thesis is based on fuzzy logic
[125]. It is similar to model-based classifiers, in that it separates the feature
sub-spaces in the L-dimensional feature space, but applies fuzzy inference
for class label estimation. The inference is performed by assigning one of C
different discrete valued labels to the feature vector χ = [χ1, χ2, . . . , χL] of
length L. The initial classifier consists of R rules of the following structure:

IF χ1 is A1r AND χ2 is A2r AND . . . AND χL is ALr
THEN y belongs to class cr,

(2.24)

where Air is the linguistic term of the i-th input (i.e., feature vector element,
i = 1, . . . , L) associated with the r-th rule, and cr ∈ {1, . . . , C} is the class
label assigned by the r-th rule. The form that contains only one rule per
each class is called the Minimal Rule Classifier (MRC).

The training of the classifier is performed in a supervised manner on
datasets of structure (2.23) in the following steps:

39



1. Initialization: derivation of the MRC;

2. Rule base expansion: misclassification rate reduction by iterative split-
ting of rules with most erroneous results in two;

3. Consolidation: linkage of small rules resulting from consolidation to
rules covering more samples, while sustaining classification accuracy;

4. Compression: removal of redundant conditions in rules;

5. Conversion: changing the membership function type (optional).

MRC training consists of estimating the parameters of Membership Func-
tions (MF) that quantify the linguistic terms in rules (2.24). For classifier
initialization triangle-shaped MF are used:

µir(χi) =





χi−air
bir−air , air ≤ χi ≤ bir;
cir−χi
cir−bir , bir < χi ≤ cir;
0, (χi < air) ∨ (χi > cir) ,

(2.25)

where air and cir locate the base of the triangle and bir locates its peak. The
training is performed using a set of reference feature vectors (2.23), for which
a class label is provided manually. This is done during system offline tuning.
The procedure consists of the following steps:

1. The set of vectors is partitioned into R subsets Sj , j = 1, . . . , R, each
consisting of Pj vectors of the same class.

2. MF parameters are calculated as air = min
k∈Sj

(χi(k)), cir = max
k∈Sj

(χi(k)),

bir = 1
Pj

∑
k∈Sj χi(k), i = 1, . . . , L.

3. The base of each MF is slightly enlarged (e.g., by 1%) to give non-
zero membership values to the training samples located at the edges of
multidimensional clusters [125].

4. The established MF are added to the classifier rule-base defined by
(2.24).

During the steps of rule base expansion through to compression the structure
of the MRC is changed in order to ensure maximal training dataset coverage,
while minimizing the number of misclassifications [124,126]. The last step of
conversion is performed if the classifier is required to operate on samples that
fall beyond the rule borders specified by the triangular MF base parameters.
In this case smooth MF, e.g., the double Gaussian MF, which have smooth
transitions to zero membership, can be applied instead of triangular MF,
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which have distinct points of zero membership. In this manner triangular
MF are replaced with near-equivalent Gaussian curves defined as

µir(χi) =





exp

{
− (χi−bir)2

2·(0.4247·(bir−air)2)

}
, χi < bir,

exp

{
− (χi−bir)2

2·(0.4247·(cir−bir)2)

}
, χi ≥ bir.

(2.26)

The inference is performed (i.e., the class label is assigned) in a winner-
takes-all manner by specifying the rule with the highest degree of activation

y = cr, arg max
1≤r≤R

(τr) , (2.27)

where τr is the activation degree of the r-th rule:

τr =
L⋂

i=1

µir(χi), (2.28)

where µir is the MF corresponding to the linguistic term Air, and the in-
tersection (linguistic AND) is defined either by the minimum, or product
operation.
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A22

a22
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a12 a11

b22

b21

b12 b11

c22

c21

c12 c11

χ1

χ2
0.8

0.4

0.3
0.0

χ1 χ2

Figure 2.11: Example of classification by fuzzy inference.

An example of fuzzy inference for a two-dimensional feature space and
two incoming feature vectors χ1, χ2, is presented in Figure 2.11. The fea-
tures are separated in two classes by the linguistic terms A11 and A21 for
rule 1, governing class 1, and by A12 and A22 for rule 2, governing class
2. The vector χ1 belongs to class 2 and χ2 does not belong to any of
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the two classes. According to (2.27) and (2.28), and applying the mini-
mum operation for intersection, the activation degrees and class labels are
assigned in the following manner. For χ1 the activation degree of rule 1 is
τ1(χ1) = min {µ11(χ1), µ21(χ2)} = min {0, 0} = 0, and the activation degree
of rule 2 is τ2(χ1) = min {µ12(χ1), µ22(χ2)} = min {0.3, 0.8} = 0.3. The class
label of χ1 is then y(χ1) = arg max {τ1(χ1), τ2(χ1)} = arg max {0, 0.3} = 2.
Following this logic, for χ2 the activation degrees of both rules 1 and 2 are
τ1(χ2) = 0, τ2(χ2) = 0, and the class label assigned to χ2 is thus 0, which
means that χ2 does not belong to any of the two classes. Figure 2.11 also por-
trays how the classifier reduces misclassification and class sub-space overlap
by discarding outlying training samples.

2.6 Acoustic Localization

Acoustic localization is performed by estimating the bearing and distance to
the localized object. Planar localization consists of estimating the azimuth
φ, or the horizontal Angle of Arrival (AOA), and the distance r. Volumet-
ric bearing estimation is performed by estimating the Direction of Arrival
(DOA) of acoustic wavefronts, which consists of the azimuth φ and elevation
θ AOA. Both approaches with two estimated parameters are considered to
be 2D localization in spherical coordinates. Total 3D localization in spherical
coordinates consists of estimating all three parameters (r, θ, φ), as portrayed
in Figure 2.12.

x

y

z
(r, θ, φ)

φ

θ

r

Figure 2.12: Volumetric localization parameters.

Acoustic localization is performed by multi-sensor systems, consisting of
microphone arrays, by applying phase shift analysis between signals and es-
timating the Time Difference of Arrival (TDOA) of acoustic wavefronts [28].
To calculate the geometry of wavefront arrival, either a near-field, or a far-
field signal source disposition assumption is made. Acoustic wavefronts are
concentric by nature, and the near-field assumption implies that the geo-
metric distance between wavefronts at separate measurement points is calcu-
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lated as the difference between the radii of these wavefronts (see Figure 2.13,
right). The far-field assumption, on the other hand, implies that the waves
are coming from a greater distance and their fronts are spread enough to be
considered linear (see Figure 2.13, left). The far-field assumption is met for
a linear microphone array if the inequality

|r| > 2 (Ml)2

λmin
(2.29)

holds, where M is the number of microphones, l is the distance between
consecutive microphones mi and mi+1, λmin is the minimal wave length of
the wide-band acoustic signal, and r is the radial distance from the array
center to the source. For wide aperture arrays, where the microphones are
significantly spaced from one another, the area of operation has to be known
in advance to make the correct assumption of source disposition. If the
microphones are compactly placed on a single smart sensor, the far-field
assumption is made for the majority of applications.

The calculation of DOA relies on the speed of sound c, which depends on
the ambient temperature. The speed of sound in air is calculated as

c = 331.45
√

1 + t◦/273, (2.30)

where t◦ is the temperature in degrees Celsius. If the temperature of the
environment of system operation is not constant (which is usually the case
in outdoor environments), the speed of sound needs to be regularly checked
to ensure correct DOA estimation.
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Figure 2.13: Near-field and far-field disposition of the acoustic source.

There exists a variety of methods for acoustic localization, most of which
employ TDOA as a basic principal [28,33]. The methods utilize sensor array
structures, in which a number of microphones is arranged in some specific
manner (e.g., linear, tetrahedron, spherical, etc.). The TDOA and conse-
quently DOA is generally estimated using some measure of correlation be-
tween the signals. For example, a popular method of Steered Response Power
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with Phase Transform (SRP-PHAT) computes cross-correlation across all
pairs of microphones at the theoretical time delays associated with all pos-
sible DOA [47]. MUltiple SIgnal Classification (MUSIC) applies eigenspace
analysis to the signal correlation matrix in order to get the largest eigenval-
ues corresponding to the most probable DOA [71]. Multilateration methods
calculate distances from every sensor to the source using TDOA and estimate
the position of that source by solving systems of non-linear equations [91].

Typical acoustic localization methods utilize information from every sen-
sor. This does not pose a problem for wired systems with a single powerful
computational hub. In distributed WSN, however, collecting raw signals from
nodes is a real challenge, especially if the number of nodes is large and signal
frames are long. Recent developments in distributed localization combine
individual sensor estimates for source positioning by applying, for example,
maximum likelihood iterative search [30], fuzzy clustering [100, 101], and
various others [39,46,68,90,97,146]. This thesis proposes a distributed local-
ization approach with SRP-PHAT and multilateration used for comparison
where possible.

2.6.1 Conventional SRP-PHAT

Steered Response Power with Phase Transform (SRP-PHAT) is one of the
most effective acoustic DOA estimation methods for reverberant environ-
ments, proposed in [47]. The SRP P (a) is a real-valued functional of a
spatial vector a, which is defined by the FOV of a specific array. The max-
ima of P (a) indicate the direction to the sound source. P (a) is computed as
the cumulative Generalized Cross-Correlation with Phase Transform (GCC-
PHAT) across all pairs of sensors at the theoretical time delays, associated
with the chosen direction. Consider a pair of signals xk(t), xl(t) of an array
consisting ofM microphones. The time instances of sound arrival from some
point a ∈ a for the two microphones are τ(a, k) and τ(a, l), respectively.
Hence the time delay between the signals is τkl(a) = τ(a, k) − τ(a, l). The
SRP-PHAT for all pairs of signals is then defined as

P (a) =

M∑

k=1

M∑

l=k+1

ˆ ∞

−∞
ΨklXk(ω)X∗l (ω)ejωτkl(a)dω, (2.31)

where Xi(ω) is the spectrum (i.e., the Fourier Transform) of signal xi(t),
X∗i (ω) is the conjugate of that spectrum and Ψkl is the PHAT weight, defined
as

Ψkl = (|Xk(ω)X∗l (ω)|)−1 . (2.32)

The PHAT is an effective weighting of a GCC for finding TDOA from signals
in a highly reverberant environment, though, it can over-sharpen the SRP.
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A more flexible approach lies in applying the β-PHAT weight, defined as

Ψkl(β) = (|Xk(ω)X∗l (ω)|)−β . (2.33)

SRP-PHAT is a more general tool for acoustic localization and DOA
estimation [47]. Computing the SRP for every point in the area or volume a
results in a SRP image of the whole observable FOV. This enables localization
of multiple sound sources, while also reducing reverberation and masking
effects. In this approach the FOV area or volume is discretized into a spatial
grid, with a SRP value computed for every point. Though the approach is
most comprehensive, the immense number of computations it requires makes
the process extremely slow and resource demanding.

While using a narrow-aperture microphone array for a wide FOV, the
DOA of multiple acoustic sources are well distinguishable with SRP images
computed on the entire FOV. Figure 2.14 portrays an SRP image of one
signal frame of a man and woman speaking simultaneously at −50 and 30
degrees relative to the y-axis, respectively, acquired by an array of micro-
phones denoted by red numbered squares. The effect of PHAT whitening
is evident from the figure, with reverberation effects being reduced with the
increase in the β coefficient of (2.33). The image corresponding to β = 1,
equivalent to applying (2.32), shows excessive sharpening. Generally β ' 0.8
produces smoother images, while retaining more cumulative energy, which is
reduced with the increase in β.

The FOV used in Figure 2.14 is 3× 1.8 m, discretized into a planar grid
with a distance step of 0.04 m along every axis. Thus the planar vector a
consists of (3 · 1.8)/0.042 = 3375 discrete directions, and so the evaluation
(2.31) must be performed the according number of times. Such images cannot
be by any means generated in real-time by embedded sensors, while also being
inapplicable for autonomous analysis (i.e., the grid search for elevated SRP
values and DOA estimation from them is a needlessly complicated task).

By using a wide-aperture array a more precise localization is achiev-
able, as portrayed in Figure 2.15. The PHAT weight again is shown to
successfully reduce reverberation. The number of evaluations (2.31) here is
(4.6 · 3.8)/0.022 = 43700 with the chosen FOV and discretization step of
0.02 m. It is evident that conventional SRP-PHAT is not applicable for real-
time evaluation of even the smallest (several square meters) FOV. Several
propositions have been made for SRP optimization, e.g., [41, 49, 158]. For
this work the method of locating high maxima of SRP energy by applying
Stochastic Region Contraction (SRC) [48,49] is chosen.

2.6.2 SRP-PHAT with Stochastic Region Contraction

The number of SRP evaluations (2.31) is significantly reduced by applying
Stochastic Region Contraction (SRC), which iteratively reduces the search
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Figure 2.14: SRP image of two acoustic sources: a man and woman speaking simulta-
neously at −50 and 30 degrees relative to the y-axis, respectively. Different β values for
(2.33) are used for the same signal frame.
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volume for the global maximum. SRC starts with the initial search volume
(i.e. the whole FOV), stochastically explores the functional of that volume by
randomly picking a specific number of points, and then contracts the volume
into the sub-volume containing the desired global optimum and proceeds
iteratively until the global maximum can be located with a finite precision
[49]. The procedure may be described in pseudo-code as:

1. Initialize iteration i = 0.

2. Set initial parameters: V0 = VFOV — initial volume; J0 — the number
of random points that need to be evaluated to ensure, that one or
more is likely to reside in the sub-volume of higher values, surrounding
the global maximum; N0 — number of points used to define the new
sub-volume Vi+1.

3. Calculate P (a) for Ji points.

4. Sort out the best (highest) Ni � Ji points.

5. Contract the search volume to the smaller volume Vi+1, defined by a
rectangular boundary vector Bi+1 = [xmin(i+1), xmax(i+1), ymin(i+1),
ymax(i+ 1), zmin(i+ 1), zmax(i+ 1)] , that contains these Ni points.

6. IF Vi+1 < Vu (a sufficiently small sub-volume, in which the global
optimum is contained) AND FEi < Φ (the total number of evalua-
tions (2.31) for iteration i is less than the maximum number of allowed
evaluations), THEN determine the global maximum, STOP.

7. ELSE IF FEi ≥ Φ, STOP, discard results.

8. ELSE Among the Ni points keep a subset Gi of points, which have
values greater than the mean µi of the Ni points.

9. Evaluate Ji+1 new random points in Vi+1.

10. Form the set of Ni+1 as the union of Gi and the best Ni+1−Gi points
from the Ji+1 just evaluated. This gives Ni+1 high points for iteration
i+ 1.

11. i = i+ 1, GO TO Step 5.

There are several proposed ways of selecting Ni and Ji depending on the
specific FOV and on the condition of monotonic or non-monotonic increase
of the mean µi. The one emphasized in [49] consists of fixingNi and adjusting
Ji incrementally in the following fashion: Ni is chosen as Ni ≡ N = 100; Ji
is the number of evaluations (2.31) to find N −Gi points greater than µi. In
this thesis a different approach is proposed.
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2.6.3 Multilateration

Multilateration is a technique of estimating object position coordinates based
on TDOA information. The distance between the sensor i with coordinates
(xi, yi, zi) and the signal source can be defined as a vector length

d =

√
(xi − x)2 + (yi − y)2 + (zi − z)2, (2.34)

where (x, y, z) are the unknown source coordinates. Thus, knowing the
TDOA τij between two sensors i and j, the distance difference between sensor
i and the source, and sensor j and the source is calculated as

dij = c · τij = c (τi − τj) =√
(xi−x)2+(yi−y)2+(zi−z)2−

√
(xj−x)2+(yj−y)2+(zj−z)2,

(2.35)

where c is the speed of sound in air, (x, y, z) are source coordinates, and
(xi, yi, zi) and (xj , yj , zj) are the coordinates of sensors i and j, respectively
[91]. For any group consisting of G sensors the acoustic source is localizable
by the following system of G− 1 nonlinear equations:




d1,2 =
√

(x1−x)2+(y1−y)2+(z1−z)2−
√

(x2−x)2+(y2−y)2+(z2−z)2

d1,3 =
√

(x1−x)2+(y1−y)2+(z1−z)2−
√

(x3−x)2+(y3−y)2+(z3−z)2

· · ·
d1,G=

√
(x1−x)2+(y1−y)2+(z1−z)2−

√
(xG−x)2+(yG−y)2+(zG−z)2

To estimate the solution to this system of nonlinear equations at least
four sensors are needed; this yields three TDOA values τ1,2, τ1,3, τ1,4, and the
system is solved by applying a least squares method [108], e.g., Levenberg-
Marquardt. Various practical approaches exist, e.g., [25, 34]. For ground
applications the solution can be simplified by specifying constant z dimen-
sion and denoting the unknown source location as (x, y). Then the minimal
number of sensors needed is reduced to three.

2.7 Trajectory Estimation and Prediction

Trajectory estimation can be considered as a procedure of filtering sequen-
tial position estimates in order to achieve a steady representation of object
movement. Both spatial and temporal errors are introduced to the position
estimates due to localization errors and imprecision of WSN synchronization,
respectively. Treating the sequence of position estimates as a time-invariant
data series and applying curve fitting and smoothing will reduce spatial jitter,
however, the result will not be an accurate representation of a time-variant
trajectory. Recursive Bayesian estimators, like the Kalman filter or Particle
filter, handle the noise imposed by the inaccuracies of the dynamic process.
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2.7.1 Kalman Filter

The discrete time Kalman filter (KF) is a linear quadratic estimator [1],
which provides the closed form recursive solution for a linear discrete-time
dynamic system of the form:

xk = Ak−1xk−1 + qk−1

yk = Hk−1xk + rk−1
, (2.36)

where xk is the system state vector at time step k, yk is the measurement
vector at k, Ak−1 is the transition matrix of the dynamic model, Hk−1

is the measurement matrix, qk−1 ∼ N (0,Qk−1) is the process noise with
covariance Qk−1 and rk−1 ∼ N (0,Rk−1) is the measurement noise with
covariance Rk−1. Kalman filtering consists of a prediction step, where the
next state of the system is predicted given the previous measurements, and
an update step, where the current state is estimated given the measurement
at that time instance. The prediction step is characterized by the following
equations:

x̂−k = Ak−1x̂k−1

P−k = Ak−1PkA
T
k−1 + Qk−1

, (2.37)

where x̂−k and P−k are the system a priori (i.e., before observing the measure-
ment at time k) state and covariance estimates, and x̂k, Pk are a posteriori
(i.e., after observing the measurement) estimates. The update step is per-
formed as:

Kk = P−kH
T
k

(
HkP

−
kH

T
k + Rk

)−1

x̂k = x̂−k + Kk

(
yk −Hkx̂

−
k

)

Pk = (I−KkHk)P
−
k

, (2.38)

where Kk is the Kalman gain of prediction correction at time instance k.
KF is optimal for a linear system with Gaussian measurement and pro-

cess noise [1, 147]. In case of a non-linear system or a linear system with
non-Gaussian noise the unscented Kalman filter or Particle filters generally
perform better at the price of additional computational effort.

2.7.2 Rao-Blackwellized Particle Filter

Particle filters (PF) recursively compute the posterior distribution of the
states x1:k given the measurements y1:k. This is done using a set of particles
x

(i)
k and importance weights w(i)

k for i = 1, 2, . . . , Np:

p (x1:k|y1:k) ≈
Np∑

i=1

w
(i)
k δ

(
x1:k − x

(i)
1:k

)
, (2.39)

where Np is the number of particles and δ(·) is the Dirac delta function. On
each time step the particle weights are recomputed depending on how well
they fit the sequence of past measurements.
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The Rao-Blackwellized Particle Filter (RBPF) improves the performance
of PF when the state model has a linear-Gaussian substructure [1]. RBPF
divides the state vector xk into two parts: xp

k, which is estimated using the
PF, and xk

k, estimated by KF. The joint probability density function (PDF)
is then given using the Bayes rule as

p
(
xk
k,x

p
1:k|y1:k

)
= p

(
xk
k|xp

1:k,y1:k

)
p
(
xp

1:k|y1:k

)
. (2.40)

If the term p
(
xk
k|x

p
1:k,y1:k

)
is linear-Gaussian, it can be optimally estimated

by KF. The second factor is estimated using PF. The RBPF is performed in
several steps, which include PF and KF updates and particle resamples [105].

2.7.3 Filter Application to the Process Model

This work concentrates on the KF and rather uses RBPF for comparison, as
a more sophisticated approach, which builds on the KF, but handles process
non-linearity. This way, judging by the performance of both filters, the ap-
plicability of a more simple and lightweight KF, compared to RBPF, can be
established.

Abstract object movement is described as a discrete Wiener process ve-
locity model [26] with the state vector defined as xk =

[
xk yk ẋk ẏk

]T ,
where (xk, yk) denotes object position and (ẋk, ẏk) — the velocity in a two-
dimensional Cartesian space. The transition and measurement matrices for
model (2.36) are then defined as:

A =




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


 , H =

[
1 0 0 0
0 1 0 0

]
, (2.41)

where ∆t is the time interval between consecutive estimates in seconds. The
process and measurement noise variance is specified by matrices

Q = q




1
3∆t3 0 1

2∆t2 0
0 1

3∆t3 0 1
2∆t2

1
2∆t2 0 ∆t 0

0 1
2∆t2 0 ∆t


 , R =

[
r 0
0 r

]
, (2.42)

where q and r are the power spectral densities of process and measurement
noise, respectively. These parameters can be specified statically, depending
on the estimated spatial and temporal errors of position values, or dynam-
ically reassigned at runtime by, e.g., a fuzzy inference mechanism, as it is
done in the fuzzy Kalman filter.
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2.8 Conclusions

The range of conventional signal processing techniques far exceeds the scope
of this chapter. The presented concepts and methods serve as a theoretical
basis for the main body of the thesis. The discussed time and frequency
domain features are used for signal analysis and pattern recognition in later
chapters devoted to process state and object identification. The correlation
and fuzzy logic based classification procedures are applied to classification
tasks throughout the main body of the thesis. Although a great variety of
other classification methods exists, the main topic of the thesis is not de-
voted primarily to the discussion of classification procedures, and thus only
the considered two classification approaches are adopted. The presented lo-
calization method of SRP-PHAT is used for comparison with the proposed
DOA estimation and distributed localization procedures. An approach to
reducing the number of computations required for SRP-PHAT and SRC is
also presented later in the thesis. Multilateration is considered as an alter-
native approach to the proposed localization procedure, applicable only in
wired sensor systems. KF and RBPF are applied to the tasks of trajectory
estimation and search region prediction in the proposed approach of fusing
consecutive localization estimates with filter estimates. The Wiener process
velocity model is applied for object movement modeling throughout the main
body of the thesis.
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Chapter 3

Single-Sensor Solutions

The chapter presents methods of stationary and non-stationary process anal-
ysis by single-sensor devices for the task of pattern recognition. The first part
of the chapter is dedicated to the typical process flow of pattern recognition
for stationary process state identification. The stages of signal analysis, fea-
ture set selection and classification are discussed on an example of industrial
machinery monitoring application [14, 19]. The second part of the chapter
discusses non-stationary process analysis for the application of moving vehi-
cle identification [17]. A multistage signal analysis procedure of hierarchical
decision-making is proposed, its embedded implementation [16] is reviewed
and field test results [18] are presented.

3.1 Pattern Recognition for Stationary Processes

Stationary processes assume time-invariant statistical properties. From the
point of view of signal analysis, a stationary process possesses time-invariant
properties either in the time, or the frequency domain. Therefore, the typical
pattern recognition scheme, presented in Figure 2.10, is commonly applied
for recognition of process states. Regarding a non-stationary finite state pro-
cess, where each of the process states can be considered stationary, state
separation is performed by applying specific feature extraction methods that
reveal the differences in signal properties between the process states. If the
non-stationary finite state process possesses stationary transition probabili-
ties (e.g., precisely defined state duration periods), it can be modeled as a
Markov chain [55], and the probability of each state estimated by applying,
e.g., a Hidden Markov Model (HMM). This section considers pattern recog-
nition of stationary process states of a finite state non-stationary process,
the transition probabilities of which are undefined.
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3.1.1 Example Process Description

A process of industrial machinery operation is considered as an example
for the discussed signal analysis and state classification procedures. The
application of these methods to machinery operation state monitoring and
fault detection are discussed in Section 6.1.

The considered process consists of several industrial machine operation
states, observed by means of acoustic and vibration information. Figure 3.1
presents a principal diagram of sensor placement and signal acquisition. Ac-
celeration sensors are mounted on different parts of the machine (a router in
case of Figure 3.1) to monitor the utilization of different components, and the
acoustic noise emitted by the machine is remotely acquired by acoustic sen-
sors. The machine is put through a typical working cycle and the operation
states are identified using multi-modal information.
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Figure 3.1: Multi-modal signal acquisition by smart sensors for industrial machinery op-
eration state identification.

Experimental Setup

The experiment took place at the shop floor of a small size manufacturing
facility during common operational conditions, i.e., full staff and standard
machinery operation cycles. Two pieces of manufacturing equipment were
chosen for testing: a manually operated circular saw bench, and a three
degree of freedom Computer Numerical Control (CNC) router AXYZ 6020.

During the experiment the manual saw bench was cutting planks of
16 mm medium-density fibreboard. The experimental signal includes six
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cutting cycles. The saw passes the following operation states:

1. Saw is idle;

2. Motor enabled, saw blade spinning;

3. In addition to 2: dust collector enabled;

4. In addition to 3: cutting process.

The CNC router was routing on a sheet of 21 mm plywood. During the whole
process of routing out several shapes from the plywood the spindle did not
cease its rotation, thus the procedure is regarded as a continuous working
cycle. The router passes the following operation states:

1. Router is idle;

2. Compressed air supply enabled;

3. In addition to 2: vacuum pump enabled;

4. In addition to 3: dust collector enabled;

5. In addition to 4: routing process.

Signal Acquisition

Acoustic signals were acquired by Shure SM58 microphones using a Roland
Edirol UA-25EX audio signal processor at 44.1 kS/s sampling rate with the
bit depth of 16 bits. For both considered machines the microphone was
placed beside and directed towards the machine approximately 1.2 m above
the floor. Thus no direct contact was made between the sensor and the
machine.

Vibration measurements were made with an analog dual-axis accelerom-
eter ADXL311 with a sensitivity of ±2 g, 0 g bias of 1.5 V and sensitivity of
174 mV/g at the operating voltage of VDD = 3 V. The signals were acquired
at a sampling frequency of 1 kS/s using an Agilent U2354A data acquisi-
tion device (DAQ). For the saw experiment the accelerometer was firmly
attached to the bench rip fence with both axes being parallel to the ground.
The x-axis was pointed parallel to the saw cutting surface. During the rout-
ing experiment the sensor was attached to the spindle parallel to the Earth
surface with x- and y-axis pointed along the first two degrees of freedom of
the carriage. As in both cases the sensor is placed parallel to the ground,
the gravitational component is not present in the readings and the 0 g bias
is easily subtracted from the signal. For signal analysis one channel that
displays greater responsiveness to the different process stages is chosen from
the dual-axis signal.
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3.1.2 Signal Analysis

Signal analysis is performed in the time and frequency domains to deter-
mine the process states detectable by sensors of different modalities. For the
generation of spectrograms a rectangular windowing function is applied and
zero overlap is used in order to simulate frame-by-frame operation of the sen-
sors at runtime. Window length is set according to the signal frame length,
which is equal to 214 = 16384 samples for acoustic sensors and 28 = 256
samples for vibration sensors. This constitutes 0.372 s and 0.256 s frame du-
ration, respectively. The resulting spectra consist of 8192 and 128 frequency
components, accordingly.

Saw Signals

The saw acoustic signal is presented in Figure 3.2. All four operation states
are distinguishable with the motor being started (state 2) approximately at
the 15th second, dust collector enabled (state 3) at approximately the 25th
second, and six cutting instances (state 4) from the 40th to the 160th second.
The motor produces a low energy signal with a uniformly spread spectral
density in the band of frequencies below approximately 10 kHz. The dust
collector pattern is determined by the band below 1 kHz, and the sawing
cycles are defined by the multiple high energy frequency components in the
band of 1.5–10 kHz. Several instances of heavy background noise, e.g., at the
140th second, are also present in the signal. Each process state possesses a
spectral distribution with low variance in frequency component energy, and
is thus considered stationary.

The saw vibration signal is presented in Figure 3.3. As the sensor is
mounted on the rip fence, it does not sense the vibration of the dust collector,
which is not mounted on the bench itself. The bench motor is identified by
the 50 Hz fundamental frequency and its harmonics. The vibration produced
by the contact between the cut piece and the rip fence during sawing is more
evident in the higher frequencies, staring from 250 Hz. Vibration energy
seems to be well dampened by the rip fence, which results in an overall
low energy signal. The interval between 160 and 180 seconds in Figure 3.3
signifies motor rotation decrease after turnoff. This slow transition between
states 2 and 1 is not evident from acoustic information of Figure 3.2.

CNC Router Signals

The spectrogram of the CNC router is presented in Figure 3.4. The transi-
tions between states occur at the following moments: state 1 to state 2 at
the 40th second, state 2 to state 3 at the 50th second, state 3 to state 4
at approximately the 330th second, state 4 to state 5 at approximately the
520th second, state 4 back to state 3 at approximately the 910th second.
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Figure 3.2: Saw acoustic signal (top) and its spectrogram (bottom).

20 40 60 80 100 120 140 160 180

−0.02

−0.01

0

0.01

0.02

A
m

p
lit

u
d
e
 (

V
)

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

450

500

Figure 3.3: Saw vibration signal (top) and its spectrogram (bottom).
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Figure 3.5: Router vibration signal (top) and its spectrogram (bottom).

State 3 (vacuum pump) produces high energy noise, which partially masks
states 4 and 5. Therefore, pattern separation for intermittent states poses
a more serious problem than in the case of saw acoustic signal. State 5
(routing) is emphasized by the band of frequencies higher than 8 kHz.

The router vibration signal is presented in Figure 3.5. Using the accel-
eration sensor mounted on the spindle it is possible to distinguish between
state 5 (spindle rotation during cutting) and states 1–4 (spindle idle). During
idle spindle states the defining frequency of faint noise is equal to 50 Hz (AC
power current residual). Spindle rotation produces a highly uniform spec-
tral density with a distinct peak at 370 Hz, which corresponds to measured
spindle rotation of 22200 revolutions per minute (actual rotation setting was
equal to 22000 rpm).

3.1.3 Feature Extraction

Feature extraction method choice for stationary process signals is relatively
straightforward. Different types of features are computed from a test signal
and matrices of form (2.23) are created. If the state labels per each feature
vector (corresponding to a signal frame) are known, the fitness of the feature
set is tested by training a classifier in a supervised manner and estimating
the quality of dataset cover, the extent of feature sub-space separation (see
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Section 2.5.2) and the impact that each feature has on the final decision. If
the reference state labels are not known, the feature sub-spaces are separated
in an unsupervised manner (e.g., by clustering), and the extent of separation
and individual feature impact are measured by applying statistical tools to
the resulting clusters [2].

In this example three types of features are extracted and three test
datasets are generated per each test signal. These types of features are:

1. Band energies (2.16) with manually specified frequency bands;

2. Instantaneous features — various features from the list (2.3)–(2.6),
(2.10)–(2.20);

3. Mel-Frequency Cepstral Coefficients (MFCC), discussed in Section 2.3.3.

Band energies represent the distinctive bands, by which the process states
are separable. They are manually chosen during signal analysis stages and
presented in Table 3.1. The various features, referred to as instantaneous
(i.e., each calculated from a single signal frame), are chosen from the time
and frequency domain feature lists of Chapter 2. For all test signals the
following features are chosen: signal frame autocorrelation (2.5), signal RMS
energy (2.6), spectral centroid (2.10), spectral skewness (2.11), spectral kur-
tosis (2.12), spectral decrease (2.13), spectral roll-off (2.14) with η = 0.93,
spectrum spread (2.15), and both features of spectral slope (2.17), (2.18).
Instantaneous features describe the overall shape and energy distribution in
the signal, rather than energy of specific frequency bands. MFCC features
consist of 24 mel energies, computed by applying the filterbank presented in
Figure 2.7, and 12 cepstral coefficients.

Table 3.1: Frequency bands in Hz chosen for band energy features

Band Saw Saw Router Router
number acoustic vibration acoustic vibration

1 50–450 40–60 70–650 10–490
2 1000–7000 95–105 725–745 40–60
3 4700–4800 230–270 2500–5600 365–375
4 9300–9600 280–310 5700–7800
5 14000–14400 390–420 8000–16000
6 440–470 17500–22050

Visual representations of the saw acoustic signal and the router acoustic
signal MFCC features are presented in Figure 3.6 and Figure 3.7, respectively.
Figure 3.6 is the representation of the test signal presented in Figure 3.2 with
the same state transition times. Figure 3.7, in turn, is the representation of
the signal in Figure 3.4. The MFCC mel energy coding makes the process
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Figure 3.6: Saw acoustic signal MFCC features: 24 mel energies.
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Figure 3.7: Router acoustic signal MFCC features: 24 mel energies.
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Figure 3.8: Saw acoustic signal 5 band energy features defined in Table 3.1.
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states visually more distinguishable. On the other hand, MFCC produces a
large number of redundant, heavily correlated features. Figure 3.8 presents
the band energies dataset of the saw acoustic signal. All four states are
clearly distinguishable by only five features. Further feature refinement can
be performed by applying orthogonal transforms [147], e.g., PCA and ICA,
or by performing feature selection.

3.1.4 Classification

Classification algorithm knowledge base generation is performed on training
signals, which were acquired at the same experimental conditions alongside
with the test signals. The training datasets generated from these signals are
roughly equal or greater in length and contain information on all the classi-
fied process states. Two classification methods are chosen for the example at
hand: the correlation metric (2.21) and the fuzzy logic based classifier, dis-
cussed in Section 2.5.3. These procedures serve as examples of the simplest
and an advanced approach to frame-by-frame classification, respectively. The
class labels are defined as integer values of the enumerated process states de-
scribed in Section 3.1.1. These integer values are presented in Table 3.2.

Table 3.2: Process class labels with reference to the state lists of Section 3.1.1

Process Saw Saw Router Router
state acoustic vibration acoustic vibration
1 1 1 1 1
2 2 2 2 1
3 3 2 3 1
4 4 3 4 1
5 - - 5 2

Rule Base Generation and Class Label Estimation

The knowledge base of the correlation based classifier consists of C reference
feature vectors ri, i = 1, . . . , C, where C is the number of classified states.
Each reference vector ri is calculated by averaging several chosen feature
vectors (20 in this case) from the training dataset, belonging to class i. The
correlation is then calculated C times using (2.21), and the class label is
defined as (2.22). The number of reference vectors per class label may be
larger, and this tends to improve classification accuracy in more problematic
cases, however, the correlation calculation then must be performed an accord-
ing number of times, which is not always possible on embedded hardware,
especially if the feature vectors are significantly long.
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The fuzzy classifier is trained using the whole training dataset of the
form (2.23) by applying the supervised learning procedure discussed in Sec-
tion 2.5.3. For this task only the Minimal Rule Classifier (MRC) is gener-
ated [125]. The class label is calculated using (2.27), (2.28), applying product
for the intersection operation.

Classification Results

The classification results are presented in Figures (3.9)–(3.12) by means of
confusion matrices (with correctly classified frame quantities situated on the
main diagonal) and series of estimated labels (denoted by blue crosses) plot-
ted over reference labels (red circles). These four figures are chosen to illus-
trate the main conclusions on process state classification for this example.

• Misclassifications mainly occur between neighboring classes. This is ex-
pected, because for this example the neighbouring states have common
traits.

• Classification burst errors happen during state transitions. As state
transitions do not occur instantly, the exact point of class change can-
not be strictly defined. Figure 3.10 portrays this situation best.

• Short-term abnormalities are naturally occurring in physical processes,
and thus continuous classification will produce errors due to outliers.
An example of this is presented in Figure 3.4, 325–380 s interval, as
incorrectly classified in Figure 3.11, frame 800–1400 interval.

The correlation based classification results for all combinations of test
signals and applied feature extraction methods are presented in Table 3.3.
Correlation proves to be applicable to the more trivial case of router vibra-
tion signal classification, where two distinct states have significantly different
properties. Worst performance is observed for the saw vibration signal classi-
fication, where state separation is complicated by a low signal to noise ratio
(SNR) and significant state transition periods. Generally correlation per-
forms better in case of long feature vectors, e.g., MFCC (36 compared to less
than 10 of band energies). This is not unusual, as cross-correlation benefits
from large information quantities and produces sharper correlation values
over larger cross-correlated entities (longer feature vectors).

The fuzzy logic based classification method provides higher classification
accuracy for all test signals, as shown in Table 3.4. By applying an ad-
vanced feature sub-space confinement and separation technique, it is able to
manage variation in the features, which increases classification robustness.
Therefore, model-based classifiers are more applicable to both stationary and
non-stationary process classification.
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Figure 3.9: Classification results of the saw acoustic test signal.
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Figure 3.10: Classification results of the saw vibration test signal.
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Figure 3.11: Classification results of the router acoustic test signal.
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Figure 3.12: Classification results of the router vibration test signal.
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Table 3.3: Correlation based classification results in percent

Object Signal Band energies Instantaneous MFCC
Saw Acoustic 81.25 74.19 87.90
Saw Vibration 54.06 68.91 65.69

Router Acoustic 91.95 53.82 95.72
Router Vibration 98.39 96.44 99.85

Table 3.4: Fuzzy classifier based classification results in percent

Object Signal Band energies Instantaneous MFCC
Saw Acoustic 94.27 98.72 96.49
Saw Vibration 90.62 83.75 81.65

Router Acoustic 98.67 97.83 98.72
Router Vibration 99.85 99.28 99.49

3.1.5 Feature Selection

Feature selection is used to reveal the best fit features that determine the
classified states. It can be applied to the manually chosen feature sets in
order to reduce the number of used features. Here feature selection is applied
to automatic frequency band selection, as opposed to manual selection by
frequency domain analysis.

The number of frequency bands equal to 8192 for acoustic signals is re-
duced to 1024 by averaging every 8 successive frequency components into
one. The same procedure is performed over every 4 successive components
of the vibration signals to reduce the number of bands from 128 to 32. This
is done to soften the energy distribution between successive bands and to
reduce feature selection computational complexity. Three feature selection
algorithms are used: Differential Evolution Feature Selection (DEFS) [79],
Least-Squares Feature Selection (LSFS) [74], and Multi Cluster Feature Se-
lection (MCFS) [35]. An example of feature evaluation performed by LSFS
is presented in Figure 3.13. The elevated squared-loss mutual information
values indicate the minimized least-squares mutual information between the
features of the corresponding band index to all other bands. Comparing
the results of LSFS with spectral distributions of Figure 3.2 and Figure 3.4
shows that the bands with high squared-loss mutual information are in fact
distinctive properties of process states.

The fitness of the features chosen by the three feature selection methods is
tested by classifying the feature datasets with the fuzzy logic based classifier
(after training it on the selected feature training datasets). The results of test
signal classification are presented in Table 3.5. The results show that feature
extraction based on automatically selected features is a feasible solution with
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Figure 3.13: Evaluation of features by LSFS. Squared-loss mutual information of the saw
(top) and router (bottom) acoustic signal frequency bands.

the classification quality being comparable to that of the manually specified
feature sets. However, in low SNR conditions of the saw vibration signal all
feature selection methods fail to provide adequate features, which results in
poor classification accuracy.

Table 3.5: Fuzzy classification results for selected features in percent

Object Signal DEFS LSFS MCFS
Saw Acoustic 94.96 95.16 95.56
Saw Vibration 70.31 58.12 65.27

Router Acoustic 99.08 98.80 98.68
Router Vibration 99.88 99.76 77.73

3.1.6 Presented Approach Discussion

The presented approach to stationary process state identification is the sim-
plest form of situation assessment for smart sensors. Its straightforward op-
eration flow of the pattern recognition steps presented in Figure 2.10 and the
ability to process only one signal frame at a time make it well implementable
on low power hardware. As no sequential information of process dynamics,
e.g., (2.19), (2.20), or MFCC delta coefficients, is analyzed, the amount of
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required memory and signal buffer size are reduced. For stationary processes
the dynamical properties are only relevant during state transitions.

To achieve full cover of the observed process, all possible process states
must be handled during initial testing. For the example of industrial ma-
chinery monitoring this would mean covering all possible working param-
eters (saw blade and spindle rpm rates, treated material types, etc.) for
every sensor type and placement. Abnormal behavior can be then identified
by thresholding the classification label confidence level (e.g., correlation val-
ues or rule activation degrees for fuzzy classifiers) and during data fusion of
information incoming from several sensors.

The main problem of the presented approach is situated with reduced
noise tolerance. The problem is more relevant in case of acoustic signal
analysis because acoustic sensors are susceptible to noise incoming from all
surrounding potential acoustic sources. In an unconfined environment the
properties of arising noise cannot be predicted and sufficiently estimated by
single-sensor systems. The problem can be tackled either by applying multi-
sensor solutions, or through multi-modal data fusion.

3.2 Pattern Recognition for Non-stationary
Processes

The majority of real life dynamic processes are non-stationary with varying
state transition probabilities. For bounded or finite conditions non-stationary
processes can be divided into short-term semi-stationary components that
succumb to statistical analysis and thus can be described by probabilistic
models. Another approach lies in the development of application specific
procedures that describe certain process properties under a number of as-
sumptions. This section considers an application specific pattern recognition
procedure for moving vehicle identification.

3.2.1 Problem Statement and Process Description

For this example of non-stationary process pattern recognition a single-sensor
procedure of passing vehicle type identification is considered. The procedure
is based on acoustic noise analysis, which provides the possibility to distin-
guish between well separable classes of motor vehicles, such as passenger cars
and large trucks. The acoustic noise patterns of moving vehicles consist of
multiple components, including noise produced by the engine, exhaust sys-
tem and tires [37]. The harmonic nature of the engine noise is, however,
seldom present in the civil vehicle sound pattern due to the fact that engine
sounds are well dampened in modern cars. This fact, complemented by the
Doppler Effect [29], renders the spectral analysis based on fundamental fre-
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quency detection, e.g., [163], ineffective. Instead, parameters of the overall
spectral shape and energy distribution describing the vehicle noise patterns
is adopted. Signal amplitude envelope is also adopted as a time domain
feature.

Experimental Setup

For the experiments a single-sensor device is placed 2–15 meters from the ve-
hicle path and directed perpendicular to it. Two experiments are performed,
which are from this point denoted as Experiment 1 and Experiment 2.

For Experiment 1 a microphone was placed at an empty parking lot and
two cars (Mercedes S320 and Mazda MX-5) were in turn passing the mi-
crophone stand at a speed of 35–45 km/h at the passing point, starting to
accelerate from a distance of approximately 40 meters. Each car passed the
microphone three times: the Mercedes first three times and the Mazda three
times afterwards. The sounds were acquired during summer time in mild
weather conditions, thus ambient noise levels were relatively low. The signal
spectrogram is presented in Figure 3.14. Six passing car acoustic patterns
are clearly visible.
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Figure 3.14: Acoustic signal of six passing passenger car instances of Experiment 1 (top)
and its spectrogram (bottom).

Experiment 2 was conducted at a lively three-lane highway during dense
traffic in late fall under heavy wind and light rain conditions. Consequently
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Figure 3.15: Experiment 2 signal spectrogram of numerous passing vehicles.
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the noise levels in this signal are significantly high, as can be seen on the
signal spectrogram, presented in Figure 3.15. Ambient noise from wind and
rain influences the whole frequency band, unlike in Figure 3.14. Dense traf-
fic results in vehicle passing instances being much less visually separable.
During the experiment vehicles of different types, including passenger cars,
minibuses, trucks, long buses, etc., have passed the sensor at different dis-
tances at a speed of 50–60 km/h.

Figure 3.14 and Figure 3.15 serve as good examples of truly non-stationary
processes, which cannot be split into short-term stationary components.
Therefore, the application of a more complex procedure compared to a typical
pattern recognition scheme of Section 3.1 is in order.

Signal Acquisition

The acoustic signal of Experiment 1 was acquired using a Shure SM58 mi-
crophone and a Roland Edirol UA-25EX audio signal processor at 44.1 kHz
sampling rate with the bit depth of 16 bits. The signal of Experiment 2
was acquired using a condenser microphone Sennheiser KE 4-211-2 and an
embedded computing device Gumstix Overo Water. The signal was also
sampled at 44.1 kHz mono channel with the bit depth of 16 bits. The use
of two different microphones with different frequency responses and dynamic
ranges also adds to the difference in SNR and signal quality induced by the
difference in weather conditions between the two experiments.

For signal analysis the signal frame length is set to 214 = 16384 sam-
ples, which constitutes 0.372 s frame duration. The resulting spectrum thus
consists of 8192 frequency components.

3.2.2 The Multistage Procedure of Vehicle Identification

The proposed multistage algorithm, presented in Figure 3.16, consists of two
independent stages. The hierarchical decision-making scheme (on the left)
distinguishes between relatively loud sounds and mild background noise, then
it separates vehicle-produced acoustic patterns from heavy background noise
and finally estimates the vehicle type from a set of predefined types. This
part of the algorithm operates in a frame-by-frame manner, computing a sin-
gle class label per signal frame. The Attack Sustain Release (ASR) envelope
estimation procedure, on the other hand, runs parallel to the decision-making
procedure and complements the past frame classification results with reassur-
ance of positive vehicle passing event detection. The hierarchical structure of
the algorithm reflects the superiority of vehicle detection over correct vehi-
cle type classification. In other words, distinction between vehicle-produced
sound and other types of noise is more important than correct vehicle type
estimation.
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Figure 3.16: Block diagram of the proposed hierarchical algorithm for vehicle detection
and classification.

Signal Pre-processing

The proposed procedure in Figure 3.16 starts by conditioning (filtering, etc.)
the incoming acoustic signal frame, which is optional and depends on the
specific environment and identified vehicle type properties. Static filtering
is effective only in cases where the frequency band containing the signal
is known. In case of Experiment 2, for example, band pass filtering with
the pass band of approximately 500–15000 Hz would be appropriate (see
Figure 3.15), however, larger and heavier vehicles have distinguishing spectral
properties below 500 Hz, therefore, their acoustic patterns may be corrupted.
For both experiments a low pass filter with the pass band of 15 kHz is applied.

RMS Energy and Thresholding

After signal conditioning the frame RMS energy (2.6) is calculated and com-
pared to the lower energy threshold. If the threshold is not exceeded, the
hierarchical procedure terminates (ASR calculation proceeds) and the frame
is marked with a label of mild noise. The estimation of the lower energy
threshold occurs during algorithm parameter estimation by means of test
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signal analysis. The initial threshold is chosen as the minimal value of RMS
energy of all the frames that correspond to vehicle passing instances.

Feature Extraction

If the signal frame xt passes energy thesholding, the absolute magnitude
spectrum |Xt| is calculated by applying the FFT, and a set of frequency
domain features is extracted. What follows is the list of the used features.

1. Band energies (2.16), which is a vector consisting of nb frequency bands.
The bands are chosen similar to the distribution of the mel-scale (2.9).

2. Spectral centroid (2.10).

3. Spectral roll-off (2.14) with η = 0.9.

4. Spectral slope with both parameters at (|Xt|), defined by (2.17), and
bt (|Xt|), defined by (2.18).

An example of spectral slope for a magnitude spectrum of length K = 8192
is presented in Figure 3.17. The overall decline of spectral energy towards
higher frequencies defines the parameters of the straight line and not the
precise energy distribution in bands.
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Figure 3.17: Spectral roll-off and spectral slope of an acoustic signal frame.

The features are concatenated into a feature vector

χt = [BEt (|Xt| , 1) , . . . ,BEt (|Xt| , nb) ,
SCt (|Xt|) ,SRt (|Xt| , η) , at (|Xt|) , bt (|Xt|)] , (3.1)

which is analyzed during the later stages of classification. The presented
set of features is unbalanced (feature variance may differ significantly), and
band energy features may become correlated for specific vehicle types. The
method of fuzzy classification, however, overcomes this problem by identify-
ing the most responsive and definitive features through the training proce-
dure, discussed in Section 2.5.3.
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Vehicle Pattern Detection by Fuzzy Classification

The sound patterns of passing vehicles are not consistent due to there being
several noise components among these patterns. The influence of the com-
ponents, such as engine, exhaust and tire produced noise, depends on the
distance, trajectory and type of a vehicle. For example, the pattern of an
approaching vehicle may be composed mainly of tire noise, while passing the
sensor the engine noise can be dominant, and while the vehicle is moving
away from the measurement point the exhaust noise may intensify. Coupled
with the Doppler Effect, which induces frequency shifts on the spectral com-
ponents of fast moving vehicles [29], these circumstances introduce significant
variance to the spectral features of the signal. An example of three clusters
residing in a three-dimensional feature space (of three band energies) is pre-
sented in Figure 3.18. Each point in the figure represents a feature vector
of an Experiment 2 test signal frame, corresponding to the following labels:
strong background noise (blue dots), light vehicles (red stars), and heavy
vehicles (green triangles). The quality of separation of these overlapping
clusters directly influences the quality of vehicle detection.
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Figure 3.18: Three clusters in a three-dimensional feature space. The features represent
energy ratios and thus are unitless.

Feature sub-space modeling and separation is performed by the fuzzy logic
based classifier. An example of modeling the clusters presented in Figure 3.18
by triangular Membership Functions (MF) is presented in Figure 3.19. If
the clusters do not separate naturally in the feature space (which is often
the case), the extracted rules are expected to have a high degree of overlap
(Figure 3.19 top). By excluding a portion of overlapping feature samples
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(marked by circles in Figure 3.19) from the feature sub-spaces the overlap
can be significantly reduced (Figure 3.19 bottom). Moreover, usually this
comes at no or only minor loss of classification accuracy [124].

In the proposed hierarchical procedure of Figure 3.16 the fuzzy logic based
classifier may be applied in two different manners. First, a general cluster cor-
responding to all vehicle types in question may be estimated and the resulting
classifier used for pure detection purposes just to distinguish all vehicle pro-
duced noise from ambient noise. Final classification is then performed by
correlation analysis. Alternatively, a separate cluster for each vehicle class is
built and the classifier is applied for specific vehicle type estimation. In this
case both the fuzzy classifier and the correlation analysis produce separate
class estimates, which may reinforce each other. In Section 3.2.3 both meth-
ods are used during the multistage procedure testing. For classifier training
the entire procedure discussed in Section 2.5.3 is applied, which results in a
minimal rule, minimal feature classifier with eliminated outliers.

Correlation Analysis

The final stage of vehicle identification is the correlation analysis (2.21) be-
tween the incoming magnitude spectrum vector |Xt| of length K and the
reference spectrum vectors |Xr|i, each corresponding to a single vehicle type
class i = 1, . . . , C, where C is the number of classes:

ρi =

[
K

K∑

k=1

|Xt[k]| · |Xr[k]|i −
K∑

k=1

|Xt[k]|
K∑

k=1

|Xr[k]|i

]/




√√√√K

K∑

k=1

|Xt[k]|2 −
(

K∑

k=1

|Xt[k]|
)2

·

√√√√K
K∑

k=1

(|Xr[k]|i)2 −
(

K∑

k=1

|Xr[k]|i

)2

 . (3.2)

For more rigorous classification several reference vectors per class may also be
used. Correlation coefficients are simple and effective metrics for similarity
estimation, however, this method is very susceptible to noise. A spectrum of
heavy background noise may correlate to any of the reference spectra enough
to produce incorrect classification results. Application of the fuzzy classifier
in the previous stage of the algorithm reduces the influence of background
noise.
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Attack Sustain Release Envelope

The process of a vehicle passing the measurement point consists of three
stages: approach (signal intensity increases), passing (signal intensity re-
mains stable), and retreat (signal intensity decreases). This dynamic pattern
is detected by estimating the Attack Sustain Release (ASR) envelope. It is
conducted by analyzing the RMS energy (2.6) of successive frames.

The amount of deviation of RMS energy of the present frame RMSt(xt)
at discrete time instance t is estimated by the difference between it and the
mean value of NE previous RMS energy readings. RMS energy deviation is
coded into three states by the following principle:

st =





1, RMSt(xt) > (1 + δ) · RMSt;

−1, RMSt(xt) < (1− δ) · RMSt;

0, otherwise,
(3.3)

where 1 denotes energy increase, 0 denotes stable energy levels and −1 de-
notes energy decrease. The parameter δ ∈ [0, 1] is the lower threshold of
energy deviation. The mean RMSt of NE previous energy levels is calculated
as

RMSt =
1

NE

∑

t−NE−1≤i≤t−1

RMSi(xi). (3.4)

Therefore the transitions 1 → 0 → −1 and 1 → −1 are suspected for a car
passing event and the quantities of −1, 0, and 1 coded frames denote the
lengths of attack, sustain, and release components, respectively.

The detection of the signal energy ASR dynamic complements the past
identification results. If the ASR pattern is detected, a notification is gener-
ated and presented along with the final class estimate. The class labels gen-
erated during the detected ASR period are inspected for the most frequent
one (mode in the statistical sense), which is presented in the notification.
This reduces inconsistencies in the series of class estimates, e.g., when the
vehicle type cannot be strictly classified. Furthermore, if a vehicle is bet-
ter identifiable during the moment of passing the measurement point (when
some specific acoustic component is prevalent in the pattern and the Doppler
Effect is minimal), class labels of the sustain signal portion may be used for
final decision generation. Additional restrictions may also be applied to the
ASR envelope detection. If the potential velocity of the moving object is a
priori known, the lower and upper bounds for the attack, sustain or release
components may be specified, so the detection is invalid if these restrictions
are not met. For example, if the vehicles are known to stop at the measure-
ment point, the expected value of the sustain component has to be large in
order to not confuse this stop with multiple vehicles. On the other hand, for
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fast passing vehicles (e.g., on a highway) the ASR components are expected
to be short.

3.2.3 Multistage Procedure Test Results

The performance of the algorithm is tested on signals acquired in Experi-
ments 1 and 2, discussed in Section 3.2.1. The signals are manually analyzed
prior to algorithm accuracy evaluation. This is done in order to estimate the
number of classes that will be used in the algorithm and to assign reference
class labels to every test frame. Each signal is divided into a training and
test portion. In case of Experiment 1 the training is performed on a signal
containing six car pass instances, and testing is performed on another signal
containing six pass instances of the same cars. The signal acquired during
Experiment 2 is split in half, where the first half is used for testing and the
second half is used for training. The training portion is used for fuzzy clas-
sifier training and for choosing reference vectors for the correlation analysis
procedure. For fuzzy classifier training the features are extracted from every
frame of the training signal and concatenated into the training dataset of
the form (2.23). For correlation analysis several magnitude spectrum vectors
corresponding to different classes are manually chosen. The test portion of
the signal is used for the estimation of detection and classification accuracy.

Experiment 1 Results

The signal feature vector (3.1) comprises eight features: four band energy
features (four bands of 1–824, 824–2616, 2616–6514, 6514–15000 Hz), spectral
centroid, spectral roll-off and spectral slope. For classification a total of 2
classes is used: 1 for Mercedes and 2 for Mazda. The reference spectral
vectors used in correlation analysis are estimated by averaging several spectra
of sounds produced by vehicles corresponding to the same class; one reference
vector per class is applied.

The results of algorithm testing are presented in Figure 3.20. The figure
consists of four subplots; from top to bottom these are:

1. Test signal with 6 instances of passing vehicles (blue); final estimated
labels with values 0.05 corresponding to class 1 and 0.1 to class 2
(black);

2. RMS energy readings per frame (green); signal energy threshold ex-
ceeded or not (black line); energy peaks approximated by ASR envelope
(violet stems);

3. Coded RMS energy dynamic of the ASR envelope;
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4. Intervals of nonzero fuzzy membership to vehicle feature subspace (black
line); coefficients of correlation with the reference spectral vectors (blue
— class 1, green — class 2).

For Experiment 1 every vehicle is detected and successfully classified. The
second and third subplots of Figure 3.20 show that each vehicle passing in-
stance ASR envelope is correctly detected. Though it can be noticed that
approximately on the 107th frame the ASR dynamic is falsely detected, the
energy of the signal is below the threshold and the fuzzy classifier gives no
classification decision, consequently the detection does not occur. Also ap-
proximately at the 145th frame the ASR dynamic is present but not detected,
as for the known vehicle speed corridor the attack and release components of
the envelope are set to be no less than 2 frames in duration for the dynamic
to be detected. For this signal the fuzzy classifier is trained for detection
purposes, i.e., distinguishing between all car types combined and ambient
noise. The detection decisions of the fuzzy classifier concur with the ASR
envelope.

The fuzzy logic based algorithm, trained to identify the general vehicle
feature space, succeeds in doing so for the majority of signal frames thus
allowing the correlation coefficient calculation procedure to analyze only the
frames corresponding to vehicle pass time intervals. The fourth subplot of
Figure 3.20 shows that the correlation coefficient values are unreliable during
the periods between vehicle pass instances. During vehicle pass instances,
however, they become more separate indicating a distinct leader.

Experiment 2 Results

Feature vectors comprise eight features, which are the same as for Experiment
1, except the bands for the band energy features are less spread: 220–818,
818–2592, 2592–6438, 6438–14780 Hz. For obtaining the reference spectral
vectors the same technique as for Experiment 1 is used. Two broad vehi-
cle classes are chosen: 1 for light vehicles (passenger cars) and 2 for heavy
vehicles (trucks and buses).

The fuzzy classifier in this case is trained for both detection and iden-
tification purposes. It is also trained to model the ambient noise feature
sub-space. The class labels for the fuzzy classifier are set as: 1 for ambient
noise, 2 for light vehicles, and 3 for heavy vehicles. The final structure of the
classifier rule base is presented in Figure 3.21. This rule base consists of 7
rules, which only use features 1, 2, and 8 (the first two energy bands and the
second parameter of spectral slope). These features are automatically chosen
during classifier training. Correctly classified feature samples are denoted by
blue dots and the misclassified samples are denoted by red dots. The training
dataset produced by the Experiment 2 signal has highly overlapping data, as
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Figure 3.20: Multistage procedure test results for the signal of Experiment 1.

was shown in Figure 3.18 and Figure 3.19. Nevertheless, the fuzzy classifier
succeeds in feature sub-space separation with 84.9% accuracy.

The results of signal analysis are presented in Figure 3.22, which consists
of two subplots:

1. Test signal with instances of passing vehicles (grey); reference labels
with values 1 corresponding to class 1 and 2 to class 2 (black);

2. Final estimated labels with values 1 corresponding to class 1 and 2 to
class 2.

As the time intervals between car passes are very short and often nonexistent
altogether, the reference class labels are plotted over the acoustic signal in
first subplot for presentation clarity. The intermediate results are not pre-
sented due to low presentation clarity. For Experiment 2 the following results
were obtained: out of 46 instances of class 1 vehicles 37 were successfully de-
tected and classified, 5 were undetected and 4 were confused with class 2; for
11 instances of class 2 vehicles 9 were correctly classified, 1 was not detected
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Figure 3.21: Fuzzy rule base for Experiment 2 data.

and 1 confused with class 1. Considering the harsh environmental conditions,
the overall detection and classification accuracy is acceptable.

The main problems causing reduced classification accuracy are situated
with the following circumstances.

• Severe corruption of the whole signal frequency band with high levels
of ambient noise.

• Due to dense traffic the time interval between vehicle passes is very
short and often does not allow for distinguishing between successive
vehicle passes. Furthermore, sounds of vehicles driving on lanes of
opposite direction may overlap and distort one another.

• Sound masking. A heavy truck can emit a noise loud enough to mask
the sound of a nearer but lighter car, thus making this car undetectable.

• Intermediate vehicle types (e.g., minibus or pickup truck) make the
boundary between light and heavy vehicles more ambiguous. As a
result for some specific types of vehicles precise classification is not
possible.
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Figure 3.22: Multistage procedure test results for the signal of Experiment 2.

General Testing Results

The multistage procedure operates sufficiently well in both cases of low and
heavy traffic. However if the flow of vehicles is consistent and very dense, a
decrease of identification quality is witnessed. The influence of background
noise, though reduced due to the multistage decision-making logic, cannot be
eliminated completely. The algorithm is applicable under different weather
conditions, which is demonstrated on the examples of both high and low
SNR signals. The sensitivity of the procedure can be adjusted to the needed
extent by tuning component parameters. This provides the opportunity to
apply the algorithm for classification of various types of moving objects not
limited to motorized vehicles.

3.2.4 Real-Time Operation on Embedded Device

Algorithm Complexity Minimization

The most time consuming procedures of the multistage algorithm are fea-
ture extraction and correlation coefficient calculation due to a large number
of lengthy vector operations. To reduce the number of summations several
feature extraction techniques were specifically chosen with similar summands.
Analyzing equations (2.16), (2.10), (2.14), (2.17), and (2.18), the recurring
elements are

∑K
k=1 |Xt[k]|, ∑K

k=1 |Xt[k]|2, and ∑K
k=1 k · |Xt[k]|, the first two

of which are also present in the correlation calculating equation (3.2). Com-
puting these sums only once and minimizing the number of cycles during
feature extraction greatly reduces the number of overall operations.
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Equations (2.17) and (2.18) may be further simplified if k is taken as an
integer vector index of the corresponding frequency component. The closed
form for the sum of K first successive integers is equal to

K∑

k=1

k =
1

2
K (K + 1) , (3.5)

and the sum of squares of K first successive integers is

K∑

k=1

k2 =
1

6
K (K + 1) (2K + 1) . (3.6)

Even if k is chosen non-integer, the sums of the resulting recurrences may
still be evaluated [61], however, these closed forms will definitely require
more computations than it is needed for (3.5) and (3.6). Calculating the
sums of reference vectors and the sums of squared reference vectors only once
during the offline stage of algorithm parameter specification turns (3.2) to a
more lightweight equation with only one specific summation, which must be
performed for each correlation coefficient calculation

∑K
k=1 |Xt[k]| · |Xr[k]|i.

Using a power of two as the signal frame length also reduces computation
complexity. FFT operation is optimized for frame lengths multiple to powers
of two [57]; also in this case many multiplications and divisions are replaced
by simpler and faster bit-wise arithmetic shifts.

Implementation and Processing Time Evaluation

For the implementation the embedded device Gumstix Overo Water with
System-on-Chip OMAP3530 (600 MHz ARM-Cortex-A8), 256MB RAM and
a 4GB microSD card was chosen. For the real-time operation experiment the
test signal of Experiment 2 is used. After training the fuzzy rule base and
tuning all the parameters of the algorithm, the signal file is streamed to the
device input buffer bypassing the ADC at the rate of the sampling frequency
in order to simulate real-time data acquisition and operation [16].

For the experiment the frame length was set to 214 = 16384, 213 = 8192,
and 212 = 4096 samples, which corresponds to 371.5 ms, 185.8 ms, 92.9 ms at
fs = 44.1 kS/s sampling rate, respectively. To be able to operate in real-time
each iteration of the identification procedure, therefore, must take less time
than the duration of one frame. The length of 16384 samples was chosen
initially during the development of the algorithm; two others are added in
order to test the processing time and are not well suitable for this specific
application due to the decrease in identification quality. Nevertheless, these
lengths may be suitable in other applications, and also show the dependence
of the required processing time on frame length. The test signal itself is
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625.27 seconds long, which corresponds to 1683 frames of length 16384, 3366
frames of length 8192 and 6732 frames of length 4096.

The processing time is measured for the following procedures:

1. FFT execution,

2. RMS energy calculation,

3. Feature extraction,

4. Fuzzy classification,

5. Calculation of correlation coefficients,

6. ASR envelope estimation.

During the experiment the algorithm is made to run to full extent, not ter-
minating during negative detection (i.e., after 2. or 4.) in order to achieve
consistent results.

Table 3.6: Processing time mean values for different frame lengths in ms

Frame Algorithm sub-procedures
length 1. 2. 3. 5. Total
4096 24.9 1.4 9.2 3.0 38.6
8192 28.3 1.7 9.9 3.5 43.4
16384 35.0 2.2 11.0 4.4 52.6

The mean values of processing times are presented in Table 3.6. Oper-
ations 4. and 6. are excluded from the table, as for all frame lengths the
times of 4. are either 30–31 or rarely 61 µs, and for 6. the processing times
are 30–31 µs. As expected, the most time-consuming operations are FFT
execution (consuming more than half of the total processing time) and fea-
ture extraction. Process 2. (RMS energy calculation) takes very little time,
so during non-detection the system resources are greatly spared. Correlation
computation also consumes much time increasing along with frame length
and the number of reference vectors. Thus, applying a faster alternative to
this method will increase system performance. Altogether, the mean total
processing time is significantly shorter than frame duration for all tested
frame lengths. Therefore, the algorithm can easily operate in real-time on
the given platform.

The distributions of processing times of the steps with the most variance
are presented in the form of histograms in Figures 3.23–3.25. The variance
of processing time is small and thus the predictability of computation time
is high, given that other parallel processes do not interrupt operation flow.
A small amount of values noticeably larger that the mean exist for every
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Figure 3.23: Processing time histograms for the frame length of 4096 samples.
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Figure 3.24: Processing time histograms for the frame length of 8192 samples.

87



0.034 0.035 0.036 0.037 0.038
0

200

400

600

800

1000
FFT calculation

Time (s)

E
le

m
e

n
ts

 i
n

 b
in

2 2.2 2.4 2.6 2.8

x 10
−3

0

200

400

600

800

1000
RMS energy calculation

Time (s)

E
le

m
e

n
ts

 i
n

 b
in

0.01 0.0105 0.011 0.0115 0.012
0

100

200

300

400
Feature extraction

Time (s)

E
le

m
e

n
ts

 i
n

 b
in

0.051 0.052 0.053 0.054 0.055 0.056
0

100

200

300

400
Total process

Time (s)

E
le

m
e

n
ts

 i
n

 b
in

Figure 3.25: Processing time histograms for the frame length of 16384 samples.

sub-procedure and the total process. These abnormalities of long processing
duration are most certainly influenced by side processes and problems with
memory allocation. Taking this into account and calculating the worst-case
total processing times, consisting of maximal values of every sub-procedure
time, gives 56.4 ms for frame length 16384, 47.5 ms for 8192 and 44.2 ms
for 4096 sample frame lengths, respectively. These estimates are still much
shorter than each corresponding signal frame duration.

3.2.5 Multistage Procedure Discussion

The main purpose of the proposed multistage procedure lies in the separation
of event detection and identification. Performing computationally expensive
operations, such as FFT and feature extraction, only when the initial signal
analysis indicates possible event detection, greatly reduces the work load,
conserving computational resources and extending battery life. A similar
approach is also beneficial for the typical pattern recognition approaches,
such as the one presented in Section 3.1. A time domain feature, e.g., the
signal energy envelope or the zero crossing interval, can specify signal inten-
sity or half period, respectively. As such properties can be clearly defined for
stationary processes, event detection can be quite straightforward.

For non-stationary processes, as the vehicle pass dynamic, neither time
nor frequency domain signal properties can be strictly defined. Model based
classification aids in confining the general feature sub-spaces, however, this
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requires discarding overlapping feature samples belonging to different classes.
This may result in information loss and specific parts of the process not being
correctly classified. For the vehicle pass process these overlapping feature
samples correspond to, e.g., early stages of vehicle approach. Discarding
these samples and classifying the vehicles only at the moment of the pass
itself is quite permissible, however, for other processes this may be impossible
to do without disrupting the identification procedure. Generally, inseparable
feature sub-spaces indicate poor choice of the feature set.

The most difficult problem for operation in open environments is situ-
ated with high levels of noise with unpredictable properties. Classifier train-
ing quality first and foremost depends on the quality of the training data
set. The reference features must be chosen with moderate amounts of back-
ground noise. Very noisy reference features will most likely produce large,
sparse and heavily overlapping feature clusters dependent on the stationary
properties of this particular noise. On the other hand, increasing the number
of used features will provide more information on the distribution of points
in the feature space, thus allowing for more efficient parameter tuning. In
simple classification techniques, like correlation analysis, heavy noise may
produce misclassifications by correlating with the references. Therefore, if
heavy noise is an expected property of the environment, model based classi-
fiers are preferable [106,134].

The influence of noise coupled with increased uncertainty of an open
environment make the discussed procedure applicable only in cases, where
system operation bounds are strictly defined. For passing vehicle identifi-
cation, for example, these bounds may be defined by the sensor’s specific
placement scheme and FOV (e.g., roadside, one or two lanes). For a more
general application field multi-modal signal analysis is preferable with signals
of different modalities reassuring each others identification results. Applying
multi-channel signal analysis also provides additional information, e.g., ob-
ject bearing or position estimates. For passing vehicles the constant change
in bearing, for example, indicates the pass event and also object direction of
movement.

3.3 Conclusions

The discussed procedures of single-sensor signal analysis produce localized
situation assessments. Though suffering from problems situated with noise
and unknown process states, individual smart sensors are shown to produce
accurate process state identification results for bounded application specific
problems. The operation scope of each individual smart sensor surely cannot
be wide enough to solve each of the tasks assigned to the entire CPS. The
simple situation assessments are aggregated through the system WSN, and
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presumably false assessments are eliminated by the generation of the global
situation assessment. Therefore, process state estimation accuracy of each
individual sensor does not have to be perfect in order for the system as a
whole to make the correct assessment. Real world process and environment
characteristics, such as undefined process states and transitions, undefined
number of noise sources with unknown properties, all produce unavoidable
classification errors during pattern recognition.

Stationary process state identification naturally presents less problems for
pattern recognition and can be performed with basic feature extraction and
classification schemes. Non-stationary process identification requires more
rigorous signal analysis and is apt to produce less accurate results due to
increased complexity in process dynamics. To ensure reliable identification,
thorough initial analysis of the process and the signals produced by it is
required. During initial analysis the chosen set of signal modalities, signal
processing parameters, set of extracted features, classification procedure type
and properties are iteratively refined to determine the well separable process
defining characteristics. Multi-modal smart sensors have an advantage in
this regard, as they are able to analyze a greater set of process characteristics
produced by different types of signals.
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Chapter 4

Multi-Sensor Solutions

The chapter discusses multi-sensor methods of Direction of Arrival (DOA)
and acoustic localization in a sensor network of individual sensor nodes
equipped with microphone arrays. The proposed DOA estimation and lo-
calization methods are developed under the constraints imposed by the limi-
tations of ad-hoc WSN operation. The chapter first reviews the planar DOA
estimation approach for a linear microphone array configuration [10,23]. Af-
ter that volumetric DOA estimation is discussed for a conical array consisting
of a Uniform Circular Array (UCA) with additional vertical microphones [21].
The chapter then continues with the proposed distributed localization ap-
proach [10,20]. Experimental verification results [12,13] are presented during
the coarse of every topic discussion. Physical limitations of the array config-
urations [12, 21] and their implementations on embedded hardware [12] are
also presented and verified.

4.1 Direction of Arrival Estimation with Linear
Arrays

A linear sensor array is the most simple structure for planar Direction of
Arrival (DOA) estimation and acoustic localization. In a linear array sev-
eral sensors are placed facing the same direction along a straight line with
specific distances between consecutive sensors. As all the sensors lie in the
same plane, volumetric DOA estimation is not feasible for this kind of array
structure. This section discusses methods of azimuth φ, or the horizontal
Angle of Arrival (AOA), estimation for linear arrays with the frontal Field
of View (FOV) of [−90◦, 90◦]. The frontal FOV is used because unless using
specific directional sensors the linear array structure does not allow for dis-
tinguishing between the DOA of the sources in front or at the back of the
array. For 360◦ FOV more reliable array structures are applied. The azimuth
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is chosen for the AOA component of DOA, as it is assumed that the array is
situated in the x-y plane along the x-axis with zero rotation.

4.1.1 Reduced Functional for SRP-PHAT

As discussed in Section 2.6.1, computing a Steered Responce Power (SRP)
value for every discrete point if the FOV requires an unjustified large number
of operations (2.31). Therefore, it is proposed to reduce the SRP-PHAT
functional a to a set of points along a circumference of a half circle, which
covers the front FOV of the linear array. The first two quadrants of the
horizontal plane in Cartesian coordinates is divided into nh possible azimuth
angles. A single angle increment is calculated as φh = π

nh
. The evaluation

points are chosen in the planar FOV along a circle with a radius rFOV . The
SRP-PHAT evaluation is performed over the half circumference [0, π] for the
points ah(i) = (xh,i, yh,i):

xh,i = rFOV cos (iφh) , (0 ≤ i ≤ nh) ,
yh,i = rFOV sin (iφh) , (0 ≤ i ≤ nh) .

(4.1)

The azimuth is estimated in the direction of elevated SRP values P (ah). For
a single source case the final azimuth is equal to

φ = arg max (P (ah)) · φh. (4.2)

An example of applying SRP-PHAT with a reduced functional to the
signal of man and woman simultaneous speech is presented in Figure 4.1.
The figure constitutes a simplified representation of the SRP image presented
in Figure 2.14. For the generation of both these figures the same signal
frame and the β-PHAT coefficient of β = 0.8 is used. The circle radius in
Figure 4.1 is equal to rFOV = 1.5 m (green half circle), and the number of
discrete angles is nh = 500, which results in the angular resolution of 0.36◦.
The SRP values (blue lines) for every point in the functional are scaled to
the circle radius with the largest ones pointing in the directions of the two
acoustic sources. By comparing Figure 4.1 to Figure 2.14 it is clear that
both contain equivalent information in terms of DOA estimation, however,
the reduced functional requires 500 SRP evaluations (2.31), as opposed to
3375 for the full SRP image.

4.1.2 Proposed Approach to DOA Estimation

SRP-PHAT is functional-driven in the sense that it calculates its SRP val-
ues only for the discrete directions specified by the given functional. In
this section a simple technique of DOA estimation for all possible directions
(bounded only by the discrete signal sampling interval) is proposed. For
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Figure 4.1: Result of applying SRP-PHAT with a reduced functional to the man and
woman speach signal frame of Figure 2.14.

Time Difference of Arrival (TDOA) estimation it applies cross-correlation in
the time domain, which eliminates the need of applying the computationally
heavy FFT. Generally, cross-correlation can be estimated in both the time
and frequency domains (which is applicable to both SRP-PHAT and the pro-
posed method), however, calculating the FFT for every frame of each channel
of the multi-channel signal requires tremendous amounts of resources and is
superfluous if other signal processing procedures do not also use the same
data.

l
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Figure 4.2: DOA estimation for a pair of microphones.

The considered narrow-aperture linear array consists of M microphones.
The DOA is estimated for the array front view, i.e., from−π

2 to π
2 . Estimation

is performed for all
(
M
2

)
combinations of microphone pairs. Considering

Figure 4.2, the sound wave originating from a source in the far field is acquired
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by the microphones m1 and m2 with a time delay τ = ∆d/c, where c is the
speed of sound in m/s, calculated using equation (2.30). The TDOA is
bounded by the interval τ ∈ [−τmax, τmax], where τmax = l/c is the delay of
sound traveling directly from one microphone to the other (i.e., at ±π

2 ).
DOA estimation is performed over a N ×M multi-channel signal frame

of form (2.1). A separate azimuth estimate ϕ̂ij is made under the far field as-
sumption for every pair of microphones (mi,mj), i = 1, . . . ,M , j = 1, . . . ,M .
For any pair (mi,mj) of consecutive microphones the azimuth estimate is ob-
tained by

ϕ̂ij = sin−1
(τij · c

l

)
= sin−1

(
∆kij/fs · c

l

)
, (4.3)

where l is the distance, and τij is the TDOA of the wavefront between mi-
crophones mi and mj , respectively. Depending on the chosen pair of micro-
phones, l will vary from l to l · (M − 1). Time delay τij is also represented in
(4.3) in terms of delay in samples ∆kij and the sampling frequency fs. To
estimate ∆kij cross-correlation is applied to the pair of signals as

Rij (∆k) =
N−1∑

k=0

xmi [k] · xmj [k −∆k], (i < j), (4.4)

where N is the length of the signals in samples. The maximum of the cross-
correlation then defines the TDOA:

∆kij = arg max (Rij (∆k)) . (4.5)

The quality of the estimate ϕ̂ij is measured as cross-correlation peak dis-
tinctness from its mean level:

qij = max (Rij (∆k))−mean (Rij (∆k)) . (4.6)

At this point data validation may be performed. If the maximum of
correlation is less than some threshold, the intermediate azimuth estimate
ϕ̂ij may be discarded. This way in absence of a sound source or in case
of heavy noise invalid estimates are avoided during this initial stage of the
procedure. Estimate ϕ̂ij passes validation if it satisfies the control condition

max (Rij (∆k)) > (1 + ε) ·mean (Rij (∆k)) , (4.7)

where ε is the threshold of correlation peak distinctness, which depends on
SNR. During algorithm testing ε is set in the interval of 0.2–0.3.

Having calculated C ≤
(
M
2

)
intermediate azimuth estimates (varying

slightly due to different inter-microphone distances and naturally occurring
errors), the final DOA estimate is derived taking into consideration the fol-
lowing special cases:
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1. If the estimates are uniformly spread, no common DOA can be derived.

2. If the estimates are consensual with slight variance, the common DOA
can be calculated as some measure of the pair-wise estimates.

3. If the estimates are consensual with slight variance, but some estimates
are outside the consensual group, these should be excluded from com-
mon DOA calculation.

4. If several distinct groups of consensual estimates exist, the one with
more members and better quality should be chosen for a single source
case, and several may be considered for multi-source applications.

These conditions are satisfied by applying a partitioning procedure, which
performs the task of clustering the ϕ̂∗ij estimates. The coherent estimates of
the resulting clusters must lie within sectors with a central angle of no more
than ϕmax. For example, if ϕmax = π

6 , then each cluster’s coherent estimates
must lie no more than

[
− π

12 ,
π
12

]
from the cluster’s centroid. The resulting

clusters Φp, p = 1, . . . , P , where P is the number of clusters, each contain
np estimates ϕ̂k, k = [1, np], and the associated quality qk. The clusters
are evaluated in order to find the largest cluster, containing estimates of best
quality [21]. Algorithm 4.1 handles the final azimuth calculation for the single
source case. The real-valued parameter σ = (0, 1) is the threshold of tolerance
and the integer parameter nmin is the lower bound for the largest cluster size.
The final azimuth estimate φ cannot be made if there are insufficient coherent
estimates, or if they are of low quality.

Algorithm 4.1 Final azimuth φ estimation for a single source
Require: Φp, qk of every ϕ̂k ∈ Φp, p = 1, . . . , P

get largest cluster size |Φ|max, maximum quality qmax

if |Φ|max = nmin or qmax < allowed then
return φ← ∅ . initial criteria not met

else if Φp of size |Φ|max contains ϕ̂k with qmax then
return φ←∑np

k=1 qkϕ̂k/
∑np

k=1 qk . weighted mean
else

for i = |Φ|max − 1 to i > nmin do . search in smaller Φp, np > nmin

if ∃qk ≥ σ · qmax for any ϕ̂k ∈ Φp, |Φp| = i then
return φ←∑i

k=1 qkϕ̂k/
∑i

k=1 qk
end if

end for
return φ← ∅ . estimates of sufficient qiality not found

end if
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The partitioning procedure performs final estimate validation by σ and
nmin parameters. Tuning the validation parameters allows to adjust the
sensitivity and noise tolerance of the procedure. If low variance of estimate
quality q is expected, the weighted mean may be replaced by the common
mean operation to spare resources. Algorithm 4.1 is easily adjustable to the
multi-source case by picking not one but several biggest clusters with best
quality estimates.

4.1.3 Performance at Low Sampling Rates

Implementation of the DOA estimation procedure on embedded hardware is
limited by the available sapling rate provided by specific embedded ADC. As
a result, sampling the multi-channel acoustic signal at the commonly applied
rate of around 40 kS/s is not always possible. Furthermore, DOA estimation
may be applied to signals of other modalities sampled at significantly lower
sampling rates. Therefore, analysis of low sampling rate influence on DOA
estimate resolution and accuracy is provided.
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Figure 4.3: Discretization of the AOA resolution defined by ∆kmax.

The essential operation for AOA estimation is the signal cross-correlation
(4.4). As the time delay τ ∈ R is bounded by τmax and τ is expressed in
delay in samples ∆k, then ∆k ∈ Z is also bounded by a maximal sample
shift ∆k ∈ [−∆kmax,∆kmax], where ∆kmax is calculated as

∆kmax =

⌊
l · fs

c

⌋
, (4.8)

where b·c denotes rounding to the largest previous integer (floor function).
Consequently, the AOA resolution of the sensor pair is reduced to the number
of possible discrete AOA values

nAOA = 2 ·∆kmax + 1. (4.9)

Figure 4.3 presents a AOA divided into 9 discrete sectors. For any actual
AOA ϕ, only its discrete approximation ϕ̂ ∈ [γ−∆kmax , γ∆kmax ], corresponding
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to the argument of correlation maximum (4.5), can be estimated. For devices
capable of operating only at low sampling rates this poses a problem in terms
of compromise between the values of l and ∆kmax . Consider Table 4.1, which
illustrates the dependence of the AOA resolution on l and fs at the speed of
sound c = 343 m/s, calculated using (2.30) for the ambient temperature of
t◦ = 20 ◦C. The standard CD sampling rate of fs = 44.1 kS/s is used for
reference, and l is calculated by inverting (4.8) as l = ∆kmax ·c/fs. The table
shows that to provide even the smallest nAOA the inter-sensor distances must
be quite considerable at low fs. It is clear that if smart sensor dimensions
do not exceed, e.g., 15–20 cm, it would not be reasonable to make l = 1.7 m
to provide the resolution of only 21 possible AOA.

Table 4.1: Required inter-sensor distance for different sampling rates

∆kmax nAOA
l (cm) for fs equal to

44.1 kS/s 20 kS/s 8 kS/s 2 kS/s 500 S/s
1 3 0.8 1.7 4.3 17.2 68.6
2 5 1.6 3.4 8.6 34.3 137.2
3 7 2.4 5.2 12.9 51.5 205.8
10 21 7.8 17.2 42.9 171.5 686
20 41 15.6 34.3 85.6 343.0 1372
50 101 38.9 85.8 214.4 857.5 3430
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Figure 4.4: Results of signal cross-correlation at different sampling rates.
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Low sampling rates also influence cross-correlation coefficients in two
ways. Firstly, if the signal contains many strong components in the higher
frequencies and they are not acquired at low sampling rates, aliasing may
occur, which, in turn, reduces the correlation reliability. A precise peak
corresponding to a single ∆k loses its steepness and spreads to several val-
ues. This makes AOA estimation and the control metric (4.7) less reliable.
Secondly, the cross-correlation yields exactly nAOA coefficients, and if this
number is low, the correlation peak cannot stand out from the average cor-
relation level as much as in the case of high sampling rates. At low SNR
the peak becomes almost uniform with the average level and control met-
ric (4.7) declares the result invalid for the majority of signal frames. Both
effects are evident from Figure 4.4. The upper plot presents the result of
cross-correlation of two signals sampled at 44.1 kS/s and the lower plot — at
8 kS/s. For both cases the inter-microphone distance is equal to l = 0.45 m.
The AOA to the acoustic source, as well as signal power, are the same. As
nAOA is more than five times larger in the case of fs = 44.1 kS/s, and more
signal energy information is contained in a single frame, the correlation peak
is much more steep and evident than in the fs = 8 kS/s case. Generally,
at a fixed fs correlation results are improved by increasing the signal frame
length, thus providing more signal energy information. Here a compromise
between correlation result reliability and the device refresh rate, as well as
the amounts of required memory must be reached.

4.1.4 Discussion

SRP-PHAT and the proposed approach to DOA estimation are similar in na-
ture in the sense that both apply the cross-correlation metric for signal phase
shifting and estimating TDOA. It may seem that SRP-PHAT is not bound
by the discretization of the FOV and AOA by the signal sampling rate. If
SRP-PHAT applies an integer lag step correlation function (or beamformer),
it is bound by the same limitations, as shown in Figure 4.22 of Section 4.1.3.
If the resolution of the SRP spatial vector is higher than the actual resolu-
tion bounded by signal properties, the latter can be artificially increased by
signal modeling and interpolation. However, the same can be applied to the
proposed method.

The performance of the proposed DOA estimation method is evaluated
in Section 4.4, and its computational efficiency is evaluated in Section 4.4.3.
The computational efficiency of the proposed method is not evident in case of
a single narrow-aperture sensor array, however, for a wide-aperture array or
a set of distributed arrays the reduction of computational resources is quite
considerable if compared to SRP-PHAT.
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4.2 Volumetric Direction of Arrival Estimation

In this section the task of 2D DOA estimation is discussed. It consists of esti-
mating the horizontal AOA, or azimuth φ, and the polar AOA, or elevation θ,
of incoming acoustic waves (see Figure 2.12).

4.2.1 Conical Array Structure

The microphone array structure for this task is designed to meet the desired
FOV for localization of ground objects with slight elevation. The targeted
application field assumes localization of slowly moving sources (no more than
5 m/s) in both indoor and open outdoor environments. The array consists
of Mh microphones, which are equidistantly mounted in a horizontal circular
shell, forming a Uniform Circular Array (UCA), andMv microphones placed
vertically upwards from the center of the circular shell. This conical configu-
ration with Mh = 6, Mv = 2, is depicted in Figure 4.5 along with the desired
FOV of the array.

Circular arrays are appealing because they provide 360◦ FOV with a
very simple geometry, however, they can suffer from the influence of acoustic
sources not-of-interest arising in this broad FOV. The shell mounting is used
to reduce the directivity of the UCA horizontal microphones in order to tackle
this problem. In a closed indoor environment this helps to reduce the suscep-
tibility to reverberation. In an open environment, where an unpredictable
number noise sources may arise at any given moment, the microphones facing
the sound source of interest are less affected by noise sources arising in other
directions.

x

y

z360˚
60˚

-60˚

Horizontal
FOV

Vertical
FOV

DOA

ϕ

θ

Figure 4.5: Configuration and the desired FOV of the considered conical microphone array.

The application of vertical microphones enables the estimation of eleva-
tion θ. As the horizontal microphones are situated in the x-y plane, UCA
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alone cannot reliably estimate DOA with non-zero elevation, as depicted in
Figure 4.6. The figure portrays a SRP three-dimensional slice of the fourth
quadrant of the horizontal plane with array center at (0, 0, 0) (i.e., the right-
most corner of the image), with the DOA to the acoustic source being equal
to φ = 300◦, θ = 30◦. As indicated by the confined red region, the applica-
tion of both vertical and horizontal microphones enables to form a narrow
beam of 2D DOA.

The array must be compact (environment integrable and inconspicuous)
for the considered applications in CPS. For the first experimental prototype
a circular shell with the radius of r = 7.5 cm is used. For UCA the angle
between two successive microphones relative to the array center O is

α = ∠mh
iOm

h
i+1 =

2π

Mh
, (1 ≤ i < Mh). (4.10)

This angle is equal to α = π
3 for the case of six microphones. The two vertical

microphones mv
1, mv

2 are set at distances of 0.1 and 0.2 m from the horizontal
plane to meet the desired vertical FOV of [−60◦, 60◦].

4.2.2 Volumetric Functional for SRP-PHAT

Computing SRP-PHAT for a volumetric spatial grid requires significantly
more resources than is required for the planar case considered in Section 2.6.1.
Considering the example presented in Figure 4.6, the volumentric grid of
the FOV fourth quadrant, measuring 0.5 m in length, depth and height,
is partitioned into discrete points with a distance of 0.01 m along every
axis. Thus, the volume vector a consists of 0.53/0.013 = 125000 discrete
directions, and so the evaluation (2.31) must be performed the according
number of times. For the entire 360◦ coverage along every axis all eight
such FOV segments must be evaluated, which brings the total number of
evaluations to one million.

To reduce the SRP-PHAT functional, it is proposed to perform horizontal
and vertical DOA estimation separately. In this manner the horizontal plane
is divided into nh and the vertical plane — into nv possible AOA angles,
respectively. A single angle is calculated, similarly to (4.10), as φh = 2π

nh
and

θv = π
nv
. The points are chosen in the volumetric FOV along a spherical sur-

face with radius rFOV . The horizontal SRP-PHAT evaluation is performed
over the entire circumference [0, 2π) for the points ah,i = (xh,i, yh,i, 0):

xh,i = rFOV cos (iφh) , (0 ≤ i < nh) ,
yh,i = rFOV sin (iφh) , (0 ≤ i < nh) .

(4.11)

The azimuth φ is estimated in the directions of elevated SRP values. For a
single source case it is equal to

φ = arg max (P (ah)) · φh. (4.12)
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Figure 4.6: Volumetric SRP images computed with (top) and without (bottom) the ap-
plication of vertical microphones. Acoustic source at φ = 300◦, θ = 30◦.
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After obtaining φ, the vertical SRP-PHAT evaluation is performed over the
vertical half-circumference from the positive z-axis downward, i.e. [0, π], in
the direction of established azimuth φ for the points av,i = (xv,i, yv,i, zv,i):

xv,i = rFOV cos (φ) sin (iθv) , (0 ≤ i ≤ nv) ,
yv,i = rFOV sin (φ) sin (iθv) , (0 ≤ i ≤ nv) ,

zv,i = rFOV cos (iθv) , (0 ≤ i ≤ nv) .
(4.13)

The elevation angle is estimated in the direction of elevated SRP, and also
brought to a more comprehensive interval

[
π
2 ,−π

2

]
from the positive z-axis

downward:
θ =

π

2
− arg max (P (av)) · θv. (4.14)

In a multi-source case where, several φ of elevated SRP values are chosen,
the elevation angle pass must be performed for each φ, which increases re-
source demand, however, is less computationally expensive than, e.g., passing
all discrete points along a spherical surface.

4.2.3 Proposed Volumetric DOA Estimation Approach

Even with a reduced functional, SRP-PHAT still requires significant re-
sources and processing time, because it performs cross-correlation between
all pairs of microphones for all specified directions. The proposed approach
focuses on reducing the number of microphone pairs for cross-correlation and
the number of discrete directions per each pair [21].

The proposed two-stage approach is designed for a conical array with
Mh horizontal and Mv vertical microphones, discussed in Section 4.2.1. As
the horizontal microphones take a directional DOA estimation approach, the
pairs of microphones for azimuth estimation are chosen such, that their inter-
sensor angle is less than π

2 : αij = ∠mh
iOm

h
j <

π
2 . Let us denote the set of

these pairs as

Ah =

{(
mh
i ,m

h
j

)
⊆ SMh

2

∣∣∣∣ αij <
π

2

}
, (4.15)

where SMh
2 is the set of all combinations of horizontal microphone pairs with

cardinality
∣∣∣SMh

2

∣∣∣ =
(
Mh
2

)
. A separate azimuth estimate ϕ̂ij is computed for

every pair (mh
i ,m

h
j ) ⊆ Ah, and a final estimate φ is made.

For the elevation angle estimation a set of horizontal microphones situated
within the half-circumference of direction φ is chosen:

Aact =

{
mh
i

∣∣∣∣ −
π

2
≤ αφ,mhi <

π

2

}
, (4.16)

where αφ,mhi = φ − αmhi is the angle between the azimuth estimate and the
microphone position. Here Aact denotes the set of so-called “active” horizon-
tal microphones. The pairs participating in elevation estimation consist of:
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pairs between every active microphone and every vertical microphone; every
pair of vertical microphones. Lets denote this set as

Av =

{(
mh
i ,m

v
j

) ∣∣∣∣ mh
i ∈ Aact, j = [1,Mv]

}
∪ SMv

2 , (4.17)

where SMv
2 is the set of all combinations of vertical microphone pairs with

cardinality
∣∣∣SMv

2

∣∣∣ =
(
Mv

2

)
. A separate elevation estimate θ̂ij is computed for

every pair (m∗i ,m
∗
j ) ⊆ Av and the final estimate θ is made.
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Figure 4.7: Horizontal (left) and vertical (right) AOA estimation for a far field acoustic
source using a conical microphone array.

Azimuth Angle of Arrival Estimation

For azimuth estimation the far field disposition of the acoustic source is
assumed. The initial azimuth estimates are made for every pair of horizontal
microphones

(
mh
i ,m

h
j

)
⊆ Ah, as portrayed in Figure 4.7 (left). For any

pair
(
mh
i ,m

h
j

)
of consecutive microphones the azimuth estimate is obtained,

similarly to Section 4.1.2, by applying (4.3), where l is the distance between
two consecutive microphones, calculated as

l = 2r sin
(α

2

)
= 2r sin

(
π

Mh

)
, (4.18)

where α is calculated for UCA by applying (4.10). For non-consecutive mi-
crophones, l is calculated by substituting α in (4.18) with its multiple. For es-
timation of TDOA τij in terms of delay in samples ∆kij , the cross-correlation
(4.4) is applied to the pair of signals

(
mh
i ,m

h
j

)
as it is done in Section 4.1.2.

The quality metric (4.6) is calculated per each estimate ϕ̂ij , and verification
(4.7) is performed.

Each estimate ϕ̂ij is made for the middle point if the inter-microphone
distance (see Figure 4.7 left) and takes the values of ϕ̂ij ∈

[
−π

2 ,
π
2

]
, assuming
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negative values if the source is left, positive if the source is right, and zero
if the source is in front of the pair. Thus, ϕ̂ij are adjusted to array angle
coordinates as

ϕ̂∗ij = ϕ̂ij + ((i− 1)α+ (j − 1)α) /2. (4.19)

Consensual directions are found among the estimates by applying the par-
titioning procedure discussed in Section 4.1.2. The procedure performs the
task of clustering the ϕ̂∗ij estimates such, that the coherent estimates must
lie within a sector with a central angle no mare that ϕmax, and computes the
final azimuth φ by applying Algorithm 4.1.

Elevation Angle of Arrival Estimation

Elevation estimation is performed once the azimuth is set. As the horizontal
microphones are not in line with the wavefront, incoming at φ AOA, the
signals of active microphones in Aact must be shifted to meet the TDOA
at φ. In computing this shift the far field assumption is also made. Its
inconsistency produces negligible error, as it is discussed in Section 4.2.4.

After the signals xmhi ∈Aact
have been shifted to meet the φ AOA, elevation

estimates θ̂ji for all microphone pairs in Av are obtained by applying (4.3)
and (4.4). The pairs of horizontal and vertical microphones, as portrayed in
Figure 4.7 (right), are set at angles γj , j = [1,Mv], relative to the vertical
plane. Thus, the initial estimates are steered by

θ̂∗ji = γj − θ̂ji = tan−1

(
r

zmvj

)
− θ̂ji, (4.20)

where zmvj is the distance from O to mv
j on the z-axis. Final elevation AOA

estimation is performed by applying the previously discussed partitioning
procedure to clusters Θp and computing the final elevation angle estimate θ
by applying Algorithm 4.1.

4.2.4 Signal Shifting and Influence of Near Field Error

As for elevation estimation the azimuth estimate is fixed, the signal of the
active horizontal microphones in Aact must be shifted to meet with the φ
AOA. Consider Figure 4.8. The far field planar acoustic wave reaches mi-
crophone mh

i in the horizontal plane with a spatial delay h, which is defined
as

h = a cosβ = 2r sin

(αφ,mhi
2

)
cos

(π − αφ,mhi
2

)
. (4.21)

The signal of microphone mh
i must thus be left-shifted for ∆kf =

⌊
hfsc

⌋

samples.
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Let us now review the case, where the far field assumption is not met.
The spatial delay between a far field planar and a near field spherical acoustic
waves is defined in Figure 4.8 as ∆nf . Assuming a near field source, situated
at distance d from the point of wavefront arrival to the array at an angle φ, the
microphonemh

i will receive the wave from the distance R with a spatial delay
of R−d. While dealing with a spherical wavefront we have h+∆nf = R−d,
and thus the spatial delay error is equal to

∆nf = R− d− h, (4.22)

where R is defined as

R =
√
d2 + a2 − 2ad cos (π − β). (4.23)

In turn, the delay error in samples is

∆knf =

⌊
(R− d− h)

fs
c

⌋
= f

(
r, αφ,mhi

, d, c, fs

)
. (4.24)

Now let us evaluate the influence of d and fs on the near field error with
the fixed: sound speed c, r (by array geometry) and αφ,mhi (by requirement
of belonging to Aact). Table 4.2 presents several cases of near field error at
different d and fs. The values of ∆knf for the same d and fs lower than
those presented in the table are equal to zero. For the array geometry at
hand the error produced by a sound source at a distance larger than 0.1 m
is negligible, even at fs = 48 kS/s.
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}R‒d
β

r

h

Δnf

Spherical
wavefront

Planar
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O

mi
h
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hα

Figure 4.8: Signal delay estimation for the near and far field assumptions.

4.2.5 Experimental Evaluation

The proposed method of volumetric DOA estimation is evaluated on an array
implementation with the following parameters: r = 7.5 cm, Mh = 6, α = π

3 ,
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Table 4.2: Influence of near field error at different d and fs

c = 343 (m/s), r = 7.5 (cm), αφ,mhi = π
2

d (m) fs (S/s) R− d (cm) ∆nf (cm) ∆knf (S)
0.05 48000 9.51 2.06 3
0.05 32000 9.51 2.06 2
0.05 24000 9.51 2.06 1
0.1 48000 8.97 1.52 2
0.1 32000 8.97 1.52 1
0.1 24000 8.97 1.52 1
0.2 48000 8.44 0.99 1
0.7 48000 7.81 0.36 1

Mv = 2, zmvj = {0.1, 0.2} m. For signal acquisition Vansonic PVM-6052
condenser microphones are used. The microphones are connected through
an amplification board to an Agilent U2354A data acquisition device, which
samples the signals at fs = 48 kS/s per channel. The data is acquired and
processed in the MATLAB environment using the Data Acquisition Toolbox.
The processing is performed frame-by-frame with a step of 0.1 seconds for
both the proposed method and SRP-PHAT.

The experiments for single source DOA estimation are performed indoors
under SNR conditions of approximately 20 dB. A loudspeaker, reproducing
human speech, is placed at certain angles within a distance of 1–2 m from
the array. A total of four experiments is considered. For the first two the
speaker remains at φ = 300◦ (i.e., in the direction of the 6-th microphone)
and is lifted and lowered to test θ estimation accuracy. The speaker either
remains at a certain θ for 3–4 seconds (Experiment I), or moves constantly
(II). For the other two experiments the speaker is moved around the array,
DOA varying in both φ and θ. Here the speaker is also displaced either fixing
the position with stops (III), or moving constantly (IV).

The parameters for the SRP-PHAT approach, reviewed in Section 4.2.2,
are set as rFOV = 0.5 m, nh = 500, nv = 250, which results in unit angle ac-
curacy of φh = θv = π

250 ' 0.72◦. The approach thus requires 750 evaluations
(2.31), as opposed to hundreds of thousands in case of exhaustive search. The
result of DOA estimation for a single frame is presented in Figure 4.9. In
the figure the azimuth estimates (on the left) are normalized to the FOV ra-
dius rFOV , and the elevation estimates (on the right) are normalized to the
interval [0, 1]. Both global maxima of φ = 300◦ and θ = 30◦ are distinctive
among local surplus peaks of SRP, likely arising due to reverberation. The
elevated θ levels at approximately −10◦ are noteworthy, apparently arising
due to sound reflections from the floor surface, as studied in [138].
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The proposed approach utilizes 19 pairs of microphones according to the
definitions of Ah and Av in (4.15), (4.17): 6 consecutive pairsmh

im
h
i+1 ((1, 2),

(2, 3), etc.); 6 pairs over one microphone mh
im

h
i+2 ((1, 3), (2, 4), etc.); 6 pairs

between two vertical mv
j and three horizontal mh

i microphones; 1 pair of
vertical microphones mv

im
v
i+1. Thus the number of pairs is less than for

the SRP-PHAT case, which utilizes
(

8
2

)
= 28 pairs. This difference will be

more evident, if applied to a larger number of microphones. The clustering
parameters are set to ϕmax = 30◦, θmax = 10◦, σ = 0.6. The result of
DOA estimation with the proposed method for a single frame is presented
in Figure 4.10. In the figure the azimuth estimates (on the left) are colored
by quality from worst to best as follows: black, blue, green, red. Elevation
estimates (on the right) are presented for 10 successive frames up to the
frame at hand with the colored lines denoting the intermediate estimates by
microphone pairs in Av. The thick black line denotes the final estimates
for both azimuth and elevation. The initial azimuth estimates of Figure 4.10
strongly resemble the SRP peak distribution pattern of Figure 4.9, indicating
a similar reaction to reverberation.

The DOA estimates of both methods for signal segments of Experiments
I and IV are presented in Figure 4.11 and Figure 4.12, respectively. Static
position of a highly elevated source seems to disrupt φ estimation for both
methods, which is evident in the interval of φ = [50◦, 60◦] in Figure 4.11.
During constant movement this static error effect is not observed, however,
certain irregularities do arise during rapid movement, e.g., during the inter-
val of 3–6 s in Figure 4.12. Generally, the proposed method is not inferior
to SRP-PHAT in the considered FOV, while requiring less processing time.
Table 4.3 presents the processing time (average over 10 runs) and DOA es-
timate Root Mean Square Error (RMSE) for the four experiments. As the
processing time is measured in MATLAB running on a PC, it is by no means
an adequate measure of computation speed on embedded hardware, however,
it shows that the proposed method operates more than 3 times faster than
SRP-PHAT over the reduced functional. As the testing was performed man-
ually, the error in speaker placement cannot be strictly accounted for, and
thus exact reference AOA are unspecified. Therefore, the RMSE is calculated
as a difference between the estimates produced by SRP-PHAT and the ones
produced by the proposed method:

RMSE(φ) =

√√√√ 1

NE

NE∑

i=1

(
φ

(SRP)
i − φ(Prop)

i

)2
, (4.25)

where NE is the total number of estimates. The RMSE remains in reasonable
bounds for all experiments, if considering close range localization.
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Figure 4.9: Result of SRP-PHAT over reduced functional for a frame of Experiment I.
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Figure 4.10: Result of the proposed method for a frame of Experiment I.
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Figure 4.11: DOA estimates for Experiment I. Red — φ by SRP-PHAT, purple — φ by
the proposed method, blue — θ by SRP-PHAT, green — θ by the proposed method.
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Figure 4.12: DOA estimates for Experiment IV. Red — φ by SRP-PHAT, purple — φ by
the proposed method, blue — θ by SRP-PHAT, green — θ by the proposed method.
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Table 4.3: Experimental signal processing times and RMSE of DOA

Exper- Length t. proc. (s) t. proc. (s) RMSE RMSE
iment (s) SRP-PHAT proposed φ (deg) θ (deg)

I 70.0 283.45 84.25 4.51 2.29
II 62.0 248.77 74.63 5.22 1.86
III 86.0 343.30 103.68 9.43 2.84
IV 52.0 210.97 62.88 13.67 1.99

4.3 Acoustic Localization

Even optimized localization algorithms, e.g, SRP-PHAT with Stochastic
Region Contraction (SRC) reviewed in Section 2.6.2, require a significant
amount of resources while starting the evaluation on the initial search area
or volume. Furthermore, the convergence on a sharp maximum may be
guaranteed only if it exists in the FOV. For many applications and moni-
tored object types this is not always true. Large objects, like vehicles or
other machinery, do not have a single point of sound emission, rather they
appear as spread regions of heightened acoustic energy with several maxima.
On the other hand, if no sound source is present in the FOV, the localization
algorithms will search for maxima in ambient noise, which produces useless
results while consuming resources. The reduction of the initial search area,
firstly, allows to estimate the presence of the sound source in the FOV, and
secondly, greatly reduces the computational load of localization.

This section presents the proposed method of Initial Search Region Re-
duction (ISRR) designed for distributed sensor networks. The method oper-
ates on a set of distributed sensor arrays and confines the region of acoustic
source search. The global maximum of cumulative acoustic energy is esti-
mated by applying SRP-PHAT with SRC to the confined region for wired
synchronous system experiments. As neither inter-node wired communica-
tion, nor WSN node clock synchronization are assumed in the targeted sys-
tem design, the regions confined by ISRR are used as estimates of approxi-
mate localization in the prototype implementation.

4.3.1 Distributed Localization in WSN

The considered WSN system is designed for localizing grounded acoustic
sources. The sensor arrays are placed in the monitored environment in the
horizontal plane, and localization is performed by estimating the coordinates
(x, y) of sound emitting objects. The proposed WSN architecture is designed
for applications in both open outdoor (urban, woodland, etc.) and confined
indoor (home, office, industrial facility, etc.) environments. The network
consists of two types of nodes: smart sensors and fusion nodes. Multi-channel

110



smart sensors acquire acoustic information and perform local computations.
Fusion nodes gather information from the smart sensors and perform further
steps of localization. Such a configuration increases robustness due to high
decentralization. A large number of distributed measurement points also
simplifies multiple source localization, as the monitored area is divided into
smaller local regions.

The multi-channel sensors are dispersed in the monitored environment
either in an orderly or random fashion. In confined environments an or-
derly placement is more likely, because sensors are usually mounted on room
walls or ceilings. In open environments, however, its is rarely the case as
the sensors may be attached to buildings, light posts, trash bins, etc., in
urban environments and to trees, rocks, etc., in natural environments. Thus,
a general case is assumed, where the sensor’s location is defined by the coor-
dinates of its point of reference (xr, yr) and the angle α, by which the sensor
is steered from the global angle of reference, as it is shown in Figure 4.13.
For example, sensor location may be estimated via the Global Positioning
System (GPS), in which case the point of reference is the GPS unit. For
environments, where GPS signals are unavailable, other location algorithms
based on Radio Frequency (RF) [149] or sound [95] may be adopted. The
global angle reference may be defined by Earth’s magnetic field, and the angle
α estimated using a digital compass. The central point of the microphone
array (x0, y0), for which the DOA is actually estimated, is defined by the
reference point (xr, yr) and may coincide with it. The coordinates of each
microphone in the array are then calculated based on the array geometry. In
a linear array the coordinates of the i-th microphone (xi, yi) are shifted from
(x0, y0) and steered by α as

[
x

(rot)
i

y
(rot)
i

]
=

[
x0

y0

]
+

[
cos(α) − sin(α)
sin(α) cos(α)

] [
xi − x0

yi − y0

]
. (4.26)

Sensor nodes are partitioned into groups, where a single node can belong
to any number of groups. The whole network may consist of several groups,
or each group can constitute a separate sub-network. Group partitioning is
in essence a clustering task, for which two aspects are taken into consider-
ation. Firstly, nodes must have a common FOV for all arrays to observe
the same area. In this regard, the observed area is not necessarily enclosed
by sensor nodes, as shown in Figure 4.13, but may be observed from one or
several sides. Secondly, a group must have a certain degree of homogene-
ity. Nodes located too far from the group’s centroid may be useless to the
localization effort in low SNR environments, or when the sound emitted by
the source of interest is too weak. Furthermore, non-homogeneous groups
present additional challenges for wireless communication.
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Fusion nodes of the WSN perform sensor node grouping during network
initialization and later participate in localization. For an orderly configura-
tion of sensor nodes a single fusion node may be assigned to coordinate the
activity of the whole WSN. In a random configuration each sensor node may
be a part of several groups and each group may be governed by several fusion
nodes. In order to ensure coverage of all groups, fusion nodes reach an agree-
ment concerning which node will govern which sensor node group. In this
process communication signal strength is taken into account, meaning that
a fusion node will adopt a group, to which it has the strongest connection.
However, if there exists an ungoverned group, a redundant (i.e., covering an
already covered group) fusion node closest to it will switch to that group.

Figure 4.13: Initial search region estimation by (a) DOA estimation and (b) multilateration
in a random configuration of sensor array blocks.

4.3.2 Initial Search Region Reduction

In a distributed WSN architecture each array sub-block is implemented on
a separate sensor node. From a classical standpoint sub-arrays with com-
mon FOV form a single wide-aperture array with a wide FOV. If raw signal
communication was possible in the WSN, real-time operation of classical lo-
calization techniques utilizing every pair of microphones would still not be
feasible as the number of pairs for a combined set of sub-arrays is far greater
than the number of pairs in each separate sub-array. ISRR performs search
region confinement without utilizing inter-node information and raw signal
communication.

ISRR is performed by estimating the DOA for every sub-array and finding
the region of common DOA (i.e., the intersection of DOA vectors) as is shown
in Figure 4.13a. An alternative approach of choosing sensor triplets and
performing multilateration to retrieve the source coordinate estimates is also
considered, where the aggregate of coordinate estimates denotes the search
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region (Figure 4.13b). The multilateration approach cannot be implemented
in WSN as it requires node synchronization and raw signal communication
for TDOA estimation. It is used in this work merely for comparison with the
proposed DOA approach.

Though the ISRR procedure principle is depicted in Figure 4.13 with lin-
ear sub-array blocks, it does not depend on any specific array configuration.
This portrayal is chosen for presentation conformity because the procedure
is further tested on linear array nodes.

The DOA Approach to ISRR

Having K microphone arrays observing a common FOV, the ISRR procedure
is performed in the following steps:

1. Estimate the DOA for each of K arrays.

2. Generate vectors spanning from the array centers to the bounds of the
FOV in the directions of DOA.

3. Find points of intersections of these vectors.

4. Find groups of points no farther than Dmax distance units (meters)
from their centroid and enclose the areas in which these groups reside
in rectangles (or other appropriate geometrical shapes).

5. Perform control of false detection, discard areas that do not meet spe-
cific criteria (optional).

Step 1. is performed on each sensor node, steps 2.–5. are performed on the
group’s fusion node. The DOA for planar localization consists of the az-
imuth φ, which is estimated for every array by applying the DOA estimation
procedure for linear arrays, presented in Section 4.1.2. If other types of mi-
crophone arrays are used in the system, the appropriate procedure of DOA
estimation is applied to them. For example, azimuth estimation for UCA is
performed for the horizontal microphones defined by (4.15), as discussed in
Section 4.2.3.

The fusion node receives K1 ≤ K DOA estimates φi, i ∈ (1, . . . ,K1) and
adds the sensor node rotation angles αi to them. As only part of the smart
sensors may perceive the signal and estimate validation may fail on others,
the number of incoming DOA estimates can be less than the number of sensor
nodes in the group. For each device, which has estimated DOA, a vector

−−→
ABi

is computed with the starting point Ai = (x1,i, y1,i) being the coordinate of
i-th array’s center and the ending point Bi∗ = (x2,i, y2,i) being the point at
the bound of the FOV steered by φi from the array’s center. Intersection
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points of all pairs
−−→
ABh,

−−→
ABq, such that h ∈ (1, . . . ,K1), q ∈ (1, . . . ,K1),

h 6= q, are calculated as

Ihq = (Ix, Iy)hq =(
(x1,hy2,h−y1,hx2,h)(x1,q−x2,q)−(x1,h−x2,h)(x1,qy2,q−y1,qx2,q)

(x1,h−x2,h)(y1,q−y2,q)−(y1,h−y2,h)(x1,q−x2,q)
,

(x1,hy2,h−y1,hx2,h)(y1,q−y2,q)−(y1,h−y2,h)(x1,qy2,q−y1,qx2,q)
(x1,h−x2,h)(y1,q−y2,q)−(y1,h−y2,h)(x1,q−x2,q)

)
.

(4.27)

As a result we have a set of Ii∗ intersections, i∗ ∈ (1, . . . ,K2), K2 ≤
(
K1

2

)
.

To get the confined search areas these intersection points are partitioned by
their relative distance. For the maximum distance Dmax the partitioning
is performed according to Algorithm 4.2. In the algorithm the set of all
intersection points I of dimensions K2 × 2 consists of K2 coordinate vectors
Ii∗ = (Ii∗,x, Ii∗,y). Therefore, the initial cardinality of I is |I| = K2. The
procedure separates the points by distance into partitions Pj ⊂ P, each
consisting of some number of vector coordinates Pj,i∗∗ = (Pi∗∗,x, Pi∗∗,y)j . As
Algorithm 4.2 operates in planar Cartesian coordinates, each coordinate and
centroid value is defined by two parameters. Centroid C(I) contains C(Is),
s = 1, 2, for x and y parameters, respectively. Centroid C(Pj) contains
C(Pj,s), s = 1, 2, for x and y parameters, respectively. For other applications
a different dimensionality for the Euclidean distance can be chosen.

Algorithm 4.2 Intersection point partitioning procedure
Require: I 6= ∅

if |I| = 1 then . only 1 point
return P← I1

end if
j = 0 . initial number of partitions
while |I| > 0 do
C(I) = 1/ |I| ·∑ I . centroid of free points
Dk =

√∑
s=1,2 (Ik,s − C(Is))2, k = 1, . . . , |I| . Euclidean distance

p = arg min(D), j = j + 1, Pj ← Ip, Ip ← ∅ . new partition
do
C(Pj) = 1/|Pj | ·

∑
Pj . partition centroid

Dk =
√∑

s=1,2 (Ik,s − C(Pj,s))2, k = 1, . . . , |I|
if min(D) ≤ Dmax then . allowed distance

p = arg min(D), Pj ← Ip, Ip ← ∅ . add to partition
end if

while min(D) ≤ Dmax

end while
return P . return established partitions
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After obtaining the partitions P, their areas are enclosed by rectangles
with the edges denoted by the partitions minimal and maximal values of x
and y components. A small constant is added to single point partition areas
in order to ensure minimal area (0.1 m is chosen for the experiments). As
a result several regions may occur in the same FOV. Also while a vector
of DOA from one array may cross with several other vectors, redundant
“echoing” regions may arise. These may be removed by additional control
metrics or by using tracking filters. For a wired implementation the maximal
SRP value of each confined region can be compared to the values of other
regions in order to locate the strongest acoustic source.

The procedure is also applicable to multiple target localization. If the
sensor arrays are able to provide several DOA estimates corresponding to
several consensual directions, ISRR treats all these estimates equally and
confines the search regions of two or more sources in the same manner as
for the single source case. The only difference here lies in the specification
of rules for choosing not one but several best fit regions. Furthermore, as
sound pressure decreases exponentially with propagation, each sensor node
group can identify a source closest to it. If the groups have overlapping FOV,
several targets may be identified by different parts of these groups based on
this principle.

Multilateration Approach to ISRR

Multilateration can be applied in ISRR as a TDOA based method for search
region confinement, as apposed to the proposed DOA based approach. As it
is discussed in Section 2.6.3, the distance between the sensor with coordinates
(xi, yi, zi) and the acoustic source is defined as a vector length (2.34). For the
multi-sensor WSN ground applications the solution is simplified by constant z
dimension. Thus, having a TDOA τij between two nodes i and j, the distance
difference between both sensors and the source (2.35) is also simplified to

dij = c · τij = c (τi − τj) =√
(xi − x)2 + (yi − y)2 −

√
(xj − x)2 + (yj − y)2 , (4.28)

where dij is the distance difference estimate between sensors i and j, and
(xi, yi) and (xj , yj) are the sensor respective coordinates [91]. If τij is repre-
sented in terms of delay in samples ∆kij with sampling frequency fs, then
the difference, similar to (4.3), is computed as dij = ∆kij/fs · c. The delay
τij is calculated using cross-correlation (4.4), also applying the control met-
ric (4.7). For any three separate sensors {S1, S2, S3} the acoustic source is
localizable by the following system of equations:




d12 =

√
(x1 − x)2 + (y1 − y)2 −

√
(x2 − x)2 + (y2 − y)2

d13 =
√

(x1 − x)2 + (y1 − y)2 −
√

(x3 − x)2 + (y3 − y)2
(4.29)
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To estimate the solution to this system of nonlinear equations a numerical
method called Trust-Region Dogleg [108] is applied.

Multiple sensor triplets are used in order to establish several triangles for
multilateration, as shown in Figure 4.13. Every triplet gives a separate posi-
tion estimate, and then all the estimates are partitioned by minimal distance
by applying Algorithm 4.2 in order to get the reduced regions. The general
direct multilateration solution in real-time WSN applications is solved with
larger number of nodes [157], where the incorrectly placed regions or multi-
ple sound sources are eliminated by feedback from the object tracking stage.
However, the convergence rate of solving large systems of nonlinear equations
tends to be lower than for simpler systems. Also the TDOA estimation er-
ror can disrupt the numerical optimization process for larger systems, which
results in unreliable solutions. The utilization of only three sensors for the
process thus simplifies and accelerates the solution estimation procedure.

4.3.3 Application to SRP-PHAT with SRC

SRP-PHAT with SRC can be applied as the last step of localization in wired
synchronous systems. The proposed approach initializes SRP-PHAT on al-
ready contracted areas and is often applied more than once for a single sig-
nal frame (due to several contracted regions). The typical approach to SRC
discussed in Section 2.6.2 suggests choosing fixed values for the number of
contracted region defining points Ni ≡ N = 100 and stochastically evalu-
ated points J0 = 3000 for a FOV of approximately 20 m2, however this is
not suitable for constantly varying initial search areas. For the application
of SRP-PHAT with SRC to ISRR the parameters are rather estimated by
linear functions. Building on the test results in [49] and considering peak
estimation quality, the two functions for the task are derived as

J0(s) =

{
[297.6 · s+ 24], s < 10,

3000, s ≥ 10,

N(s) =

{
[9.9 · s+ 1], s < 10,

100, s ≥ 10,

(4.30)

where s is the area of the FOV in m2, and the bracket [·] denotes the operation
of rounding to the nearest integer. The application of these functions opti-
mizes the SRC process by greatly reducing the number of SRP evaluations
for reduced regions of acoustic source search [23].

4.4 Experimental Evaluation

For the experimental installation Vansonic PVM-6052 condenser microphones
are used. Four microphones are mounted into a plastic board casing with a
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distance of l = 15 cm between each other, the width of a single linear array
sub-block thus being equal to 45 cm. A total of 4 sub-arrays are used, which
results in a wide-aperture 16-microphone array. For signal acquisition the
Agilent U2354A DAQ is used with the sampling rate set to 8 kS/s per chan-
nel. The data is acquired to and processed in the MATLAB environment
using the Data Acquisition Toolbox. Processing is performed in frames with
a step of 0.2 seconds by conventional SRP-PHAT and by ISRR followed by
SRP-PHAT with SRC on confined regions.

4.4.1 Array Regular Configuration

During initial testing the array sub-blocks are placed in three regular shape
configurations: linear — the sub-arrays are placed in a straight line with
α = {0, 0, 0, 0}; angular — two sub-arrays are placed perpendicular to the
remaining two with α = {0, 0, 90, 90}; square — sub-arrays are placed at
the edges of a square area with α = {0, 90, 180, 270}. The experiments are
performed in an office room with no protection against reverberation. The
audio speaker reproducing human speech is placed in several spots of the
wide-aperture array FOV, and minute long signals are acquired.

The localization results for these three configurations are presented in
Figures 4.14–4.16. The top plots of these figures depict the results of search
region confinement by ISRR denoted by rectangles and the point of maximal
SRP estimated by SRP-PHAT with SRC on the confined region (black circles
with SRP values to the right of them). The DOA based approach to ISRR
is tested with the DOA estimate vectors denoted by blue lines and their
intersection points — by purple stars. The SRP images computed over all
16 microphones by conventional SRP-PHAT with β = 0.8 are presented in
the bottom plots of Figures 4.14–4.16 for reference. The figures show that
the beams of each individual sub-array computed by SRP-PHAT coincide
with the DOA estimated by the proposed procedure. The superposition of
these beams forms the SRP images with the regions of elevated SRP energy
resembling the search regions confined by ISRR.

The reduction in the number of performed SRP evaluations (2.31) and the
initial search areas are presented in Table 4.4. SRP-PHAT with SRCmanages
to locate the global optimum in one iteration for all three configurations,
however, the evaluation of the whole FOV leads to 3000 evaluations. ISRR
manages to reduce the initial search area to a fraction of a square meter, thus
significantly reducing the number of evaluations according to (4.30) for all
experiments. The distribution of the mean quantity of evaluations is close to
normal, which indicates a good level of computational reliability.

Considering the three tested configurations, it can be noted that the
angular and square configurations provide more confined localized regions,
compared to the linear configuration because the measurement points are
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more widely distributed. Even the slightest error in DOA estimation in the
linear configuration leads to the risk of sub-arrays not converging on the
common search region. The square configuration performs better than the
linear one, however, its localization quality suffers if the acoustic source is not
omnidirectional. In this case part of the sub-array blocks inevitably receive
reflected acoustic waves, which reduces their DOA estimation accuracy. As a
result the square configuration is also more prone to reverberation influence.
The angular configuration is more robust in terms of tolerance to reflection
and reverberation. It is more practical as well because the FOV does not
need to be surrounded by sensors.

Table 4.4: Results of region reduction for regular configurations

Configuration SRP-PHAT with SRC With ISRR
Mean J0 FOV (m2) Mean J0 Mean area (m2)

Linear 3000 18.4 155 0.4412
Angular 3000 11.0 102 0.2632
Square 3000 16.0 117 0.3105

4.4.2 Array Irregular Configuration

For the localization experiment with an irregular sub-array configuration the
array blocks are placed in a room as it is portrayed in Figure 4.17. The FOV
is set to be 1 meter wider in every direction from the corner points of the array
(approximately 18 m2). Sub-arrays S1, S2 and S3 form an angular configura-
tion, while sub-array S4 is diverted from the common direction of view, as if
belonging to a different sensor group. The speaker takes three paths (return-
ing to the starting point) while walking with an average pace of no more than
1 m/s. Each path is taken twice and in two manners: with the speaker moving
constantly and the speaker moving and stopping regularly. This constitutes
12 experiments in total. For the DOA approach to ISRR all four sub-arrays
with 16 microphones are used. For multilateration the microphone triplets
are chosen for the system of equations (4.29) in the following manner to ob-
tain triangles of various size: {m1,m4,m12}, {m1,m4,m16}, {m5,m8,m12},
{m5,m8,m16}, {m1,m8,m12}, {m1,m8,m16}, {m4,m5,m9}, {m4,m5,m13}.

The results of speaker localization at the beginning of path 1 and at
the end of path 3 are presented in the top and bottom plots of Figure 4.18,
respectively. In the figure blue lines denote sub-array estimated DOA, purple
stars denote the intersections of DOA vectors, black rectangles denote the
confined regions and black circles denote the SRP energy maxima with their
values situated to the right. For multilateration the coordinate estimates
are denoted by green diamonds, the confined regions are denoted by dotted
rectangles and the SRP energy maxima — by black circles with values. In
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Figure 4.14: Localization by the linear configuration of arrays. Result of ISRR (top) and
SRP-PHAT (bottom).
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Figure 4.15: Localization by the angular configuration of arrays. Result of ISRR (top)
and SRP-PHAT (bottom).
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Figure 4.16: Localization by the square configuration of arrays. Result of ISRR (top) and
SRP-PHAT (bottom).
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Figure 4.17: Irregular configuration experiment layout with four array blocks and one
speaker taking three paths.

this experiment the two ISRR approaches based on DOA estimation and
multilateration operate with approximately equal accuracy. Problems arise
for both approaches in the region behind and between S2 and S3 (path 1),
where neither S2 or S3 have a sufficient view of the source and S1 and S4

are excessively steered away from that position. This problematic region is
depicted in the top plot of Figure 4.18. For S4 the expected DOA totally
exceeds the limits of S4 frontal FOV. A slight advantage of multilateration
is, however, evident due to its non-directional approach. The latter part of
path 1 and both paths 2 and 3 are well traceable by both approaches. In the
leftmost region of the FOV, where S4 is also active, ISRR achieves the best
results, as shown in the bottom plot of Figure 4.18.

Table 4.5: Results of region reduction for the irregular configuration with FOV'18 m2

Parameter ISRR based on
DOA estimation Multilateration

Mean area (m2) 0.1374 0.0621
RMSE x (m) 0.1143 0.1227
RMSE y (m) 0.1107 0.1230

The impact of ISRR is substantial with the mean area being reduced from
the 18 m2 of the entire FOV range to a fraction of a square meter, as shown
in Table 4.5. To estimate the divergence from the global SRP maximum esti-
mated over the entire FOV, the difference between the result of SRP-PHAT
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Figure 4.18: Results of speaker localization by ISRR at the beginning of path 1 (top) and
at the end of path 3 (bottom).
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Figure 4.19: Difference in localization between SRP-PHAT over the entire FOV and the
DOA based (upper) and multilateration based (lower) approaches to ISRR.

with SRC and the result of ISRR is calculated over all signals acquired for
all three paths. Error variation in time is presented in Figure 4.19, where
blue lines denote the x and green line — the y coordinate. The Root Mean
Square Errors (RMSE) are presented separately for the x and y coordinates
in Table 4.5. The x-axis in Figure 4.19 contains more values for the DOA
based approach to ISRR if compared to the multilateration based approach.
The multilateration based approach suffers from rare divergence at the stage
of solving the system of nonlinear equations (4.29) at lower SNR. The DOA
based approach also discards less frames due to data validation failure than
multilateration. Also the RMSE is slightly lower for the DOA based ap-
proach. The overall errors are sufficiently low for speaker localization. Rare
bursts of error do occur, however they are instantaneous and appear only
during moments of speaker acceleration.

4.4.3 Computational Efficiency Assessment

To determine the increase in computational efficiency of the proposed DOA
estimation and distributed localization methods the reduction in the number
of cross-correlations required for computing SRP-PHAT and the proposed
methods is quantified. The cross-correlation is chosen because it is the most
resource demanding operation in both methods (and the majority of conven-
tional phase based DOA estimation approaches, e.g, MUSIC). Other opera-
tions of the proposed methods, e.g., final AOA estimation of Algorithm 4.1
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or point partitioning of Algorithm 4.2, are insignificant in terms of processing
power demand, and are thus omitted from analysis.

Assessment of DOA Estimation for the Linear Array

For DOA estimation using a linear sensor array, SRP-PHAT with the re-
duced functional, discussed in Section 4.1.1, will calculate nh ·

(
M
2

)
cross-

correlations, each with a single lag shift specified by the chosen evaluated di-
rection (see Section 2.6.1). The proposed method, discussed in Section 4.1.2,
will calculate δ cross-correlations, where δ =

∑
δij is the total number of

shifts required for calculating the cross-correlation (4.4) for all microphone
pair (mi,mj) combinations. The number of integer lag shifts in the cross-
correlation is equal to the number of possible discrete AOA (4.9) for the
microphones mi and mj :

δij = 2∆kmax(i, j) + 1, (4.31)

where ∆kmax(i, j) is obtained by applying (4.8).
Let us consider the experimental microphone implementation withM = 4

microphones and l = 15 cm between consecutive microphones. For nh = 500
SRP-PHAT will calculate 500 ·

(
4
2

)
= 500 · 6 = 3000 cross-correlations. The

proposed method will calculate three cross-correlations {m1,m2}, {m2,m3}
and {m3,m4} for the inter-microphone distance l = 15 cm, two cross-correl-
ations {m1,m3} and {m2,m4} for the distance 2l = 30 cm, and one cross-
correlation {m1,m4} for the distance 3l = 45 cm. By applying (4.8) to
the given distances for c = 343 m/s and fs = 8 kS/s, the total number of
cross-correlations is equal to δ = 3 · 7 + 2 · 13 + 1 · 21 = 68.

Assessment of DOA Estimation for the Conical Array

For the estimation of azimuth and elevation AOA components of DOA using
a conical sensor array, SRP-PHAT with the reduced functional, discussed in
Section 4.2.2, will calculate nh ·

(
Mh
2

)
+nv ·

(
Mv

2

)
cross-correlations, each with

a single lag shift specified by the chosen evaluated direction. The proposed
method will calculate δ = δh · |Ah| + δv · |Av| cross-correlations, where δh is
the total number of shifts required for calculating cross-correlations for all
microphone pairs (mi,mj) ⊆ Ah, and δv is the total number of shifts for
calculating cross-correlations for microphones (mi,mj) ⊆ Av.

The experimental array consists of Mh = 6 and Mv = 2 microphones
with UCA radius of r = 7.5 cm and vertical microphones elevated above
UCA at zmvj = {0.1, 0.2} m. For the chosen nh = 500, nv = 250, the
number of cross-correlations per each SRP-PHAT computation is then equal
to 500·

(
6
2

)
+250·

(
6
2

)
= (500+250)·15 = 11250. The proposed method utilizes

19 pairs of microphones according to the definitions of Ah and Av in (4.15),
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(4.17): 6 consecutive pairs mh
im

h
i+1; 6 pairs over one microphone mh

im
h
i+2;

6 pairs between two vertical mv
j and three horizontal mh

i microphones; 1
pair of vertical microphones mv

im
v
i+1. Therefore, by applying (4.8) to the

array geometry for c = 343 m/s and fs = 48 kS/s, the total number of
cross-correlations is equal to δ = 6 · 21 + 6 · 37 + 3 · 35 + 3 · 59 + 1 · 29 = 659.

Assessment of the Localization Procedure

The reduction in the number of computations is even more evident in case
of the localization procedure over a wide-aperture array composed of several
standalone array sub-blocks. Conventional SRP-PHAT and other similar lo-
calization methods, which employ all available microphone signals, will cal-
culate the SRP (2.31) or other metric of signal phase coincidence for all

(
M
2

)

pairs of microphones, where M is the total number of microphones in the
wide-aperture array. It has to be also noted that SRP-PHAT will perform
this number of computations per every discrete point in its spatial vector.
Wideband MUSIC, on the other hand, will perform the computations sepa-
rately for every analyzed frequency band. The distributed localization pro-
cedure will calculate N signal phase coincidence metrics, where N depends
on the array structure. Assuming that identical sub-array blocks are used in
the localization system, for the linear array, discussed in Section 4.1.1, this
number will be N = K ·

(
Mi
2

)
, where K is the number of individual array

sub-blocks and Mi is the number of microphones in each i-th linear array
sub-block. For the conical array, discussed in Section 4.2.2, the number of
signal phase coincidence metrics will be N = K (|Ah|+ |Av|), where |Ah| is
the number of horizontal microphone pairs and |Av| is the number of vertical
microphone pairs in each of K individual arrays.

For the experimental example of four linear sub-arrays comprising four
microphones each, conventional localization methods, like SRP-PHAT, per-
form

(
16
2

)
= 120 evaluations (per every point in its spatial vector). Dis-

tributed localization performs N = 4 ·
(

4
2

)
= 24 evaluations. If the same

four sub-arrays consist of conical arrays with eight microphones, SRP-PHAT
performs

(
32
2

)
= 496 evaluations. The proposed distributed localization, on

the other hand, performs N = 4 (12 + 7) = 76 evaluations. It is easy to
notice that the number of evaluations for conventional methods grows expo-
nentially to the number of microphones used in the entire localization sys-
tem. Therefore, expansion of the localization system yields an even greater
reduction in the number of signal phase coincidence metric computations.
Furthermore, each evaluation consists of a previously discussed number of
cross-correlations, which further increases the overall number of computa-
tions. The evaluation of the total number of cross-correlation computations
in the entire localization system is left for the reader.
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4.5 Implementation on Embedded Hardware

A total of three array prototypes were implemented on embedded hardware
for DOA estimation and distributed acoustic localization procedure field test-
ing. For the linear array configuration two prototypes were developed. The
first prototype was implemented on a small low-power platform, equipped
with a Atmel ATmega128RFA1 microprocessor. Testing on this platform
gives the impression of the proposed method productivity on CPS smart
dust motes. The second linear array prototype was implemented on the
BeagleBone Black (BBB), which provides significantly more computational
resources, as well as allowing for sampling at higher rates than the Atmel
based solution. One implementation of the UCA part of the conical array
was developed for testing the planar localization procedure. It is also based
on the BBB platform. Several units per each implementation were built and
tested during the application-specific experiments, discussed in Chapter 6.

4.5.1 Mote Implementation of the Linear Array

For the implementation of a two-microphone linear array on smart dust motes
a platform developed by Defendec Inc. is used. The motes are equipped with
Atmel ATmega128RFA1 microprocessors, which provide an on-chip ADC
for signal acquisition and a radio transceiver for WSN communication [12].
The microprocessor has a clock speed of 16 MHz and provides 16 kB of
SRAM memory for operation with an additional 128 kB of flash memory
for program code. The on-chip ADC has a resolution of 10 bits and is able
to sample with rates up to 330 kS/s. However, actual experiments were
initially carried out with a sampling rate of 2 kS/s (and later increased to
4 kS/s) for each microphone channel, since higher sampling rates provided
inconsistent and erroneous results during data acquisition. Through testing
it was established that erroneous results were caused by signal leakage from
the previous ADC channel to the succeeding channel when switching between
channels, but the cause of the leakage could not be determined. Mote-to-
mote communication was implemented through the IEEE standard 802.15.4
compliant radio transceiver with an effective indoor communication range
of approximately 30 meters. The IEEE 802.15.4 standard supports transfer
rates up to 250 kbit/s with packet sizes not larger than 127 bytes. Two
Vansonic PVM-6052 electret condenser microphones were used for acoustic
signal acquisition with additional circuitry performing signal amplification
and the normalization needed for the microprocessor ADC input. For every
mote a pair of microphones was mounted facing the same direction in an
aluminum housing, which was then attached to the mote’s plastic chassis
(see Figure 4.23).
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Figure 4.20: Packaged WSN mote with a sensor amplification circuit (scale in cm).

The developed smart sensor mote is presented in Figure 4.20. Microphone
amplification circuitry is situated on the right and the microphone itself is
shown in the bottom right corner of the figure. The mote is powered by a
3.7 V, 6600 mAh battery block (left from the sensor circuit). The motes
are packaged in protective frames 16 cm in length. The poor computational
characteristics listed above are typical for smart sensor motes. The reason for
this is that these motes must work ubiquitously and autonomously with the
battery they are provided for as long as possible. For example, the battery
used in configuration at hand can sustain the motes for 1–1.5 years in a low
duty cycle mode and approximately a month in constant operation mode.
The goal here is to show that if localization and ISRR can be carried out
on a smart sensor mote network, it is reasonable to assume it can also be
implemented on larger networks with computationally more powerful motes.

Aspects of Operation at Low Sampling Rates

As it was discussed in Section 4.1.3, applying low sampling rates for signal
acquisition introduces a number of challenges for smart sensor design. In
this case a compromise between a permissible the inter-microphone distance
l and the number of discrete AOA nAOA has to be established. A distance
of l = 0.7 m is chosen for the motes, which gives nAOA = 9 possible AOA
values with an average step of 19.7◦ at the applied rate of fs = 2 kS/s. These
are calculated using (4.3) and presented in Figure 4.21. The substantial
difference with high sampling rates is evident from the figure. For the same
sensor distance at a rate of fs = 44.1 kS/s the AOA number is equal to
179 with an average step of 0.92◦. A small nAOA introduces additional error
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Figure 4.21: Possible AOA values for a sensor pair with l = 0.7 m and sampling rate set
at fs = 2 kS/s (top), and fs = 44.1 kS/s (bottom).

into the localization process as the ISRR estimated regions may become
larger and get shifted from the true area occupied by the sound source. For
example an angle step of 19.7◦ can give an error of 1.8 m if the sound source
is situated only 5 m away from the sensors. To manage the situation a large
number of motes must be used, preferably steered by different angles α (i.e.,
not facing in exactly the same direction). Random mote placements allow
AOA uncertainty regions to superimpose on one another thus reducing the
discrete gaps. At the sampling rate of fs = 4 kS/s the number of possible
angles increases to nAOA = 17, which significantly improves DOA estimation
quality. Generally, the sensor array motes are applicable for estimation of
object movement direction, e.g., from left to right or vice versa, and not for
precise localization.

To demonstrate the effect of applying low sampling rates on localization
quality, an experiment with a wired system of four microphone blocks with
two microphones spaced at l = 0.7 m is performed similarly to the ones,
discussed in Section 4.4. Data acquisition is performed at two sampling
rates: fs = 8 kS/s and fs = 2 kS/s per sensor. The array sub-blocks
are arranged in an angular configuration with two microphone pairs placed
perpendicular to the other two. The speaker is placed at position (0.7, 2)
meters and a short speech recording is made. For conventional SRP-PHAT
the area discretization value is set to 1 cm2.
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The results of speaker localization for a signal frame of 200 ms are pre-
sented in Figure 4.22. At fs = 8 kS/s both SRP-PHAT and ISRR localize
the sound source efficiently. The SRP-PHAT region of particularly high cu-
mulative energy (i.e., orange to red on the scale) is reduced to approximately
0.01 m2. The region estimated by ISRR is significantly larger, but propor-
tionate to the SRP-PHAT region of medium cumulative energy (i.e., green
on the scale). The sound source is fully confined by the ISRR region, as
confirmed by the SRP-PHAT with SRC estimate on this region.

On the other hand, both methods suffer from the problems situated with
the low sampling rate of fs = 2 kHz, as it is shown in the lower plots of
Figure 4.22. SRP-PHAT high cumulative energy region enlarges to approx-
imately 0.25 × 0.3 meters with an incidental region situated in the top left
corner of the FOV. The decrease of nAOA and the number of signal samples
per frame, described in Section 4.1.3, affects SRP-PHAT producing a more
rough and less comprehensive image. Nevertheless, SRP-PHAT localizes the
source properly. ISRR performs worse, missing the source slightly up the
y-axis because the fourth microphone pair fails to estimate the DOA cor-
rectly. Although the confined region is close to the source position, it does
not confine it fully. This example clearly shows the need for a larger number
of microphone pairs (motes) to be used for successful localization.

Real-Time Operation Testing

Measuring the operation time on the embedded platform at hand is not
a straightforward task. Due to the hardware limitations the measurement
process itself consumes resources, which can affect the measurement accuracy.
Furthermore, the microprocessor clock is slightly slower than a reference clock
of a PC. Therefore, a direct and indirect approach is used for measurement.

The average processing time measurement results are presented for over
9000 measurements over a period of approximately 40 minutes of embedded
system operation. The sampling rate is set to 4000 S/s with the frame length
being equal to 400 samples per channel (i.e., frame duration of 100 ms). One
full operation cycle (FOC) of the system includes: sampling of values (SV);
processing of values (PV), i.e., pre-processing and DOA estimation; other
functionality (message transmission, etc.) and various inbuilt system tasks.

For the indirect approach measuring the processing time with computer
clock results in an average full operation cycle of FOC = 282.1 ms. PV
measurement with an oscilloscope results in an average time of data pro-
cessing of PV = 169.1 ms. As the theoretical sampling interval is equal to
SV = 400/4000 = 0.1 s, or 100 ms, other functionality and system tasks
require approximately 13 ms.

The direct approach of measuring the operation time of PV within the em-
bedded system itself using the system clock gives an average of PV = 165 ms.

130



x (m)

y
 (

m
)

SRP−PHAT, fs = 8 kS/s

 

 

1 2 3 4

5

6

7

8

−0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

0.264

1 2 3 4

5

6

7

8

x (m)

y
 (

m
)

ISRR, fs = 8 kS/s

x (m)

y
 (

m
)

SRP−PHAT, fs = 2 kS/s

 

 

1 2 3 4

5

6

7

8

−0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

0.040

1 2 3 4

5

6

7

8

x (m)

y
 (

m
)

ISRR, fs = 2 kS/s

Figure 4.22: Acoustic localization results for four pairs of microphones applying conven-
tional SRP-PHAT and ISRR.

It is normal to have a smaller value here, because the embedded platform
clock is slightly slower than the PC clock. Based on the microprocessor’s
slower clock the total time for sampling of values is slower when calculated
using the time concept of the embedded platform: SV = 400 · 256/1000 =
102.4 ms. Here the coefficient 256/1000 is the closest approximation to the
desired sampling rate of 4000 S/s. It is, therefore, not possible to use the
exact sampling rate of 4000 S/s on the embedded system due to the lim-
itations of microprocessor clock ADC operation. Ignoring various inbuilt
system tasks the direct approach gives an average full operation cycle esti-
mate of FOC = 267.4 ms, which is almost three times slower then the desired
operation period of 100 ms.

On low power embedded hardware, where the tasks of signal acquisi-
tion and data processing cannot be performed in parallel, it is impossible
to strictly operate in real-time. Even if signal acquisition is performed in
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a timely manner, the microprocessor needs to be given sufficient time to
process the data. During this time the ADC remains idle. However, for
operation in soft real-time, where the processing delay of several frames is
permissible, and the consistency of signal frames is not required, this type
of solution is perfectly applicable. On the other hand, if the signal needs to
be assembled from several successive frames for further processing, and thus
sample loss is not allowed, a more powerful embedded platform needs to be
used for implementation.

4.5.2 Implementation on the BeagleBone Platform

A more powerful implementation of the microphone arrays is built on the
BeagleBone Black platform. The system comprises a BeagleBone Black
(BBB) development board, a power bank, and a proprietary standalone com-
munication module, called MURP module. BBB features two programmable
real-time units (PRU) with 32 bit RISC processors and an 8-channel 12 bit
ADC. This enables the BBB to be used as both a DAQ and processing unit,
sampling the data from 6 channels at fs = 20 kS/s separately from the BBB
non-real time operating system. The PRUIO library used for controlling the
ADC has been developed under LGPLv2 license by Thomas Freiherr. The
samples produced by PRU are written into a circular memory buffer imple-
mented by the PRUIO library. A circular buffer is used in order to guarantee
continuous online signal processing. The binary raw data is also stored on
an external SD memory card for later analysis. The sampled data is then
fed frame by frame to other software modules, which perform DOA estima-
tion and other system tasks. A stable configuration with a frame length of
2730 samples per channel is experimentally established, which constitutes a
refresh rate of 136.5 ms at the sampling frequency of fs = 20 kS/s. The
MURP module has its own Atmel Atmega256RFR2 chip and IEEE 802.15.4
compliant radio transceiver. This module is used for triggering the concur-
rent start of signal sampling within the sensor node group, as well as for soft
synchronization of the WSN node clocks.

Linear and Circular Array Implementations

A linear array implementation on the BBB is presented in Figure 4.23. The
array consists of six ADMP401 MEMS microphones (Pololu Corp., USA)
enclosed in an aluminum housing with a distance of l = 10 cm between
consecutive microphones. The total array length is thus equal to 50 cm.
The maximum number of possible discrete angles for the sampling rate of
fs = 20 kS/s is equal to nAOA = 59, which allows for far superior DOA
estimation quality compared to the mote implementation.
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Figure 4.23: Linear array implementations on the BeagleBone Black (left) and on the mote
system with Amel microcontroller (right).

Figure 4.24: UCA implementation on the BeagleBone Black (left) and its inner components
inside its plastic housing (right).
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The UCA implementation is composed of an enclosed plastic circular
shell with the radius of r = 10 cm and six ADMP401 MEMS microphones
positioned at an angle between two successive microphones relative to the
array center of α = π

3 . This implementation is presented in Figure 4.24. The
inner components comprising the BBB, the power bank, the MURP module
and the MEMS microphones are also presented in the figure.

Real-Time Operation Testing

The processing time of DOA estimation is measured directly on the BBB.
The experiment was performed for the linear array configuration invoking
the proposed DOA estimation procedure discussed in Section 4.1.2. The
linear array is chosen for testing on the platform at hand because it has a
larger maximum inter-microphone distance than UCA. The measurement was
conducted for the duration of 77500 frames. The system was operating in an
ordinary mode with various functionality and inbuilt system tasks enabled.
The results of processing time measurement are presented in Figure 4.25.
The average measured processing time of the DOA estimation procedure
is equal to 80.72 ms, which is significantly less than the frame duration of
136.5 ms. Figure 4.25 shows that the distribution of the measured processing
time is close to normal around the mean value, however, a small portion of
measurements is detached from the main group at approximately 120 ms.
This small outlying group likely results from problems situated with system
specific process management. Although these measured times are close to
the frame duration, they are sufficiently shorter than the frame duration and
their quantity is insignificant compared to the total number of measurements.
Furthermore, during the experiment no sample loss was registered. Thus the
implementation at hand is shown to operate in real-time.

4.6 Conclusions

The presented approaches to planar and volumetric DOA estimation are re-
viewed for a single source case, where the maximum of the signal phase
coincidence metric (i.e., signal cross-correlation) determines the AOA. For
a multiple source case several maxima of this metric need to be chosen to
estimate multiple AOA. The task then lies in the estimation of the number
of active acoustic sources at any given moment. Blind signal separation is
used as a phase-invariant approach for separating uncorrelated or slightly
correlated signal mixtures. In this case PCA or ICA is applied to the signal
mixture to estimate the number of minimally correlated components that
indicates the number of sources [28, 33]. TDOA based approaches apply-
ing, e.g., matching pursuit [114] or random finite sets [161], utilize the phase
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Figure 4.25: Processing time histogram of DOA estimation on the BeagleBone Black for
the frame length of 2730 samples and frame duration of 136.5 ms.

information from spatially distributed sensors. These approaches mostly tar-
get human speaker separation, where the signal dynamical properties of the
speech finite state non-stationary process significantly confine the problem
scope. In a general case acoustic sources of various nature cannot be guar-
anteed to be separable. Furthermore, from the standpoint of acoustic lo-
calization if the sources are closely positioned, successful signal separation
does not guarantee that the sources will be localized to separate regions due
to the limitations of DOA estimation. Persistent acoustic sources are also
separable through object tracking and trajectory estimation. For a WSN
of multi-channel acoustic sensors, however, the most prominent solution lies
in the partitioning of the overall FOV into smaller local regions, where the
individual sources are localizable by sensor node sub-groups.

The proposed planar localization procedure is intended for ground object
localization, however, it can also be applied to cases where certain amount
of elevation also comes into play but does not need to be estimated. As it
is shown in Figure 4.6, the direction to an elevated source can be estimated
by only the planar AOA without using a volumetric array configuration.
Furthermore, if the scale of the overall localization system is significantly
larger than the localized object height of elevation, the vertical component
is negligible. The proposed method, however, can be expanded to operate
in the volumetric space by adding elevation AOA estimation and non-zero z
coordinate component to the ISRR computations.

135



Generally the proposed localization procedure is not intended to operate
on acoustic sensor arrays of identical configurations and DOA estimation
procedures. On the contrary, the main advantage of a distributed multi-
node CPS comes from the diversity of its sensor components. Different array
configurations are applied to satisfy specific FOV requirements, and different
DOA estimation methods used in conjunction can complement and reaffirm
individual results. Though, even the computationally simplified proposed
DOA estimation methods consume the majority of computational resources
of even a powerful embedded platform like BBB, the low cost of individual
CPS components may be sacrificed in order to ensure improved accuracy and
robustness for high precision tasks.
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Chapter 5

Data Fusion and WSN
Communication

The chapter discusses the process of data fusion and reviews application-
specific examples of fusion for the previously discussed solutions of process
monitoring and object localization. A proposed approach to localized object
trajectory estimation is also presented [11]. The second part of the chapter
is devoted to the problems situated with WSN communication between in-
dividual nodes of CPS. The topics of node synchronization, communication
delays and data validation are discussed, and a specific solution to network
management is reviewed.

5.1 Data Fusion Aspects

Data fusion in its broad definition is the combination of separate knowledge
gained by different system components for situation assessment, estimation
of impact that the situation causes, determination and prediction of the re-
quired system state and reaction performed in response to the changing situ-
ation [6,88]. Data fusion is performed from the bottom (sensor) components
of the system upwards to information aggregation and decision-making com-
ponents. Human interaction with the system (if any) is performed at the top
levels of data fusion [64]. In the past decades several models of data fusion
were proposed. One of the most popular is the Joint Directors of Laborato-
ries (JDL) model [88], established in the early 1990s for military and defense
purposes [75]. It proposes five levels of data fusion. These grow in complexity
from level 1, which performs object detection, identification and tracking, to
level 5, which handles system process refinement and resource management
for system response capability estimation, governs the lower fusion processes,
and involves human operators if needed. A zeroth level is also considered in
the model, which performs sensor level data fusion, i.e., inference and ba-
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sic decision making over processed data during signal processing. Decisions
made on the top levels are addressed back to the bottom levels for system
component reconfiguration and designated reaction execution. Alternatives
to the JDL model include Dasarathy’s functional model [45], the Omnibus
process model [27], the Boyd decision (OODA) loop [144], and the Transfor-
mation of Requirements for the Information Process (TRIP) model [76]. All
these models were developed mainly for military and defense purposes due
to the fact that correct time-critical data management and decision making
is most crucial in this area, but are applicable in other areas as well. The
models abide by the principal of hierarchical data fusion process for deci-
sion making, and differ only in the aspect of information and decision flows
between the specific hierarchical levels.
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Figure 5.1: Considered hierarchy of data fusion.

5.1.1 Considered Tasks of Data Fusion

This work considers the initial data fusion tasks of inference on individ-
ual smart sensors (level 0) and initial situation assessment in the CPS sub-
systems (level 1). Data fusion between sensors of different modalities and sen-
sor sub-systems for global situation assessment (level 2) is not handled. The
so-called autonomous data fusion architecture [64], presented in Figure 5.1,
is adopted. This architecture assumes higher level inference being performed
on individual sensor components with local estimates (results of on-sensor
detection, identification, bearing to object, etc.) being used in further fu-
sion on higher level components. This architecture opposes the centralized
approach, where raw signals are used by the higher level fusion components,
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and no inference is performed on the sensors. For WSN applications the
centralized architecture is not applicable due to complications imposed by
raw signal transmission [119]. As portrayed in Figure 5.1, at any time in-
stance t each sensor node performs the appointed tasks of pattern recognition
(consisting of signal pre-processing, feature extraction and classification), es-
timation of bearing to object, etc., and transmits the intermediate situation
assessment data, e.g., its spatial coordinates xt, representative features of the
observed process χt, estimates of process state or object class Ct, the set of
bearing angles (Φt,Θt) and any other relevant data to the data aggregation
and fusion WSN nodes, which govern the local cluster or sub-system of sensor
nodes. There level 1 fusion ensues and results in local situation estimates,
e.g., object localized region, its class, movement trajectory, etc. These local
assessments are forwarded to the higher fusion components, which handle
global situation assessment, impact estimation and other fusion tasks.

Level 1 fusion performed on data aggregation nodes handles initial es-
timate data provided by the sensor as a time series, which is evaluated in
order to identify short-term faults in the estimates and to produce a most
likely situation estimate. The process is very similar to pattern recognition,
employing maximum likelihood criteria [134], least square optimization [94],
Bayesian estimation [88], Markov chains [78], etc. The errors situated with
initial estimate generation, time of estimate generation and measurement
point location are modeled as process noise in linear (2.36) or non-linear
system state models and estimated by, e.g., recursive Bayesian estimators,
like the Kalman filter or Particle filter [88,94]. Data fusion of different enti-
ties is performed by various means, including general mappers, like Artificial
Neural Networks [113] and Fuzzy Inference Systems [72].

In the autonomous data fusion architecture of the distributed WSN com-
ponents the fusion performed on sensor nodes can also include analysis of the
consecutive initial estimate series. The estimate at time t may be appended
depending on the properties of several previous estimates. Furthermore, if
the refresh rate of the data fusion components is lower than the refresh rate of
the sensor components, a series of estimates can be produced and rectified on
the sensor node in a sliding window manner, and later sent to the fusion com-
ponents in batches. This further reduces network bandwidth consumption,
but increases system latency. The choice of process flow and system state
refresh rate is purely application specific. Another important task of data
fusion in a WSN of distributed components lies in data temporal allignment
for concurrency in observed event separation and identification. Data com-
munication through the multi-hop sensor network induces transport delays,
which have to be estimated [121]. Inter-node synchronization errors and the
time delay of event detection between the spatially distributed measurement
points also disrupt data concurrency. Therefore, both spatial and temporal
data evaluation needs to be performed during fusion [116,118].
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5.1.2 Discussed Data Fusion Methods

The methods discussed in this work can be considered level 0 and level 1
data fusion according to the JDL model. Level 0 fusion includes the inference
procedures of pattern recognition (feature extraction and classification), dis-
cussed in Section 3.1, the multistage decision making logic of the multistage
procedure, presented in Section 3.2.2, and the Direction of Arrival (DOA)
estimation methods, discussed in Chapter 4. A level 0 fusion method of
moving object detection and speed estimation for the Passive Infrared sensor
is presented in Section 6.3. Level 1 fusion methods include the distributed
localization procedure, presented in Section 4.3, the trajectory estimation
procedure, discussed in Section 2.7, and an application specific procedure of
shooter acoustic localization, presented in Section 6.4.

5.2 Trajectory Estimation and Prediction

Moving object localization is complicated by the unknown dynamics of ob-
ject movement. In case of static object localization the consistency of con-
secutive localization estimates indicates their correctness. A moving object
appears at different positions for consecutive frames, and thus it cannot be
assumed that these consecutive estimates are correct or belong to the same
object. Trajectory estimation helps to establish the movement pattern and
thus indicates the probable region of next localization estimates for future
signal frames. Trajectory estimation also resolves several issues of the pro-
posed localization approach, discussed in Section 4.3. For both the DOA and
multilateration based approaches to Initial Search Region Reduction (ISRR)
several confined search regions may be established at any time instance. In
case of a wired system the extent of signal phase coincidence can be mea-
sured by SRP-PHAT with SRC per every confined region with the maximal
values indicating the true position of the acoustic source. For operation in
WSN this approach cannot be adopted, therefore, trajectory estimation is
the most viable option. The acoustic source produces consistent regions,
while the incidental regions chaotically appear and disappear in the FOV.
This consistency of consecutive regions is determined by the object tracking
procedure, and future region estimates are made by trajectory prediction.

5.2.1 Proposed Trajectory Estimation Approach

The Kalman filter (KF) constitutes the foundation of the proposed approach
to trajectory estimation in WSN. This filter is optimal for a linear system
with Gaussian measurement and process noise, as discussed in Section 2.7. As
the adopted process model for describing object movement is linear (see Sec-
tion 2.7.3), the application of KF should be sufficient for the object tracking
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problem. However, the Rao-Blackwellized Particle Filter (RBPF) is applied
for reference in order to establish the potential improvement in estimation
quality. KF and PF are quite common filters applied for trajectory esti-
mation in WSN in, e.g., [39, 148, 153, 155]. The main problem situated with
recursive Bayesian estimators applied in a frame by frame manner is situated
with the error occurring during rapid change in process dynamics, e.g., dur-
ing direction change or rapid acceleration. In this case the inertia built up
in the previous estimates impedes smooth trajectory estimation for several
frames. The proposed method builds upon the filter estimates and forms
search regions based on coordinate predictions to improve both localization
and trajectory estimation.

For search region prediction at the discrete time instance k, the state
estimate x̂k =

(
x̂k, ŷk, ˆ̇xk, ˆ̇yk

)
is used to estimate the search region for the
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, (5.1)

where ∆t = N
fs

is the refresh rate (i.e., the time interval between consecutive
estimates), and κ = [0, 1] is the measure of velocity influence on region shift.
Its value depends on the localization system FOV and the expected velocity
of the object. During the experiments κ is set at κ = 1/3 for both filtering
approaches.

Before trajectory estimation starts, the acoustic source is initially de-
tected by ISRR. In case of a wired system, source detection is performed
by applying SRP-PHAT with SRC. If the SRP value of the confined region
is sufficiently high, tracking and region prediction are initialized, and re-
gion prediction assists ISRR in search region estimation, reassuring ISRR
estimates and identifying redundant regions. Here the localization estimate
x̃ISRR
k is defined by the point of the SRP maximum. In case of a WSN imple-

mentation, where SRP-PHAT estimation is not possible, the primary region
can be established by the number of DOA vector intersection points, and
the localization estimate x̃ISRR

k can be defined as the centroid of this region,
calculated by Algorithm 4.2.

Trajectory estimation begins once the acoustic source is detected and
proceeds while the acoustic source region is consistent, i.e., remains in the
FOV, sustains high SRP level or other fitness metric and shifts with rea-
sonable velocity. When the source leaves the FOV, disappears, or instantly
shifts to another location (which may be an indication of a separate source),
tracking and region prediction stop and reinitialize once a source is located
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again. During trajectory estimation, KF and RBPF are applied at every time
step k to produce the estimates x̂k. Region prediction proceeds with KF and
RBPF estimates x̂k to calculate the search regions for the next iteration by
using (5.1). The estimates x̃ISRR

k are evaluated by regions
(
xl
k,x

u
k

)
predicted

at the previous step k− 1, and x̂k are rectified by the ISRR localization esti-
mates according to Algorithm 5.1. The final position estimate yk = (xk, yk)
for the process model (2.36) is calculated if Algorithm 5.1 passes x̂k evalua-
tion. Otherwise the ISRR localization estimate is kept as the final trajectory
point estimate. For final trajectory presentation the Rauch-Tung-Striebel
(RTS) smoother is applied [26] in order to eliminate trajectory irregularities
situated with tracking errors and object movement peculiarities, e.g., sudden
stops, abrupt change of direction, pitching, etc.

Algorithm 5.1 Trajectory estimate evaluation

Require: x̃ISRR
k , x̂k, xl

k−1, x
u
k−1 for time step k

if x̃ISRR
k belongs to predicted region

(
xl
k−1,x

u
k−1

)
then

return x̂k
end if
calculate distance d =

∥∥x̃ISRR
k , x̂k

∥∥
if d ≤ κ ·∆t

∥∥∥ˆ̇xk, ˆ̇yk

∥∥∥ then
return x̂k

else
return f

(
x̃ISRR
k , x̂k

)
. e.g., f = x̃ISRR

k , f = 1
2

(
x̃ISRR
k + x̂k {1, 2}

)

end if

The estimates supplied by KF and the localization procedure estimates
reinforce each other according to Algorithm 5.1. If the object rapidly changes
direction or acceleration, KF estimates will be skewed towards the direction
of previous frames. Returning the final position estimate to the localized
estimate rectifies the trajectory during such movement irregularities. If, on
the other hand, the localization procedure fails to accurately estimate the
search region for a number of successive frames, the previous dynamic is
maintained by the KF estimates. The coefficient κ can be set equal to the
one in (5.1) or independently.

5.2.2 Experimental Evaluation

Experimental evaluation of the proposed trajectory estimation approach is
performed on the experimental installation presented in Section 4.4. Four
sub-arrays, each consisting of four microphones, are placed in the configura-
tion presented in Figure 4.17. The signals are sampled at 8 kS/s per channel
and processed in frames with a step of 0.2 seconds. The speaker takes 3 paths
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in two manners: moving constantly and moving and stopping regularly. The
microphones chosen for the DOA and multilateration approaches to ISRR
are listed in Section 4.4.2.

Table 5.1: Results of region reduction for ISRR, Kalman and Particle filters

ISRR Estimates Mean area RMSE x RMSE y
method made by in (m2) in (m) in (m)

DOA based
ISRR 0.1374 0.1143 0.1107
KF 0.0780 0.0994 0.0874

RBPF 0.0409 0.1014 0.0863

Multilateration
ISRR 0.0621 0.1227 0.1230
KF 0.0857 0.1084 0.1043

RBPF 0.0427 0.1083 0.1019

The results of trajectory estimation for the return on path 3 and fin-
ishing the direct pass of path 1 are presented in Figure 5.2 and Figure 5.3,
respectively. In the figures blue lines denote the vectors of DOA, purple
stars denote their intersection points, black rectangles are the search ar-
eas estimated by ISRR-DOA. For ISRR using the multilateration approach
the green diamonds denote sensor triplet coordinate estimates, and the dot-
ted boxes denote the estimated search regions. The green boxes denote the
search regions (5.1) predicted using KF estimates, and the red boxes denote
the regions derived from RBPF estimates. Applying Algorithm 5.1 to the
ISRR-DOA and KF estimates, as well as the two search regions, results in
the final position estimate denoted by the thick violet point. Tracking results
of KF are also presented in Figure 5.2 and Figure 5.3, where the black line
denotes the trajectory estimated by KF and the red dotted line denotes the
final trajectory smoothed by RTS. The path is clearly visible in both figures
as the speaker is returning to the starting point of path 3 and reaching the
endpoint of path 1.

The effect of final estimate rectification by Algorithm 5.1 is evident from
Figure 5.3. Due to the rapid deceleration of the acoustic source (speaker
stopping to turn and walk back) the predicted region and KF trajectory
keep to the movement inertia and tend forward (left in the figure). As the
ISRR estimate no longer resides in the predicted region, it is decided to
return the final estimate into the ISRR confined region. On the other hand,
in Figure 5.2 the movement direction coincides with the ISRR region, and
thus KF estimate is considered to be correct.

During the experiments it was impossible to exclude the naturally occur-
ring trajectory error of manual movement, therefore, the difference between
the reference and estimated trajectories cannot be used as an error metric.
Rather, the error is calculate as the difference between the estimates of SRP-
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Figure 5.2: Localization and trajectory estimation results for path 3.
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Figure 5.3: Localization and trajectory estimation results for path 1.
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PHAT over the whole FOV and the estimates of the proposed trajectory
estimation method. The results are presented in Table 5.1. Both mean area
and root mean square error (RMSE) tend to decrease for both the DOA and
multilateration based approaches to ISRR after applying trajectory estima-
tion with KF and RBPF. As there is no significant difference between KF
and RBPF performance, it can be stated that the linear process state system
applied to object movement modeling is indeed sufficiently resolved by KF
and no significant increase in quality comes from the non-linear properties
of RBPF. Considering lower computational cost of the KF, it is therefore
preferable in real-time WSN implementations.

5.3 WSN Communication Issues

The presented methods of distributed signal processing do not require sensor
nodes to be synchronized. They do, however, require the events detected and
identified by different sensors of various modalities and afterwards used in
the fusion process to originate from the same physical phenomenon or process
instance. For example, in single sensor systems, which produce individual
situation assessments, if different nodes assess the observed process state at
significantly different time instances, though their individual assessments are
correct, the fusion process may fail because there will be no consensual in-
formation present in the separate assessments. For the stationary process of
industrial machinery operation state this means that if the sensors assess the
process during a state transition period and part of the sensors lags behind
other sensors, their assessments will be conflicting and the true state will not
be resolved during fusion until a steady state is reached and the majority of
the sensors will provide the estimates of the same situation. For momentary
processes, like vehicle pass, the desynchronized sensors may provide identifi-
cation estimates for different pass instances and thus the conflicting vehicle
type estimates will not result in a mutual decision. The problem is more ev-
ident for smart sensors cooperating in the localization process. Though the
proposed distributed localization approach does not apply inter-node signal
analysis (where synchronization up to the sampling period is required), soft
synchronization is required in order for all the separate DOA estimates be-
longing to the same time instance to be handled as such.

5.3.1 Local Time and Communication Delays

The considered WSN consists of a unspecified number of nodes, which are
interconnected in a dynamic ad-hoc manner. The network is self-structuring
with the nodes coming in and out of communication at any time instance.
Node synchronization in a classical sense, i.e., individual node clock adjust-
ment to the same tick, is both tremendously hard and ultimately useless for
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this kind of communication scheme. If the network structure is not static,
there is no need to precisely synchronize the nodes that are not guaranteed to
communicate for a specified amount of time. Furthermore, different imple-
mentation of each node does not guarantee that the clocks can be synchro-
nized at all due to the physical properties of individual hardware [156]. And
even precise synchronization is achievable, simultaneous data transmission
is not possible through the common RF medium. Therefore, synchronized
data will still reach the fusion nodes with significant delays. The introduc-
tion of common global time into the system is not necessary for the same
reasons — each node is not guaranteed to be able to keep track of the global
time flow and the constant synchronization packet broadcasting consumes
impermissible amount of traffic [119].

The solution to not having a global time reference consists of not using
time instance markers at all. Each node operates in its local time with a com-
mon understanding of a single time unit (e.g., second or millisecond). The
packets containing application specific data, be it situation assessment or
DOA estimates, are marked with data age values. The data age is calculated
as the time difference between the moment of signal acquisition and packet
composition before transmission. The fusion node accepts the packets and
understands the data age at the moment of packet transmission, however,
packet communication through the multi-hop network can take significantly
more time than signal processing itself. Therefore, individual node opera-
tion in real-time does not guarantee real-time operation of the whole WSN
without proper network management and packet transport time estimation.

Another problem situated with not having a global time reference lies in
the uncoordinated refresh rates of individual nodes. As every node operates
in its local time, it cannot know when exactly to start sampling the signal
frame in order for it to contain the same signal portion acquired by other
nodes of the WSN. As a result the process can be perceived a little differently
by different nodes. For moving object localization, for example, this will in-
troduce additional localization error, as the object’s instant position depends
on the exact time of signal frame acquisition. In an asynchronous network
exact time moment specification is unachievable, instead a simultaneity in-
terval of time inaccuracy tolerance is specified. The situation assessments
made during this simultaneity interval are considered to be related to the
same time instance.

5.3.2 Data Validation

Due to the complications induced by the distributed asynchronous operation
of the CPS components the data incoming from the WSN nodes needs to be
validated both spatially and temporally during data aggregation and fusion
[121]. Spatial validation ensures that the data is received from the correct
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cluster of sensor nodes governed by the specific fusion node, which performs
data fusion on this cluster. Temporal validation is required to establish
the correct sequence, age and simultaneity of incoming data. Performing
data validation prior to the fusion process reduces the computational cost
of fusion, because unwanted (incoming from a different cluster), outdated
or non-sequential (belonging to a time instance already processed) data is
discarded early on.

A generalized example of distributed sensor communication is presented
in Figure 5.4. Black rectangles on the sensor timelines (tS1 , tS2 , tS3) rep-
resent the duration of signal processing on each sensor node, and arrows
indicate the transport times. The packets reach the fusion node at times
TS1 , TS2 , TS3 (on timeline tFN ). The fusion node estimates the total trans-
port and processing times of each packet incoming from S1–S3, denoted by
rectangles Tproc and Ttransport. The event detection times are then aligned
to the estimated time moments T̂S1 , T̂S2 , T̂S3 , and compared against the si-
multaneity interval Isimultaneity (on timeline t̂FN ). Figure 5.4 illustrates that
the processing time and packet transport time for each sensor node may be
different, which results in the packets arriving out of order and too far apart
to be included in the same simultaneity interval. Therefore, without proper
temporal validation event concurrency is not guaranteed to be established.
Processing delays originating from sensor platform specifics, clock jitters and
drifts, ad-hoc WSN transmission scheduling, limited bandwidth and packet
collisions within the network — all can unexpectedly disrupt smooth WSN
communication. Proper network management is required to ensure real-time
operation of the system as a whole.

Fusion node time

Simultaneity interval

for fusion node time

Sensor 3

Sensor 2

Sensor 1

TS3
TS1

TS2

tS1

tS2

tS3

tFN

tFNˆTS3
ˆTS2

ˆTS1
ˆ

TTransportTProc

TTransportTProc

TTransportTProc

ISimultaneity

Figure 5.4: Temporal alignment and the simultaneity interval.
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5.3.3 Communication Solution

In this work a communication solution proposed in [116, 121] is utilized.
This solution is developed by the Research Laboratory for Proactive Tech-
nologies of the Tallinn University of Technology and is not included as an
approach proposed by the author of the thesis, but rather as an example
of WSN network management. The solution consists of a proactive middle-
ware component called ProWare, which is specifically designed to meet the
challenges of the dynamic ad-hoc topology and to provide network nodes
with the capability of checking the validity of communicated data, while
dynamically organizing the network structure at system run-time. Commu-
nication between nodes is established by a standalone communication module
(proprietary transceiver), which comprises software components referred to
as ProWare, and a hardware platform referred to as MURP. The general
principle of inter-nodes connection is presented in Figure 5.5. Each node
is connected to a MURP module over a serial UART port. The module is
programmed with ProWare software and is equipped with a IEEE 802.15.4
compliant radio transceiver to establish physical links between nodes. All
necessary network services, such as run-time sensor discovery, end-to-end
data transfer timing and validity checking of received data, are provided by
ProWare. One of the main advantages of ProWare is that it separates data
acquisition and fusion from communication services, thus greatly simplifying
WSN design.
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Figure 5.5: WSN node link establishment and data communication using ProWare.

Run-time sensor discovery is achieved through publish-subscribe princi-
ples. Fusion nodes express their need for specific data (e.g., situation assess-
ments, localization intermittent data, etc.), and ProWare queries the network
to find this data. Sensor nodes that receive the query reply by publishing
their ability to provide this data (i.e., to successfully obtain the estimates).
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The fusion node considers the replies and subscribes to sensor nodes of its
choosing to start receiving data from them. Once these agreements are es-
tablished, fusion nodes become data consumers and the selected sensor nodes
become data providers. It is possible for a node to be both a consumer and a
provider at the same time. In Figure 5.5, for example, node 1 subscribes for
data from node 2 and is a data consumer in this relationship. Node 1 is also
equipped with sensors and is able to provide its sensor data to node 3. It is
a data provider to node 3, while at the same time being a data consumer of
node 2.

Any sensor node may assume the role of a fusion node (additionally to
being a sensor node), and several fusion nodes may exist at the same time for
the same cluster of sensor nodes. This increases the reliability and robustness
of the WSN compared to solutions utilizing a single predesignated fusion
node, since there is no single point of failure. Fusion nodes are elected based
on the availability of computational resources, required to perform fusion
tasks, and communication signal strength.

ProWare also provides data validity checking for all communicated data
[118], ensuring that only relevant, spatially and temporally correct data is
received by the fusion node. The constraints for data correctness are de-
termined by the consumer (fusion node) and provided in the subscription’s
description. Data producers (sensor nodes) decide whether they can service
these constraints and, if so, start publishing the requested data. Published
data is tagged with metadata (temporal and spatial information), and mes-
sage transport time is tracked. This enables to check whether the data re-
ceived from different providers is still valid and mutually compatible at the
consumer’s side.

In the spatial domain the sensor nodes complement the data packets with
respective node positions. This allows the fusion node to subscribe to data
from where it is needed (i.e., to redefine the node cluster used for fusion) and
to validate whether the packets are received from the correct area. Regarding
the temporal domain, the sensor nodes complement their data packets with
a validity interval and packet age. The packet’s age is specified in each
node’s local time as a time difference between the moment when the packet
is sent and the first moment of event detection. The validity interval, on the
other hand, describes how long the packet is usable. During packet delivery
ProWare also provides estimations of communication channel delays [121]
and computes the estimated duration of total transport time. Before the
packet is handed over to the fusion node, its age value is incremented by the
time spent on data transport. This allows the fusion node to validate the
age of arrived packets and to align packets from different sensors to a unified
approximated timeline, in order to compare them against a pre-specified
simultaneity interval. Both the simultaneity interval and the validity interval
depend on the initial assumptions about the observed process.
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5.4 Conclusions

The timeliness of data fusion for global situation assessment is as impor-
tant for CPS real-time operation as timely operation of each of its individual
components. Generally data fusion does not consume significant amounts of
computational resources and is thus able to be performed on any number
of sufficiently powerful WSN nodes. However, the delays situated with data
communication can disrupt smooth operation, and information concurrency
and correctness cannot be guaranteed without proper network management
and data validation. The temporal and spatial inaccuracy of data caused
by WSN asynchronous operation adds to the overall estimate error of the
system as a whole. The margin of that error needs to be specified for each
specific application in order for the system to present both timely and accu-
rate situation assessments.
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Chapter 6

Applications

The chapter discusses several considered applications of the signal processing
techniques presented in this work. The chapter begins with the discussion
of the industrial machinery monitoring problem [14,19]. Pattern recognition
methods presented in Section 3.1 are applied to this problem for machine op-
eration state identification and malfunction detection. The chapter proceeds
with the discussion of military Intelligence Surveillance and Reconnaissance
(ISR) tasks [15] and presents three topics of acoustic and Passive Infrared
(PIR) sensor application in a ISR system of distributed ground sensors. The
first topic is situated with military vehicle identification and trajectory es-
timation. The multistage procedure discussed in Section 3.2 is applied to
vehicle identification, and the distributed localization procedure presented
in Section 4.3 along with the trajectory estimation approach discussed in
Section 5.2 are applied to vehicle trajectory estimation. The second topic
considers foot soldier detection and movement speed estimation with PIR
sensors. For this application a pattern recognition method based on time
domain feature analysis is presented and verified on experimental data. The
third ISR system topic considers gunshot detection and shooter acoustic
localization [9, 22]. For this application the methods of DOA estimation
discussed in Chapter 4 are applied along with a proposed data fusion proce-
dure of gunshot geometry estimation and shooter localization. Experimental
results of methods proposed for each of the considered applications are pre-
sented along the course of the chapter.

6.1 Industrial Machinery Monitoring

Thorough monitoring and diagnostics of industrial machinery is essential in
almost any production process. Receiving on-line feedback on equipment
utilization ensures uninterrupted flow of the production process. Analysis of
machinery utilization also allows for process optimization and thus increases
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efficiency of the production facility [42]. Monitoring machinery performance
and condition allows to eliminate faults and malfunctions in equipment prior
to breakdown. This decreases the number of accidental failures and reduces
maintenance costs.

6.1.1 Problem statement

Most high-end industrial devices are equipped with integrated monitoring so-
lutions that enable device interconnection and process management through
a SCADA network. Very often, however, a production process is manually
operated or equipped with outdated machinery that lacks integrated sensors
and control hardware. This situation typically occurs in the workshop floors
designed according to outdated process management standards. Applying a
monitoring solution to this king of machinery presents a set of challenges, the
most evident one being situated with hardware integration. Installation of
sensors may prove hazardous and also expensive due to interruptions in the
production process. Furthermore, if a machine requires a safe zone or is con-
cealed in a safety chamber, sensor installation may be simply prohibited by
safety regulations. Applying distributed contactless sensors connected wire-
lessly in order to reduce installation costs can resolve the problem. Acoustic
sensors are chosen as a source of contactless information along with other
modalities [51], e.g., visual light, hyperspectral, vibration, etc.

Acoustic information analysis applied to industrial machinery operation
state identification [14] was discussed as an example of single-sensor solu-
tion in Section 3.1. However, high levels of noise originating from different
machines in close proximity in a highly reverberant environment of the shop
floor may corrupt the signal to a degree, where the classification of the ma-
chine working state becomes unreliable. Using several sensors in an array
configuration provides the possibilities of localizing a specific noise source,
concentrating on it and attenuating unwanted noise digitally. Microphone
arrays in industrial applications are mainly used for acoustic holography,
in which machinery or products are examined for areas of high or abnormal
noise [82]. These techniques have been applied in a wide range of applications,
e.g., diagnostics of vehicle internal and external noise sources [82], estima-
tion of fan and turbine noise [103], detection of compressed air leakage [52],
etc. Multi-channel acoustic signal analysis also benefits the optimization of
processes, for example laser welding [130]. Research in the field of machinery
noise localization at the shop floor has also been discussed in [136] and [24].

6.1.2 State Identification using Multimodal Information

Industrial machinery state identification using acoustic and vibration signal
analysis is thoroughly discussed in Section 3.1. Figure 3.1 illustrates the main
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principle of multimodal data acquisition at different measurement points. Vi-
bration sensors provide localized information from specific parts of a machine
onto which they are mounted. Remote acoustic sensors, on the other hand,
are susceptible to a wider variety of noise produced during every registered
operation state. During initial signal analysis a set of distinguishing features
is specified for every machine under test and the fitness of these sets is evalu-
ated using a simple correlation based classifier and a model based fuzzy logic
classifier. Automatic feature selection is additionally handled and the results
are verified by the fuzzy logic based classifier. The combined results of pro-
cess state classification are presented in Table 6.1. The table shows that it
is possible to manually specify or automatically select a set of features that
yields high classification accuracy for every machine under test and for every
considered modality. The majority of the misclassified signal frames origi-
nates from the periods of state transition, which is natural because process
dynamics are not settled during the transitional period, and the system is
trained to identify steady-state parameters.

Table 6.1: Results of process classification in (%) combined from Tables 3.3–3.5

Classifier Feature Saw Saw Router Router
type extraction acoustic vibration acoustic vibration

Fuzzy
Band energies 94.27 90.62 98.67 99.85
Instantaneous 98.72 83.75 97.83 99.28

MFCC 96.49 81.65 98.72 99.49

Correlation
Band energies 81.25 54.06 91.95 98.39
Instantaneous 74.19 68.91 53.82 96.44

MFCC 87.90 65.69 95.72 99.85

Fuzzy
DEFS 94.96 70.31 99.08 99.88
LSFS 95.16 58.12 98.80 99.76
MCFS 95.56 65.27 98.68 77.73

The overall state identification accuracy can undoubtedly be increased by
introducing additional modalities to the identification effort and increasing
the number of measurement points. For more sophisticated process identifica-
tion, where the two discussed modalities do not offer sufficient identification
quality, process analysis is performed until the optimal set of modalities and
most discriminative measurement points are established.

Production Process Fault Detection

The detection of machinery malfunctions or faults in the production process
can be performed by the identification of abnormal patterns in the monitored
process. Figure 6.1 illustrates turning tool fault detection in a Computer Nu-
merical Control (CNC) lathe. The lathe is specifically programmed for the
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experiment to perform an improper tool movement which can result in the
tool breaking. The pattern recognition system is trained prior to the exper-
iment to classify the spindle rotation (class 1) and cutting process (class 2).
The fuzzy logic based classifier is trained by modeling the feature subs-paces
by triangular Membership Functions (MF) in order to strictly specify the
feature sub-space bounds (see Section 2.5.3). As a result the abnormal be-
havior, which happens approximately at the 16th second in Figure 6.1, falls
out of the confined feature sub-spaces of the specified classes and is left un-
classified. Combining this type of detection with abnormal readings from
other sensors (e.g., vibration) can indicate a fault, given that the source of
signal abnormality does not originate from elsewhere.
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Figure 6.1: Lathe turning tool fault detection by an acoustic sensor.

6.1.3 Localization of Machinery Operating Region

Applying multi-channel sensors to industrial machinery monitoring allows to
locate the region of operation of any particular machine in the FOV. Acous-
tic noise emission from any specific region of a machine provides additional
information to the process state identification system and reduces the risk of
falsely identifying a similar pattern incoming from a neighboring machine or
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mistaking any background noise for a process state. Furthermore, in a well
established setting of the shop floor, where the positions of all machines and
tools are known, it is possible to concentrate the directivity pattern of the
acoustic arrays on specific regions of interest and attenuate unwanted noise
via beamforming.

Experimental Setup

The proposed solution consists of several small sub-arrays that form a wide
aperture array with a FOV of 15–25 m2. With each such array the system
monitors a separate machine or part of a larger object, such as a conveyor
chain. The applied approach to acoustic localization in the horizontal plane is
discussed in Section 4.3. For the experiments the wired array configuration
consisting of four sub-array blocks, discussed in Section 4.4, is used. The
signals are sampled at a rate of 8 kS/s per channel. Two array placement
configurations are used: linear — the sub-arrays are placed in a straight line
with the steering angles α = {0, 0, 0, 0}; angular — two sub-arrays are placed
perpendicular to the remaining two with α = {90, 90, 0, 0}.

The experiments are performed at the shop floor of a small manufactur-
ing facility during common operational conditions. The two machines chosen
for testing are a CNC lathe and a manually operated lathe. The array place-
ments for the CNC lathe and manual lathe are presented in the Figure 6.2a
and Figure 6.2b, respectively. Such configurations do not occupy the opera-
tion space and thus do not impede personnel movement. The CNC lathe is
programmed for a short turning cycle with the motor being turned on, the
spindle put into rotation (i.e., the transmission put on the spindle), and one
lengthwise pass on the manufactured piece with a spinning tool. The same
operations are performed manually on the manual lathe with the operator
located at his normal working position.

Results of Localization

Both machines under test are successfully localized by the two array place-
ment configurations. However, the drawback of the linear configuration,
discussed in Section 4.4.1, is evident in the manual lathe case. Figure 6.3
presents the result of manual lathe localization with both the motor and
spindle turned on. For the ISRR approach (top subplot) blue lines denote
sub-array estimated DOA, purple stars denote the intersections of DOA vec-
tors, black rectangles denote the confined regions, and black circles denote
the SRP energy maxima with their values situated to the right. Multilater-
ation coordinate estimates are denoted by green diamonds, and the confined
regions are denoted by dotted rectangles. For the SRP-PHAT approach an
SRP image of the FOV spatial grid is presented. Figure 6.3 shows that the
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Figure 6.2: Array placement for monitoring the CNC lathe (a) and the manual lathe (b).
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Figure 6.3: Localization result of the manual lathe with motor and spindle turned on
produced by ISRR (top) and SRP-PHAT (bottom).
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Figure 6.4: Localization result of the CNC lathe with motor turned on produced by ISRR
(top) and SRP-PHAT (bottom).
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Figure 6.5: Localization result of the CNC lathe performing treatment with a spinning
tool produced by ISRR (top) and SRP-PHAT (bottom).
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proposed ISRR method of distributed localization succeeds in locating only
the motor noise emitting region. SRP-PHAT also produces a rough image
with the majority of elevated SRP values located behind the lathe. The
figure illustrates that even with a significantly spread wide aperture array
close proximity localization of a large object with several noise emitting re-
gions is complicated. Nevertheless, both methods achieve crude localization,
which can indicate the operation of this particular machine and reassure state
identification estimates.

Localization of the CNC lathe with the array angular configuration proves
to be more precise. Lathe components that emit most noise are the DC mo-
tor, transmission, spindle and the area of manufactured piece. In the motor
no-load state (i.e., the transmission is off the spindle) the motor itself is well
distinguishable, as it is shown in Figure 6.4. Spindle rotation and manufac-
tured piece treatment produce a more spread, but, nevertheless, localizable
region, as presented in Figure 6.5. The angular configuration performs signif-
icantly better than the linear one, localizing separate noise emitting regions.
Such level of localization down to the machine specific part in operation can
be used in data fusion to reassure the state estimates situated with that
particular part.

Regarding the two approaches to ISRR, the multilateration approach
generally performs worse for the task of machine noise emitting region local-
ization than the DOA approach. While the DOA approach to ISRR behaves
similarly to SRP-PHAT, confining the noise source region when possible, the
multilateration approach produces a large number of incidental regions and
rarely settles on the true noise source even when it is well established by
the two other methods. This indicates the poor ability of multilateration to
localize significantly large noise sources at close proximity.

6.2 Identification and Tracking of Military
Vehicles

The considered application of military vehicle identification and trajectory
estimation is a part of a larger study performed by the author of the thesis
and the Research Laboratory for Proactive Technologies of the Tallinn Uni-
versity of Technology on the topic of Military Intelligence Surveillance and
Reconnaissance (ISR) system development. Other applications situated with
the ISR system include detection and movement speed estimation of ground
troops and gunshot acoustic identification and shooter localization, which
are handled in Section 6.3 and Section 6.4, respectively.
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6.2.1 Intelligence Surveillance and Reconnaissance

The tasks of military intelligence surveillance and reconnaissance consist of
constant and systematic monitoring of the area of potential threats or actual
assault and immediate notification of every concerned party about the chang-
ing situation [111]. The common monitoring tasks include threat detection,
identification of friend or foe, identification of various objects (e.g., vehi-
cles [150,160], munitions [132], etc.) and events [88]. In traditional ISR sys-
tems human operators handle raw data incoming from human components,
such as reconnaissance teams and scout patrols, and computer components,
such as surveillance cameras, reconnaissance drones, motion detectors, etc.,
and perform situation evaluation themselves. In state of the art systems
with higher levels of computer system integration raw data is processed by
the autonomous system and human operators handle the provided situation
assessments, which increases overall system agility and area coverage [66]. In
modern ISR systems ground situation assessment is performed by Unmanned
Ground Sensors (UGS) with support from aerial patrolling by Unmanned
Aerial Vehicles (UAV) [117, 120]. In the environments, where aerial view
can often be obstructed (e.g., urban and woodland), the ground ISR system
serves as the primary source of situation information.

The individual components of an ISR system are distributed in the wide
area of operation and communicate through RF channels forming an inter-
connected WSN. This WSN must be decentralized because the viability of
each component is expected to be low. In a decentralized network the loss of
any individual sensor or data aggregation component will not disrupt overall
system operation. Thus an ISR system serves as a very good example of a
CPS with distributed autonomous components. Furthermore, modern ISR
systems consist of standalone sub-systems (e.g., ground, aerial and manned),
while forming an even more complex Systems of Systems (SoS). Situation
evaluation in such systems is performed in situ by every sub-system rather
than in the information hub, and system-to-system interaction greatly ex-
ceeds machine-to-human interaction [111].

The considered ground ISR comprises multiple distributed smart sensors
(UGS), which perform environment monitoring by analyzing signals of dif-
ferent modalities and collaborate on global situation assessment. The larger
SoS consists of various ground and aerial ISR systems, information accu-
mulation and fusion databases. The situation evaluation results produced
by autonomous components are available to human operators in the opera-
tion center, as well as to local scout patrols. In the scope of the entire SoS
the ground ISR component is a provider of ground information, and other
sub-systems are considered external information consumers. The principle
diagram of the considered system is presented in Figure 6.6. The smart sen-
sors employ multiple modalities, including acoustic, magnetic and Passive
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Infrared (PIR). Acoustic sensors are used for both acoustic source identi-
fication and localization. Magnetic and PIR sensor readings complement
acoustic information in detection of vehicles and foot soldiers.

Acoustic
Road

PIR

PIR Magnetic

Acoustic

Magnetic

Acoustic
Patrol

Scout

ISR center
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Images

Situation
Information

Acoustic
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Figure 6.6: Principle diagram of the ground ISR system and other SoS components.

6.2.2 Military Vehicle Experiment Setup

The experiment was performed in a military base in the city of Tartu, Es-
tonia. The military vehicles were provided by the Estonian Defence Forces
under the European Defence Agency project IN4STARS. The experiment was
performed in early September under varying weather conditions, i.e., clear
calm weather with occasional short rains and wind gusts of up to 15 m/s and
temperature of t◦ ' 18 ◦C.

A total of twelve UGS equipped with linear microphone arrays were used
for the task of acoustic localization and trajectory estimation. The UGS
were manually grouped into three clusters, each containing four UGS. Each
cluster was operating in the common FOV of its UGS independently from the
other two clusters. The clusters were distributed along the vehicle driving
path as portrayed in Figure 6.7. In the figure the red squares marked by Si
denote the linear array UGS. These squares are disproportionate to the image
scale, being drawn bigger for better presentation quality, however, they retain
true array positions and steering angles. UGS latitude/longitude coordinates
were measured using a standalone GPS device (Trimble R8 GNSS) and later
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converted into a local planar coordinate system for offline analysis with UGS
S1 of cluster 3 being set as the zeroth coordinate. UGS steering angles
relative to the Earth magnetic north were measured with a high-precision
compass.

Each linear array is implemented on the BeagleBone Black platform, as
discussed in Section 4.5.2. The array consists of six microphones enclosed
in an aluminum housing with a distance of l = 10 cm between consecutive
microphones. The acoustic signal is sampled at the sampling rate of fs =
20 kS/s per channel and processed in frames with lengths of 2730 samples
per channel. The left image of Figure 6.8 presents one of the UGS used in
the experiment.

20 m

S1

S2

S3

S4S1

S2

S3

S4
S1

S2

S3

S4

Cluster 1

Cluster 3

Cluster 2

Figure 6.7: Acoustic array UGS placement and vehicle driving path.

The UGS perform the dedicated tasks (i.e., DOA estimation, etc.) au-
tonomously and send the intermediate information through data aggregation
nodes to a data fusion and situation assessment station implemented on a
dedicated server. The subscription to data provided by the UGS is performed
by means of the middleware component, reviewed in Section 5.3.3. A syn-
chronized start time of the WSN is achieved by broadcasting a sequence of
specially timed messages from the control node (six messages counting down
from 100 ms with 20 ms intervals), which is used to trigger the concurrent
start of signal sampling within all three UGS clusters. Two data aggrega-
tion nodes are presented in the right image of Figure 6.8. Additionally to
forwarding the intermediate data each UGS also saves it along with the raw
multi-channel signal on a memory card for later offline analysis.

The four vehicles used in the experiment were: a light patrol jeep, pre-
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Figure 6.8: Linear array UGS prototype (left) and two data aggregation nodes (right).

sented in Figure 6.9, a personnel truck (with an empty back), presented in
Figure 6.10, a medical utility truck, presented in Figure 6.11, and an armored
personnel carrier, presented in Figure 6.12. Each vehicle took multiple drives
without stops along the path highlighted in Figure 6.7 with speeds raging
from 10 km/h to 35 km/h.

6.2.3 Vehicle Localization and Trajectory Estimation

Vehicle localization was performed by the proposed approach to distributed
acoustic localization, discussed in Section 4.3. As the experiment was per-
formed using wirelessly connected asynchronous (softly synchronous) sensors,
the multilateration approach to ISRR could not be applied for comparison.
Instead, only the DOA approach was used. For trajectory estimation the
approach presented in Section 5.2 was applied. The Kalman Filter (KF) was
applied for solving the dynamic system (2.36) of the object movement model,
and the Rauch-Tung-Striebel (RTS) smoother was used for final trajectory
smoothing.

General Results

The system succeeded in localizing each of the vehicles as a single confined
region for the majority of vehicle pass instances. As strict temporal data
validation was not performed by the middleware component, an inter-node
synchronization error not exceeding 5 ms remained in the WSN. This resulted
in a slight decrease in localization accuracy as the DOA estimation in each
of the UGS clusters was performed with a slight lag between the nodes.
The trajectory estimation procedure partly corrected sequential localization
estimates. All estimated trajectories resemble the curved path presented in
Figure 6.7 despite several cases of the localization procedure failing to follow
the course of the acoustic source.
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Figure 6.9: Light patrol jeep in the vicinity of UGS cluster 3.

Figure 6.10: Personnel truck in the vicinity of UGS cluster 3.
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Figure 6.11: Medical utility truck in the vicinity of UGS cluster 3.

Figure 6.12: Armored personnel carrier in the vicinity of UGS cluster 2.
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Figure 6.13: Result of vehicle localization and trajectory estimation for UGS cluster 1.
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Figure 6.14: Result of vehicle localization and trajectory estimation for UGS cluster 2.
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Figure 6.15: Result of vehicle localization and trajectory estimation for UGS cluster 3.

Case Analysis

An example of acoustic localization and trajectory estimation for a single
vehicle pass is presented in Figures 6.13–6.15. In the figures straight lines of
various colors starting from array centers denote the DOA estimates of each
UGS, black rectangles denote the localization regions confined by ISRR, and
the red rectangles denote the search regions (5.1) predicted by KF. During
offline analysis SRP-PHAT with SRC was applied to each of the regions to
estimate the maximal cumulative energy values of the softly synchronous
signals. The spatial positions of these maxima and their values are denoted
by small black and red circles for ISRR confined regions and KF predicted
regions, respectively. Black dotted lines denote the estimated trajectories
and thick dotted lines denote smoothed final trajectories.

Figure 6.13 illustrates an example of maintaining the estimated trajectory
by the predicted region while the localization estimate goes off course. The
higher SRP value of the predicted region in this case indicates that the source
is in fact better located by the trajectory estimation procedure than by ISRR
alone. The inconsistencies in trajectory estimation at the beginning of vehicle
pass result in a trajectory skewed towards UGS S3 of cluster 1. Applying
the RTS smoother resolves the problem, which results in a curve following
the vehicle path.
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Figure 6.16: Combined result of vehicle localization and trajectory estimation for all three
UGS clusters.
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UGS cluster 2 has its arrays steered towards the center of the common
FOV. Such a configuration proves to perform better than the one of clus-
ter 3, where the UGS are steered parallel to the vehicle path. The result of
trajectory estimation by cluster 2 is presented in Figure 6.14. On the very
edge of the FOV the source is not detected by UGS S1 and S2, however,
the trajectory estimation procedure succeeds in leading the source up to and
over the FOV edge. Both the successively estimated and the final smoothed
trajectories conform with each other. Cluster 3 performs worse than clus-
ter 2, partly due to UGS S3 having a technical error and thus not providing
DOA estimates. This results in the source not being localized at the FOV
edge of vehicle approach. Nevertheless, the trajectory is estimated well for
the latter part of the FOV up to its opposite edge.

The combined result of trajectory estimation by all three UGS clusters is
presented in Figure 6.16. The resulting smoothed trajectory closely resem-
bles the vehicle path specified in Figure 6.7. As the true vehicle positions at
any given moment of driving through the UGS clusters are unknown, pre-
cise localization error estimation is not possible. Furthermore, the scale of
UGS clusters does not significantly exceed the scale of the localized vehi-
cles. Therefore, localization to a point is both not possible and ultimately
unnecessary. The overall trajectory of driving through all three clusters is
obtainable at the stage of data fusion through extrapolation and additional
smoothing.

6.2.4 Vehicle Identification

Vehicle identification is performed by applying the multistage procedure,
discussed in Section 3.2.2. The procedure runs on every UGS parallel to
localization and trajectory estimation using the acoustic signal of one of
the microphones of the UGS array. The signal RMS energy threshold is
chosen such that the classification stages of the multistage algorithm are
executed only during vehicle pass at close proximity, i.e., during the Attack
Sustain Release (ASR) envelope dynamic. As the vehicles under test produce
a significant amount of noise, it is acquired even from a distance of the
vehicle parking area (beige regions in Figure 6.7). The acoustic patterns
acquired at this distance are distorted and can cause classification errors.
The classifiers are trained accordingly on the features extracted from signals
frames corresponding to the actual vehicle pass intervals.

Event Concurrence

For temporal validation of vehicle identification results, the spatial distribu-
tion of UGS in the clusters must be taken into consideration. Figure 6.17
presents signals acquired by UGS of cluster 2 corresponding to a slow pass
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of the medical utility truck. Each subplot of the figure represents a signal
acquired by the first microphone of UGS Si, i = 1, . . . , 4. The first portion
of the signals (up to the 30th second) corresponds to the vehicle staring up
and driving to its starting position, which is denoted in Figure 6.7 by the
beginning of the path line. This portion is acquired by the UGS with no
visible delays between the signals because the noise originates from outside
the cluster. The signal interval between approximately 30 and 62 seconds
corresponds to the drive itself. Due to the spatial distribution of sensors the
ASR dynamic of the vehicle passing every UGS is registered with a significant
delay, which is measured in seconds. UGS S1 and S2 are naturally the first
to detect the pass and the remaining two UGS register the Sustain portion
of the envelope 2–3 seconds later. From the system’s viewpoint at the frame
refresh rate of 136.5 ms these events are spread too far apart to be con-
sidered simultaneous and corresponding to the same vehicle pass event. To
tackle the problem the localization results that show a single object passing
at this specific time interval are used to combine the separate identification
estimates during data fusion.
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Figure 6.17: Acoustic signals of a medical utility truck pass acquired by UGS cluster 2.
From top to bottom: signal of the first microphone of UGS S1 up to UGS S4.
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Classifier Training and Validation

The fuzzy logic based classifier was trained on the features extracted from
the Sustain portion of the vehicle pass signals. The feature set used for
feature extraction corresponds to the one presented in Section 3.2.2: band
energies (2.16) with 15 sub-bands chosen in the interval of 10–3000 Hz, spec-
tral centroid (2.10), spectral roll-off (2.14), spectral slope with parameters
(2.17), (2.18). Reference vectors for the correlation based classifier (3.2) are
generated by averaging several spectra corresponding to the Sustain signal
envelope portion of several passes per each vehicle type. For class labeling
a separate class is dedicated to each of the vehicles under test regarding all
the possible driving speeds of 10–35 km/h. The class labels are set as:

• patrol jeep — class 1,

• personnel truck — class 2,

• medical utility truck — class 3,

• armored personnel carrier — class 4.

Two test datasets were generated for the fuzzy logic based classifier consist-
ing of features corresponding to narrow intervals of the middle portions of
the Sustain signal envelope part, and features corresponding to all Attack
Sustain and Release signal envelope portions. These two datasets are re-
ferred to as the narrow and wide datasets, respectively. The results of fuzzy
classifier testing on the narrow dataset are presented in Figure 6.18. The
figure shows that class 1 and class 2 are well distinguishable from class 3 and
class 4. Several samples are incorrectly classified between class 1 and class 2,
however, both are sufficiently separable by the chosen features. Class 3 and
class 4, on the other hand, are mistaken for each other for quite a large num-
ber of samples. This poor separability of the two classes leads to a lower
classification accuracy of the entire set. Close frequency domain analysis of
class 3 and 4 vehicle acoustic patterns has shown that the patterns are in
fact very similar. Thus the problem of poor separability is not situated with
the choice of features.

Testing the fuzzy classifier on the wide dataset results in a larger number
of misclassifications, as portrayed in Figure 6.19. Classes 1 and 2 remain
well separable with the rare exception of class 2 being mistaken for class 1.
The classification accuracy for classes 3 and 4 is worse than in case of the
narrow set because additionally to being poorly separable, both are mistaken
for class 1 and class 2 for a number of samples. Closer analysis shows that
the acoustic patterns of class 3 and class 4 vehicles closely resemble those of
class 1 and class 2 at the early stage of Attack and the late stage of Release
signal envelope portions. This circumstance further justifies the need of event
identification only during the actual vehicle pass and not during its approach.
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Figure 6.18: Result of fuzzy classifier evaluation on the narrow test dataset.
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Figure 6.19: Result of fuzzy classifier evaluation on the wide test dataset.
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Vehicle Identification Results

The multistage vehicle identification procedure produces a class label for ev-
ery signal frame that corresponds to the detected vehicle pass interval, i.e.,
the interval with the RMS energy above the threshold confined by the ASR
dynamic. Both the fuzzy logic based and correlation based classifiers pro-
duce vehicle type class labels (as opposed to one distinguishing between a
vehicle pass event and all other possible events). For combined label gen-
eration the fuzzy classifier has greater priority, while the correlation based
classifier supports the decision made by the fuzzy classifier. This is achieved
by adding a weight coefficient to the class label produced by the fuzzy classi-
fier, which depends on the correlation value corresponding to that class and
its distinctiveness from the values corresponding to other classes. The final
class label for the entire vehicle pass interval is calculated by identifying the
most frequent class label with the largest weight among the individual frame
labels of that interval.

Figures 6.20–6.23 present identification results for the pass intervals of
vehicles of class 1 up to class 4, respectively. The figures consist of four
subplots; from top to bottom these are:

1. Acoustic signal with one instance of vehicle pass (blue); final estimated
labels with value 0 corresponding to event non-detection, 0.25 corre-
sponding to class 1, 0.5 — to class 2, 0.75 — to class 3, and 1 — to
class 4 (black);

2. RMS energy readings per frame (blue); signal energy threshold ex-
ceeded or not (red line);

3. Class labels generated by the fuzzy logic based classifier;

4. Coefficients of correlation with the reference spectral vectors (blue —
class 1, green — class 2, red — class 3, magenta — class 4).

Classes 1 and 2 are well identifiable, as shown in Figure 6.20 and Figure 6.21.
For both class 1 and class 2 the fuzzy classifier does not produce false class
estimates. A number of frames receive the zero label, which means that the
features of these signal frames are out of bounds of any class feature sub-
space. The correlation coefficients also indicate the correct class well. In
Figure 6.20 the correlation coefficients of class 1 are significantly higher than
the ones corresponding to other classes for the entire vehicle approach and
pass interval. This gap is less evident in Figure 6.21 for class 2. There the
correlation coefficients corresponding to class 2 are dominant only for the
Attack and Sustain portions of the vehicle pass signal, while fuzzy classifier
estimates are consistent for the entire pass interval. Classes 3 and 4, on the
other hand, are poorly separable, which is evident from Figure 6.22 and Fig-
ure 6.23. In case of class 3 (Figure 6.22) a number of frames are incorrectly
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classified as class 4 by the fuzzy algorithm, while the correlation method
results in a notable dominance of class 3 coefficients along the entire dura-
tion of vehicle pass. During class 4 vehicle identification (Figure 6.23) the
majority of frames corresponding to the Attack and Decay portions of the
signal dynamic are incorrectly classified as class 3 by the fuzzy classifier. The
dominant correlation coefficients also vary between classes 3 and 4 during the
vehicle pass interval. However, applying the search for the most popular label
in the entire pass interval results in correct final estimate generation in both
class 3 and class 4 cases. Classes 3 and 4 are also confused with class 2 while
the vehicles are far from the measurement point, which is evident from both
the fuzzy classifier and correlation results in Figures 6.22–6.23. However,
this does not pose a problem because during online operation the classifiers
are not invoked unless the signal RMS energy exceeds the threshold and the
ASR dynamic is registered.

The problem of strong noise resembling the ASR dynamic of the vehicle
pass persists in the identification system. For example, a short accelera-
tion of the patrol jeep at a high engine speed resulted in a false detection
at approximately the 40th frame in Figure 6.20 while the vehicle was still
at a large distance from the UGS cluster. Wind gusts also often produce
the ASR envelope dynamic and can result in high signal RMS energy val-
ues. If the classification procedure also fails to reject these false detection
instances, a false identification result can be produced. To reduce the num-
ber of false detections the results of the identification procedure are fused
with the results of acoustic localization and trajectory estimation (and other
appropriate system components) at the level of information fusion.

During the entire experiment 84 vehicle pass instances were detected and
identified. This number constitutes 18 class 1 vehicle pass, 21 class 2 vehicle
pass, 21 class 3 vehicle pass, and 24 class 4 vehicle pass instances. Out of 84
instances 75 were correctly identified, which resulted in a 89.29% estimation
accuracy. The confusion matrix for vehicle identification is presented in Fig-
ure 6.24. The main source of identification error is again situated with poor
separability between class 3 and class 4. The fact that the chosen features
separate the four classes well, leaving only one pair of classes poorly sepa-
rated, suggests the application of a tree structure for class labeling. A set of
features specific only to class 3 and class 4 has to be found, then the decision
between these two classes can be made at the bottom of the tree structure
after separating well distinguishable classes at the top of the tree.
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Figure 6.20: Example of patrol jeep (class 1) identification.
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Figure 6.21: Example of personnel truck (class 2) identification.
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Figure 6.22: Example of medical utility truck (class 3) identification.
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Figure 6.23: Example of armored personnel carrier (class 4) identification.
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Figure 6.24: Confusion matrix of vehicle identification results. Accuracy equal to 89.29%.

6.3 Detection and Speed Estimation of Ground
Troops

Detection and movement speed estimation of ground troops is the second
considered topic of research for ISR system development. The considered
approach is based on Passive Infrared (PIR) signal analysis. PIR sensors are
usually used as binary state sensors for movement detection and are mainly
utilized in smart houses and security systems [62]. For the application at
hand the possibilities of PIR sensors are explored for movement speed esti-
mation. PIR sensors can serve as less expensive alternatives to visible light
and infrared cameras for detection of moving objects [50]. For application in
ISR systems the UGS equipped with PIR sensors are placed in areas of po-
tential enemy activity and estimate the speed of passing foot soldier (or other
threat) movement. By fusing the movement information gathered from in-
dividual distributed UGS allows for estimating the direction of advancement
and the number of moving targets.

6.3.1 PIR Signal Analysis for Movement Speed Estimation

A differential PIR sensor utilizes two infrared wavelength sensitive elements
made of pyroelectric crystals. The crystals change their polarization when
illuminated with thermal radiation. This, in turn, creates an electric poten-
tial between the surfaces of the crystals relative to the amount of radiation
received. The generated electric charge slowly dissipates if there is no more
change in the amount of thermal radiation in the FOV of the sensor. The
Fresnel lens splits the sensor’s FOV into sections and divides the sections be-
tween the two crystals such that two neighboring sections are never focused
on the same crystal. This means that as an object moves from section to sec-
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tion, one of the elements always outputs a voltage. Additionally the outputs
of both the crystals are wired to opposite inputs of a differential amplifier
to produce and amplify the difference of the two signals rather than the sig-
nals themselves. This eliminates the possibility of false movement detection
events when both the sensor elements are illuminated with the same amount
of radiation at the same time (e.g., in case of field wide light flashes). The
configuration of the Fresnel lens defines the sensor’s FOV. For the experi-
ments situated with ground troop detection a lens having a 180◦ horizontal
FOV and a [0◦, 60◦] vertical FOV is used. The vertical FOV starts at 0◦ from
the horizontal plane (assuming zero tilt of the sensor’s aperture) and tends
upwards. Such a lens reduces the risk of false detection caused by movement
near the ground (e.g., small animals) if the sensor is placed sufficiently high
above the ground level. Figure 6.25 presents the PIR sensors used in the
experiments.

Figure 6.25: PIR sensors encased in a camouflaged chassis designed by Defendec Inc.

Signal Processing Steps

Signal processing is conducted on the voltage signal of the differential PIR
sensor. The principle block-diagram of the proposed processing procedure is
presented in Figure 6.26. The acquired signal is passed through initial signal
processing (enclosed in green in Figure 6.26), stored in an input buffer and
processed in a sliding window manner by the the latter parts of the algorithm.
The sliding window approach is applied because PIR is a weakly oscillating
signal, and thus the frame length has to be considerably larger than, for
example, in case of acoustic signals. Non-zero frame overlap ensures higher
refresh rates at larger frame lengths.
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Figure 6.26: Block-diagram of applied PIR signal processing steps.

The first stage of signal processing in Figure 6.26 begins with raw digital
signal pre-processing, which consists of eliminating the bias (DC voltage)
and scaling the signal. To reduce the high-frequency ambient noise a Low
Pass (LP) filter is applied. For the experiments a 5th order Butterworth
Infinite Impulse Response (IIR) filter with the cutoff frequency of 10 Hz is
used. After filtering the derivative of the signal is calculated as the first
order finite difference ∆x[k] = x[k] − x[k − 1], where x[k] and x[k − 1] are
the k-th and previous signal samples, respectively. Further signal analysis is
performed on the signal derivative due to the fact that signal settling time
after movement end is quite long — not less than 1–2 seconds for the specific
sensor at hand. These settling time signal fluctuations are reduced in the
derivative.

Movement Detection

The movement patterns of the PIR signal can easily be contaminated by
ambient noise or insignificant movements. For this reason target movement
detection is performed prior to object velocity estimation. Movement detec-
tion consists of computing the envelope of the signal derivative by applying
the Hilbert transform (2.2), and applying a preset threshold to the envelope’s
average value. Low signal dynamics suggest to use a sliding average value of
the envelope amplitude

x̄[k] =
1

NW

∑

k−NW<i≤k
x[i], (6.1)

where NW is the sliding window length in samples. During a detection event,
envelope amplitude may decrease for a short amount of time. Such cases
arise when the PIR signal is at its maximum possible amplitude and thus
the derivative is close to zero. These cases are handled by performing an
additional check of every detection event for short-term drops of envelope
amplitude.
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Movement Speed Estimation

For pattern recognition a set of time domain features is extracted and an
inference mechanism is applied, which maps the feature vectors onto speed
estimates. PIR is a weakly oscillating signal with lengthy perturbations (the
frequencies of interest are well below 1 Hz). For this reason frequency domain
analysis and correlation based pattern identification are inapplicable. The
following features are extracted for the periods of detected movement:

1. Zero crossing interval (ZCI) — the time between two successive signal
zero crossings

ZCI = kZC(i) − kZC(i−1), (6.2)

which can be considered a rough estimate of signal half-period. All
other features are computed once per every ZCI.

2. Amplitude (AMP) — maximum of half-period absolute values

AMP = max
(∣∣x[kZC(i−1)]

∣∣ , . . . ,
∣∣x[kZC(i)]

∣∣) . (6.3)

3. Gradient (GR) — value of half-period maximal increase rate

GR = max
(∣∣∆x[kZC(i−1)]

∣∣ , . . . ,
∣∣∆x[kZC(i)]

∣∣) . (6.4)

4. Mean gradient (MGR) — mean value of half-period increase rate

MGR =
1

ZCI

kZC(i)∑

j=kZC(i−1)

|∆x[j]| . (6.5)

5. Mean square energy (MSE) — mean value of signal half-period squared
amplitudes

MSE =
1

ZCI

kZC(i)∑

j=kZC(i−1)

(x[j])2 . (6.6)

For object speed estimation based on the extracted feature vector a fuzzy
inference procedure is applied, which provides efficient non-linear mapping
for a set of features. For fuzzy inference a Sugeno-type Fuzzy Inference Sys-
tem (FIS) is used, which is composed as an Adaptive Network-based Fuzzy
Inference System (ANFIS). The ANFIS neuro-fuzzy architecture of the fuzzy
system allows the FIS parameters to be trained using typical Artificial Neu-
ral Network (ANN) training algorithms, like backpropagation and conjugate
gradient descent [72]. Prior to online operation, the ANFIS structure is
trained in a supervised manner on a dataset of reference feature vectors of
form (2.23), with the only difference being that instead of integer class labels
real values of reference speed are used in the last column of the dataset.
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6.3.2 Experimental Results

The experiments of passing person movement speed estimation were per-
formed in a sparse forest environment. The PIR sensor was placed at a
height of approximately 2 meters above ground with its aperture slightly
tilted downward (approximately 10◦–15◦). The sensor was targeted at a for-
est path situated approximately 5 meters away from the sensor’s position.
During the experiment a person was passing the sensor’s FOV along that
path, parallel to the sensor’s aperture, at different speeds. Three different
speeds were measured: a moderate walking speed of approximately 1 m/s, a
brick pace of approximately 2 m/s, and the light jogging speed of approxi-
mately 2.5 m/s. The PIR sensor used in the experiment was developed by
Defendec Inc. specifically for the military applications. The sensor is pow-
ered by an internal battery and encased in a sturdy camouflaged chassis (see
Figure 6.25). PIR signals were acquired by the Agilent U2354A DAQ with
the sampling rate set to fs = 1 kS/s.
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Figure 6.27: Speed estimation results for movement at the reference speed of 1 m/s.

Figures 6.27–6.29 present the results of movement speed estimation for
the three considered movement speeds. In the top subplots of the figures
blue lines denote the initial, and magenta lines denote the filtered PIR sig-
nals, respectively. The middle subplots present the signal derivatives (blue
lines), signal derivative envelopes (green lines), and the intervals of move-
ment detection (black lines). The bottom subplots present the movement
speed estimates (red lines) produced for every movement detection inter-
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Figure 6.28: Speed estimation results for movement at the reference speed of 1.8–2 m/s.
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Figure 6.29: Speed estimation results for movement at two reference speeds of 1 m/s and
2.5 m/s.
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val. The long signal settling intervals after movement end are presented in,
e.g., Figure 6.27 at 16–21 seconds, Figure 6.28 at 12–16 seconds, and Fig-
ure 6.29 at 11–13 seconds. The amplitudes of the derivative and its envelope
are significantly lower that the signal amplitude at these intervals, and thus
the settling time intervals do not influence the procedure based on signal
derivative analysis as much as they would if the procedure used the raw sig-
nals. The movement estimation procedure succeeds in correctly estimating
the three considered movement speeds with most inaccurate estimates being
produced at the beginning and at the very end of the movement detection
intervals. The reason lies in the specific configuration of the used Fresnel
lens. The lens divides the FOV into equal sectors, and when a person enters
or leaves the FOV the corner sectors result in irregular oscillations of the
PIR signal. Nevertheless, the results for the middle portions of the detection
intervals coincide with the approximate reference speeds.

6.4 Gunshot Detection and Shooter Localization

Gunshot detection and shooter acoustic localization is the third considered
topic of research for application in ISR systems. The development of shooter
acoustic localization systems has continued for more than three decades.
Numerous different gunshot detection and direction estimation systems are
currently available for military applications of sniper and covert enemy force
positioning, and are also used in law enforcement for gun violence reduction
and forensics [3]. The devices currently available are generally standalone
systems, composed of a single microphone array, e.g., the vehicle-mountable
Boomerang system [98]. Individual gunshot detectors developed for mili-
tary and law enforcement personnel [58,59,128] consist of compact shoulder-
carried, helmet or uniform mounted sensors. Such individual systems in-
crease local situation awareness, however, for large area coverage a different
approach is required.

A distributed ISR system consisting of interconnected UGS is well suited
for shooter localization because it expands UGS individual FOV and thus al-
lows for greater area coverage. The state of the art in this area suggests either
synchronous [129] or asynchronous [44] gunshot acoustic event detection and
subsequent shooter localization based on UGS collective information. The
majority of the proposed approaches is based on the analysis of the shock-
wave (SW) and muzzle blast (MB) produced by supersonic projectiles [102].
Most methods employ single-sensor UGS, identifying the gunshot events and
estimating the shot geometry under different initial assumptions, e.g., the
known caliber of the fired projectile [129] or a certain ballistic shockwave
acoustic model [4]. However, initial assumption inconsistency and the pres-
ence of acoustic events not-of-interest (i.e., residual gunshot acoustic events
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and various noise produced by other sources) may significantly reduce local-
ization accuracy [8].

Employing multi-channel smart sensors for gunshot localization allows to
additionally estimate the DOA of gunshot event acoustic waves. Knowing the
DOA aids in acoustic event identification and allows to reduce the number
of initial assumptions, which, in turn, makes the localization process more
robust. The proposed method of shooter localization is based on gunshot
event DOA and TDOA information. Each UGS in the localization WSN in-
dependently performs gunshot acoustic event detection, computes the DOA
and marks the event occurrence times in its own local time. The fusion node
gathers DOA and time information from all UGS, performs identification of
SW and MB among events not-of-interest (NOI), calculates the TDOA be-
tween SW and MB, and estimates the shooter position based on the known
UGS positions. The TDOA are calculated per each UGS and no cross-UGS
delays are used, thus node synchronization is not required (however, soft syn-
chronization is still needed to be able to distinguish between shot instances).
Uniform Circular Arrays (UCA) are used for this application to ensure 360◦

horizontal FOV. DOA estimation is performed by the proposed method, dis-
cussed in Section 4.2.3. Steered Response Power (SRP-PHAT) applied over
a reduced functional (discussed in Section 4.2.2) is used for comparison.

The proposed method was tested on signals acquired during three live
shooting experiments. The first experiment was performed at a small out-
door shooting range with a shooter-target distance of 35 m. The second
and third experiments were performed at a larger outdoor shooting range
with a shooter-target distance of 100 m. Two UCA prototype versions were
used in the experiments. Experiment 1 used the implementation employing
six condenser microphones and an exterior Data Acquisition Device (DAQ),
discussed in Section 4.2.5. Experiments 2 and 3 used the implementation
employing six MicroElectroMechanical Systems (MEMS) microphones and a
BeagleBone Black (BBB) as a DAQ and processing unit, discussed in Sec-
tion 4.5.2. These two implementations are further referred to as prototype 1
and prototype 2, respectively.

6.4.1 Shooter Localization Preliminaries

In this work a planar gunshot acoustic event geometry is adopted for the
proposed approach to shooter localization (i.e., the sensors and the trajec-
tory of the traveling bullet are situated in the horizontal plane). A straight
bullet trajectory is assumed for simplicity, not accounting for various effects
considered in exterior ballistics [36].
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Gunshot Acoustic Event Geometry

Figure 6.30 portrays the acoustic events produced by a gunshot at point
Z as observed at point O. A gunshot is characterized by the shockwave
(SW), produced by a supersonic projectile, and the muzzle blast (MB) of the
fired weapon. SW produces a conical wavefront at an angle θ to the bullet’s
trajectory. The angle θ depends on the speed of sound c in air and the bullet
velocity v:

θ = sin−1 c

v
. (6.7)

The waves of MB, on the other hand, propagate spherically at the speed of
sound c in all directions.

The initial bullet velocity is equal to the muzzle velocity v0 (i.e. the
velocity at which the bullet leaves the muzzle of a gun), which depends on
the bullet caliber and cartridge type and can be approximated for different
firearm types [36]. Bullet velocity v decreases with flight distance due to air
friction. It can be expressed as a function of traveled distance df as

v(df ) =
(
vη0 − 2ηC−1

b df
)1/η

, (6.8)

where Cb is a ballistic constant, which depends on the bullet’s type, and η
is the exponent value, usually set at 0.5. In this work the function (6.8) is
assumed to be unknown and the bullet velocity is rather estimated using the
procedure described in Section 6.4.4. For small firearms (e.g. rifles) the de-
crease in the v(df ) curve can be considered linear and ultimately insignificant
for the travel distance of 100–200 m [36]. Thus the bullet velocity is fixed
as a range-invariant parameter v. The speed of sound in air c, on the other
hand, depends on the ambient temperature and is calculated using (2.30).

At line-of-sight, the sensor at point O detects MB at the time

tMB = tshot +
dZ,O
c
, (6.9)

where tshot is the time of shot, and dZ,O = ‖Z −O‖ is the Euclidean distance
between points Z andO. Acoustic waves of SW originate from the bullet itself
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and not from the muzzle. SW travels outwards from the bullet’s trajectory
and is approximated as a planar wavefront in the horizontal plane. As the
bullet has reached point A at speed v, the SW wavefront propagates from
point A at speed c and reaches point O at the time

tSW = tshot +
dZ,A
v

+
dA,O
c

. (6.10)

Point A here is such a point on the bullet’s trajectory from where SW will
travel directly to point O at an angle θ relative to the bullet’s trajectory (see
Figure 6.30).

The TDOA between SW and MB acoustic events can then be expressed
as

∆t = tMB − tSW =
dZ,O
c
− dZ,A

v
− dA,O

c
. (6.11)

The shortest distance from the sensor at point O to the bullet’s trajectory
(dO,B in Figure 6.30) is called the miss distance. Whether ∆t is positive
depends on the bullet’s velocity and the miss distance. If a shot is fired from
a rifle (average bullet velocity near or greater than mach 2) in the sensor’s
direction with the miss distance small enough, then ∆t is expected to be
positive, as SW will most likely reach the sensor before MB.

The DOA of MB and SW for the sensor at point O are defined in the
horizontal plane as azimuth values φMB, φSW , relative to the sensor’s local
coordinate system (x-axis in Figure 6.30). Here the azimuth φSW is the angle
of incidence of a wavefront traveling from point A and φMB is the angle of
incidence of a wavefront traveling from point Z.

Problem Statement

Knowing tSW and tMB, gunshot acoustic localization may be performed by
estimating the angle θ and the miss distance. Angle θ may be estimated by
applying a shockwave acoustic model to the duration of the SW signal [4], or
calculated under known bullet caliber assumption [129]. Then, using multi-
ple measurements of tSW and tMB from K synchronous single-sensor UGS,
the miss distances can be approximated and point Z located via a bounded
search procedure [129]. UGS synchronization plays a crucial role in such ap-
proaches and heavily influences the bound parameters of the bounded search
procedure, as well as the overall localization accuracy [89]. Alternatively,
using multiple measurements from K asynchronous single-sensor UGS and
assuming θ to be known, it is possible to iteratively estimate MB DOA, miss
distances, the bullet’s trajectory and, consequently, point Z via a multistage
optimization procedure [44]. If UGS clocks are sufficiently synchronized, a
mutual reference moment tshot can be established for all UGS via (6.10), and
Z can be estimated by multilateration, using time delays tMB from (6.9).
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Figure 6.31: Six considered fundamental gunshot scenarios.

Unfortunately, if gunshot acoustic patterns include NOI events, such as
reflections and target hit (TH) noise, MB cannot be unambiguously selected
from numerous events following SW. Consider, for example, Figure 6.31,
which presents six fundamental gunshot scenarios. These scenarios represent
the following events:

• the bullet passes through the UGS cluster (I),

• the bullet passes beside the UGS cluster (II),

• a shot is fired away from the UGS cluster (III),

• a shot is fired from inside the UGS cluster (IV),

• the bullet hits the target in the vicinity of the UGS cluster (V),

• a shot is fired and the target is hit inside the UGS cluster (VI).

Scenarios I–III do not contain NOI events and are most commonly considered
in the majority of state of the art approaches. In Scenarios I and II the bullet
either passes through or beside the UGS cluster and no TH is detected. The
localization is then performed using pure SW and MB readings, which are
denoted in Figure 6.31 by arrows pointing from one or both sides towards
the bullet’s trajectory, and arrows pointing towards the shooter’s position,
respectively. Scenario III assumes that only MB are detected. This makes it
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a trivial localization problem, which can be solved using conventional local-
ization methods, e.g., multilateration. Scenarios IV–VI, on the other hand,
assume the presence of NOI events and the masking effect. Here either SW
or MB may be corrupted or masked by TH (Scenario V), or either SW or MB
may be corrupted or masked by each other (Scenarios IV and VI). Further-
more, NOI events such as reflections and background noise may be present
for all scenarios and must be accounted for accordingly. NOI events can be
eliminated by identifying MB and SW by their acoustic properties [87] or
applying statistical assignment [112], however, these methods do not solve
the masking problem.

The shooter localization algorithm presented in this work assumes Sce-
nario V of Figure 6.31, where the UGS form a look-out perimeter around the
potential target, which is very likely to be hit inside or near the UGS clus-
ter. Scenario V implies that either SW or MB may be corrupted or masked
by TH, and UGS situated behind the target may not detect SW altogether.
As Scenario I is a special case of Scenario V (the bullet passes through the
cluster and no TH is detected), the localization rules intended for Scenario V
will also be applicable to Scenario I. The study also considers several acous-
tic event detection problems situated with varying shot range and influence
of NOI events. At a sufficient shot range the TDOA between SW and MB
acoustic transients makes the events well distinguishable [32]. In one of the
considered experiments a short range case is studied, where event separation
is not straightforward due to short TDOA. The proposed detection method
accounts for all gunshot acoustic events, as the MB signal transient is not
guaranteed to strictly follow the one of SW.

6.4.2 Proposed Approach to Shooter Localization

The proposed approach is intended for application in WSN with a dynamic
ad-hoc topology, which implies node synchronization complications and a
varying number of active nodes at any given time. Thus the focus lies on an
asynchronous size-invariant solution. Assuming that the WSN consists of K
UGS, equipped with acoustic sensor arrays, and one or several information
fusion nodes, the proposed approach consists of the following steps:

1. Each UGS detects a gunshot, separates its acoustic events, marks the
time and computes a DOA value per each event.

2. Per each detected shot, each UGS sends an information packet to the
fusion node containing its position, steering angle and acoustic event
parameters {x, α, t,Φ}.

3. The fusion node performs event identification and shooter localization
based on the information provided by active UGS.
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The packet of UGS k = 1, . . . ,K contains: UGS coordinates xk = (xk, yk);
UGS steering angle αk; gunshot event times tk = [t1, . . . , tEk ]; event DOA
Φk = [φ1, . . . , φEk ], where Ek is the number of detected events of the k-th
UGS. As each UGS operates in its own coordinate system, the steering angle
αk is used to specify UGS local coordinate system steering from a global
zero-rotation angle (which is defined by Earth’s magnetic north).

While receiving packets from the UGS, the fusion node maintains a va-
lidity interval beginning at the moment of arrival of the first packet. This
way the expired packets or the ones corresponding to another shot are dealt
with separately. Data validation is discussed in Section 5.3 along with other
communication-related problems. Uniform Circular Arrays (UCA) are cho-
sen for the array configuration because they provide full horizontal FOV with
a simple geometry. Each UCA consists of M = 6 microphones, which are
mounted in circular shells with a radius of r = 7.5 cm (prototype 1) and
r = 10 cm (prototype 2).

6.4.3 Gunshot Acoustic Event Detection and Separation

Gunshot acoustic event detection for a general case (i.e., comprising all sce-
narios of Figure 6.31) is an intricate task. Amplitude-based methods are well
suitable in Scenarios IV and VI, where both SW and MB are detected inside
the UGS cluster as high-energy transients and are, therefore, distinguishable
from background noise. The same holds for Scenarios I–III and V, if the shot
range is short enough for MB to be detected. Otherwise MB can have a small
enough amplitude for it not to pass signal analysis or be masked by back-
ground noise. Another approach is situated with identifying SW and MB by
the shape of their acoustic signals. For example, the N-shaped pattern of
the SW transient may be examined in the time domain [4], or SW and MB
may be distinguished from reflections by applying classification [5, 87]. This
may work well for Scenarios I–III, where no TH or overlapping events occur,
and the task lies only in eliminating reflections. For Scenarios IV–VI and
specifically Scenario V these methods are not guaranteed to perform well.

Shooter distance plays an important role in acoustic event separation as
well. In case of a significantly short shot distance, acoustic event separation
poses a challenge due to an extremely short TDOA between SW and MB [56].
Figure 6.32 presents an example of a normalized gunshot signal acquired at
16.2 m away from the shooter. The multi-channel acoustic signal is presented
in the top subplot of Figure 6.32. The event detection results in the lower
subplot consist of results of peak detection, denoted by red stems, and event
establishing peaks, denoted by green stems. Figure 6.32 shows that the
TDOA between SW (at 4 ms) and MB (at 11 ms) is only 7 ms in this close
range case. Figure 6.34, on the other hand, portrays a normalized gunshot
signal acquired at 97.5 m away from the shooter. Here the TDOA between
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Figure 6.32: Gunshot acoustic components acquired by UGS S3 during Experiment 1 at
fs = 48 kS/s (top). Collective envelope and times of detected events (bottom).
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Figure 6.33: Spectrogram of the gunshot signal presented in Figure 6.32. Acoustic com-
ponents of Figure 6.32 are located at approximately 30–95 ms.
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SW (at 25 ms) and MB (at 150 ms) is already 125 ms, twice as long as the
whole gunshot signal of Figure 6.32. If the detection algorithm treats the
closely spaced events as a single event, MB may be lost in the SW transient.
On the other hand, analyzing every closely spaced rising signal will waste
computational resources and produce a large number of unwanted results.

Another problem lies in separating gunshot instances in case of burst-
mode and automatic fire at close ranges. Consider Figure 6.32, where the
TDOA between SW and MB is 7 ms with post-blast events (i.e., TH and
reflections) starting to occur at the 40th millisecond. Neglecting these post-
blast events may seriously harm the detection process in case of burst-mode
fire. For example, an AK-47 in burst mode can fire 600 rounds per minute
and an M-4 fires at 950 rpm, which constitutes approximately 1 bullet every
100 ms and 63.2 ms, respectively. In this case consecutive SW and MB may
be mistaken for post-blast events, and vice versa for a single shot case.

In the proposed approach to acoustic event detection and separation both
short (20–40 meters) and medium (100–200 meters) shooter distances are
considered. All arising acoustic events are established by the following pro-
cedure. First, a collective envelope is computed using the signals from all
microphones. At sampling time k, the envelope of samples x1[k], . . . , xM [k]
is

senv[k] = max (|x1[k]| , . . . , |xM [k]|) . (6.12)

Event detection is performed on the differential collective envelope

∆senv[k] = senv[k]− senv[k − 1]. (6.13)

The differential envelope ∆senv[k] is passed through peak detection. Peaks
lying within an interval of tW /2 seconds from one another are grouped to-
gether, and one (the first) peak per event is chosen. The value tW here is the
predefined length of event window. An example of separation of four events
is presented in Figure 6.32 (lower subplot) and the example of separation of
eight events — in Figure 6.34 (lower subplot). One frame of duration tW
is retrieved from the multi-channel signal buffer per each event peak such,
that event beginning is included in the frame and adjacent events are strictly
separated. This means that if the events do not overlap, the event signal is
confined from the beginning of its envelope rise for the duration of tW ; if the
events do overlap (i.e., event establishing peaks are less than tW /2 seconds
apart), the first event is windowed leftward from the beginning of the second
event, and the second event is windowed rightward from it’s beginning.

Event identification is performed during the data fusion stage. As NOI
events can also be transient in nature, they are hard to identify during event
detection. Frequency analysis does not offer a straightforward solution ei-
ther, as NOI events possess highly uniform spectral densities as well as SW
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Figure 6.34: Gunshot acoustic components acquired by UGS S1 during Experiment 3,
shooter position 1, at fs = 20 kS/s (top). Collective envelope and times of detected events
(bottom).
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Figure 6.35: Spectrogram of the gunshot signal presented in Figure 6.34.
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and MB (see Figure 6.33 and Figure 6.35). Figure 6.34 also portrays over-
lapping events at 25–110 ms. Here SW is overlapped with its own ground
reflection, which results in two additional peaks being detected before MB.
In such situations the identification of SW by its shape and duration will
likely produce inaccurate results.

Direction of Arrival Estimation

During shot detection and acoustic event separation the k-th UGS produces
Ek multi-channel signal frames of length N = fstW , where fs is the sampling
frequency. These Ek event frames are ordered by the time of their occurrence
tk = [t1, . . . , tEk ], and a separate DOA estimate is then computed per each
frame by applying SRP-PHAT (for reference) and the proposed DOA estima-
tion method. Horizontal evaluation of the FOV is performed by SRP-PHAT
by applying (4.11) and (4.12), as discussed in Section 4.2.2. For the hor-
izontal evaluation by the proposed DOA estimation method the procedure
discussed in Section 4.2.3 is applied only to the set of UCA microphone pairs
(4.15). As a result, a set of azimuth estimates Φk = [φ1, . . . , φEk ] is ob-
tained and transmitted to the fusion node along with other data for further
processing.

6.4.4 Information Fusion and Shooter Localization

As a result of shot detection, the fusion node receives K packets {x, α, t,Φ}k,
k = 1, . . . ,K, where K is the number of active UGS, which have detected
at least one gunshot event. The number of detected events Ek may vary
per UGS. The DOA estimates Φk are first steered to the global coordinate
system, Φk = Φk − αk, and information fusion is then conducted in the
following steps:

• identification of DOA corresponding to SW and MB events,

• estimation of shot geometry,

• estimation of miss distance and distance to shooter for each active UGS,

• shooter localization.

DOA Concurrence

Consensual DOA are established by analyzing all Φ = {Φk | k = 1, . . . ,K}
estimates. To locate coherent estimates, the angular values in Φ are clus-
tered in a manner, similar to the one described in Section 4.1.2. If coherent
estimates exist, we obtain P clusters Φp, p = 1, . . . , P , each containing np
estimates φi, i = [1, np].
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Figure 6.36: Shot angle and miss distance uncertainty interval estimation by UGS groups
situated to the left and to the right from the bullet’s trajectory.

Assuming Scenario V (Figure 6.31), Φp will contain DOA corresponding
to the SW events detected by UGS situated to the left and to the right from
the bullet’s trajectory, DOA corresponding to MB events, and DOA of NOI
events, e.g., TH, various reflections and noise. The DOA of SW vary only
slightly (due to DOA estimation error and natural variance of angle θ) and
do not depend on the distance to shooter. DOA corresponding to MB, on the
other hand, depend on the distance to shooter and UGS cluster dimensions.
If the distance to shooter is significantly larger than the width of the UGS
cluster, MB DOA will be roughly parallel for all UGS. At a closer distance
the UGS situated on the opposite sides of the bullet’s trajectory will have
their MB DOA significantly skewed towards the trajectory in the shooter’s
direction. A principal diagram of consensual DOA for Scenario V is presented
in Figure 6.36.

Event Identification and Shot Geometry Estimation

To reduce the error of individual DOA estimates, event identification is per-
formed on the mean values of clusters Φp: φ̄p = 1

np

∑
Φp, p = 1, . . . , P .

To identify SW DOA, all φ̄p are analyzed pairwise. For each pair φ̄i, φ̄j ,
i = [1, P − 1], j = [i+ 1, P ], a central angle φΣ is first calculated as the
angular component of the sum of their corresponding unit vectors ûφ̄i + ûφ̄j
(see Figure 6.36). SW DOA are then identified under the assumptions that
SW events are detected first, and at least one SW DOA was detected to the
left and to the right from the bullet’s trajectory. Thus φ̄p are searched for
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such φ̄i, φ̄j , that meet all the following conditions:

π
2 − ϕ

(SW )
max <

∣∣φΣ − φ̄i
∣∣ < π

2 − ϕ
(SW )
min ,

π
2 − ϕ

(SW )
max <

∣∣φΣ − φ̄j
∣∣ < π

2 − ϕ
(SW )
min ,

∀ind
tk

(tφk | φk ∈ Φi) = 1, ∀ind
tk

(tφk | φk ∈ Φj) = 1.
(6.14)

The term ind is defined as the operation, which determines the index of a
specific element in a vector of values.

(
ϕ

(SW )
min , ϕ

(SW )
max

)
is the interval of SW

propagation angle θ expected values (refer to Section 6.4.1), accounting for
variance and measurement error. For example, if θ ≈ 25◦ and a ±5◦ measure-
ment deviation are expected, this interval is set to

(
π
9 ,

π
6

)
. If the conditions

(6.14) are met, then φ̄i, φ̄j and φk ∈ Φi ∪ Φj are labeled φ̄(SW )
i , φ̄(SW )

j and

φ
(SW )
k , respectively. For φ̄(SW )

i , φ̄(SW )
j , conditions (6.14) also imply that they

were measured on the opposite sides of the bullet’s trajectory. Consequently,
their central angle φΣ is adopted as the shot angle φZ estimate (i.e., the
angle, at which the bullet travels towards the UGS cluster in Figure 6.36).

Having estimated φZ , the UGS Sk that have detected SW are placed into
either the “left” or “right” groups GL, GR:

φ
(SW )
k < φZ ⇒ Sk ∈ GL,
φ

(SW )
k > φZ ⇒ Sk ∈ GR.

(6.15)

To estimate the miss distance, Sk ∈ GL∪GR closest to the bullet’s trajectory
are first located. This is done by steering the Sk coordinates xk by φZ towards
the x-axis around the UGS common spatial centroid x̄ = 1

K

∑
xk as

[
x′k
y′k

]
=

[
x̄
ȳ

]
+

[
cos (φZ) sin (φZ)
− sin (φZ) cos (φZ)

] [
xk − x̄
yk − ȳ

]
. (6.16)

Then, as portrayed in Figure 6.36, “closest left” and “closest right” UGS S̆L,
S̆R are defined as

S̆L = Si, i = ind min (y′k) , Sk ∈ GL,
S̆R = Sj , j = ind max (y′k) , Sk ∈ GR,

(6.17)

and the distance between them, perpendicular to the shot angle, φZ − π
2 , is

referred to as the miss distance uncertainty interval. Inside this interval the
exact miss distance cannot yet be established at this point. It is approxi-
mated at a later stage of shooter localization.

To identify the DOA corresponding to MB events, φ̄p are searched for
such φ̄i, i = [1, P ], that meet the following condition:

∣∣φZ − φ̄i
∣∣ < ϕ(MB)

max , φ̄i 6= φ̄
(SW )
i . (6.18)
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During MB DOA identification preference is given to Sk ∈ GL∪GR, because
SW detection implies that the bullet has passed the UGS, and thus TH will
likely not come from the same direction as MB. This way TH DOA will most
certainly be avoided. NOI events caused by different noise, on the other
hand, are seldom acquired with consistent DOA by a significant number of
UGS, and thus their corresponding clusters Φp are significantly smaller, and
the estimates are more dispersed. At this stage they are easily separable
from the estimates considered for the MB label. Incidental acoustic sources
arising in the FOV can be identified and excluded from analysis by general
acoustic monitoring and source tracking techniques previously discussed in
this work. As a result of MB DOA identification, φk ∈ Φi meeting condition
(6.18) are labeled as φ(MB)

k .

Estimation of Distance to Shooter and Shooter Localization

Having identified φ(SW )
k and φ(MB)

k , k = 1, . . . ,K, where K is now the num-
ber of UGS with both detected events, it is possible to accurately compute
the TDOA between MB and SW, ∆tk as

∆tk = tk,i − tk,j ,
i = ind

Φk

(
φ

(MB)
k

)
, j = ind

Φk

(
φ

(SW )
k

)
. (6.19)

Based on ∆tk and the k-th UGS miss distance estimate d̂(k)
miss, it is possible

to assess the distance to shooter from the k-th UGS using a closed form
solution, proposed by Sallai et al. [129]:

dSk,Z =
1

2 (c4 − v4)

(
A− 2

√
B
)
, (6.20)

where

A = −2v3d̂
(k)
miss

√
v2 + c2 − 2∆tkc

3v2

+2c2d̂
(k)
missv

√
v2 + c2 − 2∆tkcv

4,

B = −2c4v4
(
d̂

(k)
miss

)2
+ 2 (∆tk)

2 c6v4

+2 (∆tk)
2 c4v6 − 2c7d̂

(k)
miss∆tkv

√
v2 + c2 + c8 (∆tk)

2 v2

+2c8
(
d̂

(k)
miss

)2
+ 2v5d̂

(k)
miss

√
v2 + c2∆tkc

3.

Projectile velocity can be empirically estimated by inverting (6.7) as v̂ =

c/sin
(
θ̂
)
and applying it to θ̂, which is computed as θ̂ = φ̄

(SW )
L − (π − φZ),

where φ̄(SW )
L is the mean value of the set of estimates, labeled as SW and

belonging to the left group. For d̂(k)
miss estimation a minimal and maximal miss
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distance interval
[
d

(k)
min, d

(k)
max

]
is first established. For every Sk, its minimal

miss distance d(k)
min spans from its coordinates xk in the direction towards

the bullet’s trajectory (perpendicularly to φZ) up to the point, where miss
distance ambiguity starts. The maximal distance d(k)

max spans further, up to
the point, where miss distance ambiguity ends (dashed line spanning from
an UGS of the right group in Figure 6.36).

Equation (6.20) suggests that dSk,Z rises with d̂(k)
miss, therefore, Sk ∈ GL

will give larger, and Sk ∈ GR — smaller estimates if d̂(k)
miss is at the ambiguity

start of group GR, and vice versa if it is at the ambiguity start of GL. So,
the ambiguity interval is iteratively passed from d

(k)
min to d(k)

max with a step of
dstep, the miss distances for K UGS are estimated as d̂(k)

miss = d
(k)
min + i · dstep,

and distance estimates to shooter d̂Sk,Z(i) at each step are obtained using
(6.20). A shooter position estimate Ẑk(i) is computed per each UGS using
xk, φ

(MB)
k and d̂Sk,Z(i). The fitness of Ẑk(i) point estimates is measured by

their average distance from their common centroid Z̄(i):

ffit(i) =
1

K

K∑

k=1

∥∥∥Z̄(i)− Ẑk(i)
∥∥∥ . (6.21)

The minimum of the fitness function ffit indicates the miss distance es-
timates, which are closest to the actual value, d̂(k)

miss ' d
(k)
miss, and the final

shooter’s position estimate is selected as Ẑ = Z̄(i), where i = arg min (ffit(i)).

6.4.5 Experimental Results

The proposed shooter localization approach is tested on real gunshot sig-
nals acquired during three separate live experiments at two different outdoor
shooting ranges. Experiment 1 was performed at a small shooting range
with the shooter-target distance of 35 meters. The shooter took one posi-
tion for the entire experiment. The signals were acquired by 4 UGS. The
layout of Experiment 1 is presented in Figure 6.37. Experiments 2 and 3
were performed at a larger shooting range with the shooter-target distance
of 100 meters (for the central shooting position). The shooter took three fir-
ing positions during both experiments. The signals were acquired by 6 UGS.
In Experiment 2 the UGS were placed in a tight hexagon-shaped cluster,
equidistantly positioned 5 meters away from the cluster’s center. The layout
of Experiment 2 is presented in Figure 6.38 (left image). In Experiment 3,
on the other hand, the UGS were distributed more spaciously. The layout
of Experiment 3 is presented in Figure 6.38 (right image). The firearm used
in all three experiments was the Husqvarna 8x57JS rifle with the cartridge
muzzle velocity equal to v0 = 780 m/s. The shockwave is thus expected to
spread at approximately θ ' 25.8◦ relative to the bullet’s trajectory.
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Figure 6.37: Layout of Experiment 1. T — target position; Z — shooter position; Sk —
UGS positions.
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Figure 6.38: Layout of Experiments 2 (left) and 3 (right). T — target position; Zi —
shooter positions; Sk — UGS positions.
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UGS latitude/longitude coordinates were measured using a standalone
GPS device (Trimble R8 GNSS) since none of the UGS prototypes had GPS
locators on board. For offline data analysis the GPS coordinates were con-
verted into a local planar coordinate system with the target being set as
the zeroth coordinate. The steering angle αk is defined for each UGS as
the heading measured with a high-precision compass. The presented exper-
imental results are already brought to zero steering and the influence of αk
measurement error is not discussed.

The acoustic data was acquired with prototype 1 UGS during Experi-
ment 1 and with prototype 2 UGS during Experiments 2 and 3. The shooter
localization procedure was then evaluated offline in the MATLAB environ-
ment. The signals acquired by prototype 1 UGS were sampled at fs = 48 kS/s
per channel using the MATLAB Data Acquisition Toolbox. Prototype 1 UGS
operate independently from one another. No inter-UGS communication is
performed, and only rough synchronization is achieved by scheduling the
starting moment of data acquisition in MATLAB. Prototype 2 UGS sample
the signals at fs = 20 kS/s per channel, and are softly synchronized by the
WSN middleware component, discussed in Section 5.3. Mutual start time
is achieved by broadcasting a sequence of specially timed messages from a
control node (six messages counting down from 100 ms with 20 ms intervals),
which are used to trigger the concurrent start of signal sampling within the
sensor cluster.

Experiment Conditions

Experiment 1 was conducted at a shooting range surrounded by scattered
trees. A bullet-catching sand mound is situated approximately 5 meters
behind the target. The shooter’s position is situated beside a small concrete
safety bunker, which obstructed direct line of sight of UGS S4. An overhead
horizontal barrier is situated in the middle of the shooting range. The shooter
fired 30 shots from a standing position. As the target and all UGS were raised
by approximately 1 meter from the ground, each bullet passed the cluster at
UGS level of elevation or slightly higher. Layout coordinates in meters are
presented in Table 6.2. Weather conditions were the following: temperature
t◦ ' 2 ◦C, cloudiness 10%, no precipitation, wind speed 1–2 m/s. Parameters
for all steps of the localization process are presented in Table 6.3.

Experiment 2 was conducted at a shooting range, which is entirely fenced
by tall concrete walls. A bullet-catching sand mound is situated approxi-
mately 15–20 meters behind the target. The firing points are situated just
outside the shooting range hall. Three overhead horizontal barriers are placed
along the first 25 meters of the range (see Figure 6.39 top image). The shooter
fired 6 shots from each of the three firing points from a standing position. As
the target was elevated from the ground level by 3 meters, and all UGS were
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Table 6.2: Target xT , firing point xZi and UGS xSkcoordinates in meters

Type Experiment 1 Experiment 2 Experiment 3
xT (0, 0) (0, 0) (0, 0)
xZ1 (0, 35) (0, 100) (0, 100)
xZ2 - (-28.5, 100) (-28.5, 100)
xZ3 - (20, 100) (20, 100)
xS1 (4, 6) (-5, 16) (-10, 3)
xS2 (-5.5, 7) (-2.5, 20.3) (-20, 20)
xS3 (-6, 20) (2.5, 20.3) (-20, 35)
xS4 (14, 7.5) (5, 16) (-5, 40)
xS5 - (2.5, 11.7) (20, 30)
xS6 - (-2.5, 11.7) (15, 15)

raised by slightly more than 1 meter from the ground, the bullets traveled
above the UGS cluster (see Figure 6.39 bottom image). Layout coordinates
in meters are presented in Table 6.2. Weather conditions were the follow-
ing: temperature t◦ ' 8 ◦C, cloudiness 50%, no precipitation, wind speed
5–10 m/s. Parameters for all steps of the localization process are presented
in Table 6.3.

Experiment 3 was conducted at the same shooting range as Experiment 2.
The same firing points and target position were used. The shooter fired 6
shots from points 1 and 2, and 7 shots from point 3 from a standing position.
The UGS were more widely distributed. UGS S1 was placed at the target’s
elevation level, as portrayed in Figure 6.40. Layout coordinates in meters are
presented in Table 6.2. Weather conditions were the following: temperature
t◦ ' 6 ◦C, cloudiness 100%, light rain, wind speed 9–12 m/s with gusts up
to 20 m/s. Parameters for all steps of the localization process are presented
in Table 6.3.

Table 6.3: Shot detection, DOA estimation and shooter localization parameters

Parameter Unit Experiment 1 Experiment 2 Experiment 3
fs kS/s 48 20 20
tW ms 10 20 20
nh - 500 500 500
rFOV m 0.5 0.5 0.5
σ, nmin - 0.8, 3 0.8, 3 0.8, 3(

ϕ
(SW )
min , ϕ

(SW )
max

)
deg. (21, 31) (21, 31) (21, 31)

ϕ
(MB)
max deg. 60 40 40
dstep m 0.5 0.5 0.5
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Figure 6.39: View of the shooting range from the shooter’s position, 100 meters away from
the target (top). UGS placement for Experiment 2 (bottom). The span of the bottom
image is highlighted on the top image with a red rectangle.

Figure 6.40: UGS placement for Experiment 3. Shooting range front view is presented in
the top image of Figure 6.39.
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Results of Experiment 1

An example of gunshot event detection by UGS S3 was presented in Fig-
ure 6.32. Results show that the applied detection procedure succeeds in
detecting gunshot events even with a significantly short TDOA between SW
and MB events. During the experiment all 30 shots were detected by all UGS,
however, UGS S4 failed to provide the DOA of seven MB events. Close anal-
ysis of signals acquired by UGS S4 shows that the number of detected events
was equal to the number of signal transients per shot. Since the direct line
of sight from the shooter to UGS S4 was obstructed by the safety bunker,
the intermediate azimuth estimates did not have sufficient quality to pass
the criteria of Algorithm 4.1 and no final estimates were thus made. Other
UGS detected both SW and MB for every shot; TH was detected in the
majority of cases. There were also 13 cases of detection of TH before MB
by UGS S1 and S2, the reason being their close disposition to the target.
These results clearly indicate the need of gunshot event identification prior
to shooter localization.
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Figure 6.41: Intermediate results of DOA estimation of SW, MB and TH events made by
UGS S1 during Experiment 1.

The two considered DOA estimation methods succeed in establishing a
single distinct direction in the majority of cases. A visualization of DOA
estimation intermediate results for UGS S1 is presented in Figure 6.41. In
the figure top subplots represent DOA estimation results of SRP-PHAT with

203



blue lines denoting SRP values of points defined in Section 4.2.2, their length
having been normalized to the radius of the green circle. Bottom subplots
represent DOA estimation results of the proposed method. The individual
pair-vise estimates for the microphone pairs defined by (4.15) are ordered
by their cross-correlation peak distinctness from the least to the most sharp
and depicted as black, blue, green and red lines, respectively. The thick
black lines denote the final estimates. Figure 6.41 shows that that both
methods produce one distinct beam and several lesser beams, corresponding
to DOA of NOI events. The subplots corresponding to SW events both show
a minor beam in the MB direction. This evidently happens due to short
TDOA between the two events and their partial overlapping. The DOA of
MB itself is very evident in the middle pair of subplots. Figure 6.41 clearly
shows that the proposed method produces results highly similar to the ones
of SRP-PHAT.

The DOA estimates of four consecutive shots computed by SRP-PHAT
are presented in Figure 6.42a, and the estimates produced by the proposed
method — in Figure 6.42b. In the figures several estimate values are equal
and thus fully overlap with each other. Red diamonds denote shooter true
positions, green circle denotes the target position, and blue circles denote
UGS positions. DOA estimates of UGS S1–S4 are denoted by blue, green,
purple and red lines, respectively. It can be seen in Figure 6.42 that SRP-
PHAT estimates are more dispersed for UGS S2 and S3. SW, MB and TH
events are well distinguishable for both methods, however, results for UGS
S4 are significantly worse due to its larger miss distance and the obstructed
line of sight to the shooter.
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Figure 6.42: DOA estimates for four consecutive shots of Experiment 1 produced by a)
SRP-PHAT and b) the proposed method. c) Localization result for a single shot.
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Figure 6.43: Experiment 1 results for 30 shots. a) Estimated shooter positions. b) Values
of ffit (6.21) for the miss distance uncertainty interval.

The intermediate results of localization and the final shooter location
estimate for a single shot are presented in Figure 6.42c. In the figure red,
blue and green dotted lines denote the mean values of SW DOA φ̄(SW ), MB
DOA φ̄(MB) and NOI event DOA of clusters Φp. The purple dotted arrows
denote the shot angle φZ and the miss distance uncertainty interval; the
black circle denotes the final estimated shooter position. UGS {S2, S3} and
{S1, S4}, as expected, form clusters of consistent DOA estimates and group
into GL and GR, respectively. Mean estimates of clustered DOA values are
presented in Figure 6.42c as dotted lines starting from the spatial centroids
of these clusters. The shot angle φZ ' 90◦ is estimated with high accuracy;
the closest left and right UGS S̆L = S2, S̆R = S1 are correctly assigned, and
thus the miss distance uncertainty interval is properly determined.

Final shooter position estimates obtained using the proposed DOA esti-
mation method are presented in Figure 6.43a. In the figure the red diamond
denotes the shooter’s true position. To quantify localization accuracy the
mean error (ME) metric is used, which is calculated as the mean distance
between the estimated and the known shooter positions as

ME =
1

Ns

Ns∑

i=1

((
xẐ(i)− xZ(i)

)2
+
(
yẐ(i)− yZ(i)

)2)1/2
, (6.22)

where Ns is the total number of shots. ME for 30 shots along with its
Standard Deviation (SD) is presented in Table 6.4. The table shows that
using the proposed DOA method results in a slightly lower ME. Generally
the localization quality for both DOA estimation methods is notably high for
Experiment 1. In Figure 6.43a a congestion of remote points in the top left
corner results from several MB not being detected by UGS S4. Instantaneous
bullet velocity estimation (see Section 6.4.4) resulted in v̂ ' 740 m/s, which
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is consistent with the cartridge specification parameters (velocity of 753 m/s
for ranges under 50 m). The values of the fitness function ffit are presented
in Figure 6.43b. The function’s minimum is situated at ±1 m from the actual
miss distance, and one global minimum of ffit exists for every shot. Thus,
miss distance estimation in this case can be performed by a gradient descent
method rather than by iterative search.

Table 6.4: Shooter position estimate mean error (ME) and standard deviation (SD) in
meters

Method Parameter Experiment 1 Experiment 2 Experiment 3

SRP-PHAT Ẑ ME 1.12 6.65 8.92
Ẑ SD 0.73 3.53 6.80

Proposed Ẑ ME 0.87 7.08 7.32
Ẑ SD 0.56 3.86 6.15

Results of Experiment 2

The gunshot acoustic event detection procedure succeeded in detecting every
shot instance on every UGS with 5–6 acoustic events per shot on average,
occasionally reaching 8–9 events. The distribution of acoustic events of Ex-
periment 2 is very similar to the one of Experiment 3, a single shot signal
example of which was presented in Figure 6.34. The large number of NOI
events is caused by numerous reflections of SW, MB, as well as TH off the
concrete walls surrounding the shooting range (see Figure 6.38). An ele-
vated bullet trajectory causes ground reflections of SW, as it was explained
in Section 6.4.3. Consequently, the SW signal pattern resembles a transient
combined with several weaker disturbances. This results in MB being de-
tected as the 3rd or 4th event peak for every shot instance.

The DOA estimates for all 18 shots calculated by SRP-PHAT are pre-
sented in Figure 6.44. The results of the proposed method are presented
in Figure 6.45. In the figures red diamonds denote shooter true positions,
green circle denotes the target position, and blue circles denote UGS posi-
tions. Both methods succeed in estimating the SW and MB DOA with a
sufficient accuracy for the majority of cases. Generally it can be noticed that
the MB DOA produced by the proposed method are less dispersed than the
ones produced by SRP-PHAT. The DOA of several SW and MB instances
were not correctly determined either due to low quality of intermediate es-
timates, or severe overlapping with NOI events. Both methods completely
fail to estimate the MB DOA for UGS S6. Close analysis of UGS S6 signal
and DOA intermediate results has shown that, in fact, both methods do not
produce a beam in the shooter’s direction even for slightly overlapping or
non-overlapping MB events. The cause presumably lies in some peculiarity
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Figure 6.44: Experiment 2 DOA estimates for 18 consecutive shots using SRP-PHAT.
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Figure 6.45: Experiment 2 DOA estimates for 18 shots using the proposed method.
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of UGS S6 position. As seen in Figure 6.39, UGS S6 is situated next to a
corner-like barrier gap between target points 9 and 10. It is possible that this
gap produces a NOI event, which totally overlaps with the MB signal and
corrupts its DOA estimation. This effect once again indicates the need for
acoustic event identification prior to data fusion. The overall DOA patterns
of Figure 6.44 and Figure 6.45 clearly show the nature of the NOI events:
the DOA skewed left and right from the shooter’s position are caused by
reflections of SW (produced by the bullet at the beginning of its flight path)
and MB off the side walls; the DOA pointing in the target’s direction are
caused by TH noise, the bullet penetrating the sand mound and reflections
off the back wall.

The intermediate results of localization and the final shooter location esti-
mate for a single shot case from each of the three firing points are presented
in Figure 6.46. In the figure red and blue dotted lines denote φ̄(SW ) and
φ̄(MB) of clusters Φp, purple dotted arrows denote the shot angle φZ and the
miss distance uncertainty interval, and black circles denote final estimated
shooter positions. The DOA of NOI events are removed from the plots for
presentation clarity. For firing point Z1 all UGS form a single cluster of MB
DOA concurrent estimates. UGS {S1, S2, S6} and {S3, S4, S5} form clusters
of DOA corresponding to SW, detected to the left and right of the bullet’s
trajectory, and group into GL and GR, respectively. For firing points Z2

and Z3 MB DOA clusters are also formed from all UGS because the cluster
dimensions are significantly smaller compared to the distance between the
cluster and the shooter positions, which results in MB DOA being roughly
equal. The clusters of concurrent SW DOA estimates are formed for Z2 from
UGS {S1} in the left group and {S2, S3, S4, S5, S6} in the right group. For
point Z3 the left group consists of UGS {S1, S2, S3, S6} and the right group
— of UGS {S4, S5}. As UGS S1, S6 and UGS S3, S5 are situated nearly
along the bullet’s trajectory for points Z2 and Z3, respectively, their belong-
ing to either the left or right group changes from shot to shot. This does not
influence the overall localization accuracy, as the considered UGS cluster is
quite dense, and thus the miss distance ambiguity interval does not change
significantly. The shot angles φZ1 ' 90◦, φZ2 ' 106◦ and φZ3 ' 79◦ are
estimated with high accuracy.

Final shooter position estimates for all three firing points are presented
in Figure 6.47. In the figure black circles denote the estimated shooter po-
sitions and red diamonds denote true shooter positions. It can be seen that
the estimates are significantly more scattered, when compared to the esti-
mates of Experiment 1. Table 6.4 shows that the ME for Experiment 2 is
approximately 7 m, which is notably higher than a ME of approximately
1 m of Experiment 1. However, taking into consideration that the range set
for Experiment 2 is almost three times larger, and prototype 2 UGS use an
inferior embedded ADC at fs = 20 kS/s, compared to a standalone DAQ
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Figure 6.46: Experiment 2 localization results for one shot per shooter position.
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Figure 6.47: Experiment 2 localization results for 18 shots with SRP-PHAT (top) and the
proposed method (bottom) used for DOA estimation.
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of prototype 1 with a larger bit depth and sampling at fs = 48 kS/s, the
decrease in localization quality is quite expected and justified. Generally,
applying both SRP-PHAT and the proposed method of DOA estimation in
the localization procedure yields similar localization quality with SRP-PHAT
resulting in slightly more accurate estimates.

Bullet velocity estimation resulted in v̂ ' 720 m/s, which is consistent
with the cartridge specification parameters (velocity of 727 m/s for a range of
100 m). Miss distance estimation via the fitness function ffit is less trustwor-
thy for Experiment 2 due to UGS being very closely positioned to each other,
which results in very narrow miss distance ambiguity intervals, especially for
firing points Z2 and Z3. As a result, if φZ estimation produces even a slightly
inaccurate result, the bullet’s trajectory will not fall into the ambiguity in-
terval, which obstructs miss distance estimation. In the considered case φZ
estimation performed accurately enough for the bullet’s trajectory to be at
an edge of the ambiguity interval or very close to it, e.g., for firing point Z2

result in Figure 6.46. This means that in the minimal value of ffit appears
close to the edge of the ambiguity interval. A more spatially distributed UGS
cluster would solve this problem.

Results of Experiment 3

The number of detected gunshot acoustic events is similar to the one of
Experiment 2, i.e., 5–6 events per shot on average. The situation with reflec-
tions off the surrounding walls is worse for UGS S1, S2 and S3, as they are
situated closer to the left and back walls of the shooting range. On the other
hand, the effect of SW overlapping with its ground reflection is less evident
for the UGS with larger miss distances. Nevertheless, MB is detected as the
3rd peak for 18 out of 19 shot instances.

The DOA estimates for all 19 shots calculated by SRP-PHAT are pre-
sented in Figure 6.48. The results of the proposed method are presented in
Figure 6.49. The DOA corresponding to reflections off the side and back
walls is clearly evident in these figures. Both methods perform well with the
results of the proposed method being less disperse, as in the two previously
discussed experiments. The proposed method performs worse for UGS S2,
firing point Z3, however, it succeeds in calculating the DOA for UGS S6,
firing point Z3, where SRP-PHAT fails. The problem with estimating MB
DOA for point Z3 by UGS S6 is presumably situated with the deterioration
of MB wavefronts caused by reflections off the wall right next to point Z3 (see
Figure 6.38). Generally, the UGS positioning scheme of Experiment 3 results
in the DOA corresponding to NOI events being more consistent, making SW
and MB DOA more distinguishable.

The intermediate results of localization and the final shooter location es-
timate for a single shot from each of the three firing points are presented in
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Figure 6.48: Experiment 3 DOA estimates for 19 consecutive shots using SRP-PHAT.

212



−35−30−25−20−15−10 −5 0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

x (m)

y
 (

m
)

Gunshot DOA: UGS 1, Proposed

−35−30−25−20−15−10 −5 0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

x (m)

y
 (

m
)

Gunshot DOA: UGS 2, Proposed

−35−30−25−20−15−10 −5 0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

x (m)

y
 (

m
)

Gunshot DOA: UGS 3, Proposed

−35−30−25−20−15−10 −5 0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

x (m)

y
 (

m
)

Gunshot DOA: UGS 4, Proposed

−35−30−25−20−15−10 −5 0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

x (m)

y
 (

m
)

Gunshot DOA: UGS 5, Proposed

−35−30−25−20−15−10 −5 0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

x (m)

y
 (

m
)

Gunshot DOA: UGS 6, Proposed

Figure 6.49: Experiment 3 DOA estimates for 19 shots using the proposed method.
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Figure 6.50. DOA corresponding to NOI events are removed from the plots
for presentation clarity. For point Z1 UGS {S1, S2, S3, S4} and {S5, S6} form
MB and SW DOA concurrent estimate clusters, corresponding to the left
and right groups GL and GR, respectively. For point Z2 the UGS belonging
to GL are {S1, S2, S3}, and the UGS belonging to GR are {S4, S5, S6}. For
point Z3 the UGS are partitioned as {S1, S2, S3, S4} into GL and {S5, S6}
are partitioned into GR. As the dimensions of the UGS cluster are large
enough to be comparable with the distance from the cluster to the shooter,
MB DOA do not form a single consistent direction, as was the case in Ex-
periment 2. Rather, coherent estimates are formed by UGS situated to the
left and right of the bullet’s trajectory and are skewed towards the shooter’s
position. Ultimately this experiment can be perceived as a scaled-up version
of Experiment 1. The shot angles φZ1 ' 90◦, φZ2 ' 106◦ and φZ3 ' 79◦ are
estimated with high accuracy.
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Figure 6.50: Experiment 3 localization results for one shot per shooter position.

Final shooter position estimates for all three firing points are presented
in Figure 6.51. The estimates are also significantly more scattered, compared
to the estimates of Experiment 1. Table 6.4 presents the ME of localization
calculated using (6.22). The ME for both Experiments 2 and 3 using the
proposed method for DOA estimation is approximately 7 m. The ME of
Experiment 3 with SRP-PHAT used as a DOA method is larger, which indi-
cates the supremacy of the proposed method over SRP-PHAT in this case.
It can be also noticed from Figure 6.51 that Z2 has only 5 estimates around
its true position. This is due to one shot being localized incorrectly and the
point residing outside the figure bounds for both DOA methods. This is a
single example of gunshot event identification failure by DOA. If a NOI event
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Figure 6.51: Experiment 3 localization results for 19 shots with SRP-PHAT (top) and the
proposed method (bottom) used for DOA estimation.

has a DOA resembling that of MB and satisfies all the temporal and spatial
bounds of the MB check, it can be falsely labeled as MB. Consequently, the
TDOA ∆t is computed incorrectly and the whole localization procedure can
fail. However, this requires the NOI event to corrupt the DOA estimates of
several UGS, which is highly unlikely. In our case UGS S2 and S3 mistook
a NOI event for MB, and their incorrect estimates of distance to shooter
steered the cluster’s global estimate farther from shooter’s true position.

Bullet velocity estimation resulted in v̂ ' 725 m/s, which closely corre-
sponds to the result of Experiment 2. Miss distance estimation via the fitness
function ffit operates well for this experiment, as the miss distances for all
UGS are sufficient and ffit forms curves, similar to the ones portrayed in
Figure 6.43 with a single global minimum for the majority of shot instances.

6.4.6 Discussion

The main differences between the state of the art and the proposed method
of shooter acoustic localization are presented in Table 6.5. Although the
proposed method of gunshot acoustic component identification using DOA
information increases shooter localization robustness, accounting for the de-
structive influence of various types of NOI events, it has several weak points
that yet require attention.

215



The instantaneous bullet velocity estimation via the shot angle needs to
be developed into a more general procedure that also accounts for the de-
crease in bullet velocity with traveled distance. The bullet velocity was ap-
proximately estimated to be 720–725 m/s, which is significantly less than the
780 m/s muzzle velocity claimed in the cartridge specification. Such velocity
reduction even for a 100 meter range case can influence localization results.
Thus the degree of this influence needs to be quantified and accounted for in
the future.

The event identification and shooter localization approach needs to be
tested in a burst-mode shooting scenario, the peculiarities of which were
reviewed in Section 6.4.3. In such a scenario shot instance separation will
likely pose a serious problem, so the acoustic event detection procedure will
have to be developed further to account for extremely closely spaced shot
instances. Also the procedure of sending the shot information to the fusion
node is to be reviewed for this case, as sending a large number of packets
through the WSN in a very short period of time tends to be problematic.

The boundaries of application of the gunshot planar geometry model,
where either the shooter’s or target’s elevation above the UGS cluster starts
to influence localization accuracy have to be identified. If the bullet’s trajec-
tory does not lie in the same plane as the UGS cluster, the shot geometry
cannot be estimated by a planar model, since the conical wavefront of SW
cannot be modeled as a planar wavefront. Consequently, the distance to
shooter cannot be estimated by the horizontal projection of the bullet’s tra-
jectory. As the results of Experiment 2 have shown, slight elevation of the
target does not influence the localization procedure, however, larger elevation
levels were not considered.

Table 6.5: Main differences between state of the art methods and the proposed approach
to shooter acoustic localization

State-of-the-art Proposed
MB strictly follows SW; NOI events

not accounted for
Accounts for NOI events, SW and/or
MB may be corrupted or masked

Some require high precision of
synchronization

Soft synchronization only to
distinguish between shot instances

Assume known bullet caliber → v0 →
≈ v → θ

θ estimated from measured φ(SW )
k

and calculated shot angle φZ
Estimate miss distance d̂(k)miss using a
shockwave acoustic model: unreliable

in presence of NOI events

Estimates d̂(k)miss by establishing the
ambiguity interval

[
d
(k)
min, d

(k)
max

]
and

finding a best fit solution
Generally more than one assumption Only assumption: SW event is

detected first, if not masked
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6.5 Conclusions

The applications of the signal processing methods discussed in this work are
not by all means limited to the ones presented in this chapter. There exists
a great variety of applications of CPS in many areas of life, both civil and
military, where human-machine interaction and computer system integration
into the environment occur. The presented applications merely serve as an
example of the vast possibilities of distributed multimodal sensor systems.

The considered applications for ISR systems are discussed separately,
however, the individual components of acoustic, PIR, vibration, etc. smart
sensors are combined during real life operation of the entire CPS, and their
individual situation assessments are fused at higher levels of information fu-
sion in order to obtain global situation estimates. The vehicle identification
system, for example, is to operate in collaboration with the foot soldier de-
tection system in order to obtain estimates on both motorized and infantry
party advancements. The roles of UGS equipped with different types of sen-
sors can be reassigned during system online operation, or they can perform
multiple tasks at once if the computational capabilities of their hardware
components allow for that. For the civil application of industrial machin-
ery monitoring this means that machine operation state identification, fault
and malfunction detection, and localization of noise emitting regions are all
performed simultaneously, and the roles of smart sensors can be reassigned
between the tasks depending on any specific situation.

Regarding the experimental results of each individual application, the
identification, localization, etc. accuracy of the proposed methods is assessed
for a relatively small number of registered events. During real life system op-
eration, which can be uninterrupted for months and even years, unusual and
unexpected events, which will influence estimation accuracy, will undoubt-
edly arise. The high uncertainty of the real world environments does not
allow to consider all the possible process states and outcomes, and thus the
system’s true potential can be assessed only during long-term operation.
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Conclusions

We can only see a short distance
ahead, but we can see plenty there
that needs to be done.

Alan Turing

This final chapter formulates concluding remarks according to the prob-
lem statement and the solutions presented in the thesis. At the end of the
chapter the topics of future research are discussed.

The solutions of single sensor signal processing discussed in Chapter 3 are
both verified on real life test signals in the same chapter, and later used for
specific applications discussed in Chapter 6. The presented pattern recog-
nition procedure comprising feature extraction and classification stages is
regarded as the most common approach to identification of process states
with well established dynamics. The main contribution of this chapter is
situated with the proposed multistage procedure of non-stationary process
state estimation, applied to moving vehicle detection and identification. The
procedure reflects the need of process detection prior to classification due
to sophisticated process dynamics and the harmful influence of background
noise. The signal analysis stages adopted in the procedure are not strictly
fixed and additional stages can be added or removed for application-specific
purposes. The procedures for stationary and non-stationary process state
estimation are applied to industrial machinery state monitoring and identi-
fication of military vehicles for Intelligence Surveillance and Reconnaissance
(ISR) purposes, respectively. The experimental results account for back-
ground noise arising in the real unconfined environments, however, to ensure
increased reliability of situation assessments made by the entire Cyber Physi-
cal System (CPS) the results of signal processing of single-sensor components
have to be reassured by other components through data fusion. Using sen-
sors employing different signal modalities is beneficial in this regard. As
discussed in Chapter 3, for example, the information of acoustic sensors with
wide Fields of View (FOV), though prone to background noise influence,
can be reassured by highly localized readings of acceleration sensors, not
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susceptible to noise originating from elsewhere besides the specific region of
vibration. Noise tolerance and pattern recognition accuracy can also be in-
creased by analyzing different signal properties independently, as it is done in
the proposed multistage procedure. The application of multi-sensor solutions
further expands the possibilities of distributed systems.

The methods of multi-channel signal analysis presented in Chapter 4 are
applied to acoustic signals, however, they can also be theoretically applied
to band-limited signals of other modalities propagating in media other than
air (where the same geometry of wave propagation applies). The contri-
butions of Chapter 4 are most prevalent in the work. The reduced func-
tional of Direction of Arrival (DOA) search for the Steered Response Power
with Phase transform (SRP-PHAT) is a minor contribution, however, analo-
gous approaches are seldom encountered in state of the art DOA estimation
approaches. The main contributions constitute the planar (1D) DOA es-
timation approach for azimuth estimation in linear microphone arrays and
volumetric (2D) DOA estimation approach for azimuth and elevation Angles
of Arrival (AOA) in conical arrays. The azimuth AOA estimation is also
used for planar DOA estimation in Uniform Circular Arrays (UCA), which
constitute the base of the conical array. Another major contribution is the
proposed distributed acoustic localization method. The ideas of approxi-
mate localization of the region confining the acoustic source and operation
on asynchronous wireless multi-channel nodes without raw signal interchange
are almost unique to state of the art distributed acoustic localization Wire-
less Sensor Network (WSN) systems. Most modern approaches assume strict
WSN node synchronization or apply single sensor nodes with raw signal
aggregation on the fusion node for Time Difference of Arrival (TDOA) esti-
mation. In the proposed approach both TDOA and DOA are estimated on
each of the individual WSN nodes and only short messages containing node
position coordinates, DOA estimates and the time labels are transmitted.
The DOA estimation and distributed localization approaches are verified in
both controlled environment and field experiments. Initial verification re-
sults are presented in Chapter 4 for indoor experiments, and the results of
application-specific field experiments are presented in Chapter 6. The pro-
posed localization method is applied to localization of noise emitting regions
of industrial machinery and to military vehicle localization for ISR purposes.
The proposed DOA estimation method is additionally applied to shooter
acoustic localization. Throughout the investigation the proposed DOA esti-
mation method is compared with SRP-PHAT, which is considered to be one
of the most (if not the most) robust and reverberation tolerant methods of
DOA estimation.

The operation of the distributed CPS consisting of a WSN of smart sen-
sors is briefly discussed in Chapter 5. As spatial and temporal data validation
and WSN management falls out of the scope of this work, a solution of align-
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ing and verifying local situation assessments for data fusion developed by the
Research Laboratory for Proactive Technologies (Tallinn University of Tech-
nology) is presented as an example. The solution is also partly employed in
the developed smart sensor prototypes presented throughout the thesis. Data
fusion concepts are briefly discussed in Chapter 5, and application specific
examples of data fusion are presented in Chapters 4–6. The contributions to
data fusion algorithms comprise:

• local data fusion on a single smart sensor (as part of the decision making
logic of the multistage procedure presented in Chapter 3),

• data fusion of DOA estimates for localization (as part of the distributed
localization procedure presented in Chapter 4),

• fusion of localization estimates and object trajectory estimates pre-
sented in Chapter 5,

• application-specific data fusion of DOA estimates for shooter localiza-
tion presented in Chapter 6.

Data fusion for localization and trajectory estimation is part of the proposed
localization procedure and is thus novel. DOA estimate fusion for shooter
localization is part of the proposed shooter localization approach, which has
not been discussed in previous research on the topic.

Several applications of the signal processing methods presented in the
thesis are considered in Chapter 6. The ideas of industrial machinery mon-
itoring by distributed wireless sensors and noise emission source localiza-
tion for diagnostics are not novel, however, the combination of multi-channel
acoustic and other types of sensors for continuous operation state monitoring
has not yet been widely discussed in previous research. The ISR application
of vehicle detection and tracking has been previously discussed, and various
approaches employing acoustic and other types of sensors (e.g., radar, lidar,
hyperspectral) have been proposed. This application serves as a demon-
stration of both proposed vehicle identification and trajectory estimation
approaches. The possibilities of using Passive Infrared (PIR) sensors for ob-
ject speed estimation, on the other hand, have not been sufficiently discussed
in previous research. Thus the proposed method of PIR signal analysis for
speed estimation can be considered a novel contribution to ISR systems and
other monitoring applications. The proposed shooter localization procedure
is also a novel approach for the considered shot geometry. It is advantageous
to the state of the art approaches based on acoustic information in that the
proposed approach accounts for noise produced by events not-of-interest and
generally makes less assumptions on specific properties of gunshots. The
application scope of the presented signal processing methods is not by all
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means limited to the specific applications considered in Chapter 6 and will
be further explored in the future.

Future Research

Several topics situated with the signal processing methods presented in this
thesis are considered for future research. First of all, the proposed methods of
DOA estimation need to be complemented with reliable methods of acoustic
source number estimation. Though the proposed DOA estimation methods
are capable of finding several DOA corresponding to multiple sources residing
in the FOV, there was little research conducted on the topic of source number
estimation algorithms during the work. Reliable estimation of the number
of sources in the FOV will enable more reliable acoustic localization as well.
The incidental localized regions, eliminated during trajectory estimation in
this work, will be identified more precisely with this additional knowledge.
Using aggregate estimates of the number of sources made by all smart sensor
nodes in the same FOV will yield more precise estimates for consecutive
signal frames of individual smart sensors.

The localization procedure presented in the thesis is applied only for
planar localization using only azimuth AOA of the estimated DOA. Future
research plans include the expansion of the localization procedure for oper-
ation in the volumetric space. Although planar localization is sufficient for
ground applications where slight elevation levels are concerned, for localiza-
tion of acoustic sources situated well above the plane in which the sensors
reside (e.g., localization of aerial vehicles or targets on building upper floors)
requires the use of both AOA components and localization to a volumetric
confined space.

Further testing of the presented methods in real life conditions for a
prolonged periods of time is required in order to verify their tolerance to a
large variety of possible noise sources and special case situations. During this
testing period the methods can be refined to ensure increased reliability and
robustness of the situation assessment process.

Generally, CPS are a fairly new concept, and thus their full potential
is still to be explored. The topic of situation assessment in CPS will un-
doubtedly be rising in popularity over the coming years, and bringing with
itself a large variety of new research fields. Great possibilities are arising
before the science of signal processing, bringing the image of a fully con-
nected world with sophisticated interaction between people and autonomous
systems closer with every passing year. In this regard, the topics of future
research greatly exceed the ones considered for the proposed methods alone,
with almost endless possibilities lying ahead.
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Abstract

The thesis is devoted to the development of signal processing methods ap-
plicable in distributed Cyber-Physical Systems (CPS). CPS are combina-
tions of computational, communication and physical processes, integrated
into the physical environment of the system operation domain. CPS are
primarily feedback systems, consisting of many distributed interconnected
components, which gather information about the state of the environment
and the objects of interaction in order to determine the appropriate system
response. For this purpose the distributed CPS sensor components perform
situation assessment of the observed area, produce local assessments inde-
pendently and transmit gathered data through a Wireless Sensor Network
(WSN) to information aggregation and fusion components, where a global
situation assessment is made.

The thesis discusses methods of signal processing that allow for both
local and global situation assessment, while accounting for limitations sit-
uated with reduced computational power of sensor component embedded
hardware and problems of data communication through WSN with ad-hoc
topologies. The embedded hardware limitations are overcome by develop-
ing optimized signal processing procedures, which require less computational
resources, compared to the state-of-the-art methods. WSN communication
problems are overcome by adopting an autonomous data fusion architecture,
where signal processing and initial situation assessment is performed on in-
dividual sensor components, and no raw signal transmission is performed
between WSN nodes. The developed data fusion methods are aimed at op-
eration in an asynchronous WSN with an undetermined number of active
nodes at any given time instance.

The thesis focuses on the analysis of one-dimensional band-limited sig-
nals. The proposed methods are tested primarily on acoustic and vibra-
tion signals, however, they are also applicable to signals of other modalities.
The discussed tasks of situation assessment include process state identifi-
cation and moving object detection, classification, localization and trajec-
tory estimation. The chapter devoted to single sensor solutions discusses
the approaches to state identification of stationary and non-stationary pro-
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cesses, where several feature selection and extraction methods are presented,
and pattern recognition is performed by correlation analysis and fuzzy logic
based classification. For non-stationary process state identification, a multi-
stage procedure, comprising several time and frequency domain signal feature
analysis steps, is proposed. Multi-channel solutions include methods for Di-
rection of Arrival (DOA) estimation and distributed acoustic localization of
objects in the horizontal plane. For trajectory estimation an approach based
on recursive Bayesian estimators, such as the Kalman Filter, is proposed.
The application of trajectory estimation reassures consecutive localization
estimates and allows to predict the search region of the localized object.

The proposed single and multi-channel signal processing methods are im-
plemented on embedded hardware and proven to operate in real-time. The
implemented standalone smart sensors are used for both civil and military
applications during in situ experiments. The methods of stationary pro-
cess state identification are applied to industrial machinery monitoring and
malfunction detection. Vehicle identification, DOA estimation, object lo-
calization and trajectory estimation methods are applied to military vehicle
tracking and shooter acoustic localization. An application-specific method of
foot soldier speed estimation using passive infrared sensors is also presented.

Experimental results confirm high accuracy of the proposed methods and
their applicability in real life conditions. The results also indicate that pre-
cise synchronization between WSN nodes is not required for the proposed
methods to operate with high precision. Though the harmful influence of
background noise on the detection and identification accuracy of methods
based on acoustic signal analysis is not eliminated to full extent, the results
of these methods can be reassured and corrected by sensor components of
other modalities in the future.
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Kokkuvõte

Käesoleva väitekirja teemaks on signaalitöötluse meetodite arendus hajuta-
tud küberfüüsikalistes süsteemides (KFS). KFSd koosnevad omavahel ühen-
datud arvutuslikest, kommunikatsiooni- ja füüsilistest protsessidest, mis on
integreeritud süsteemi füüsilisse keskkonda. KFSd on peamiselt tagasides-
tatud süsteemid, mis koosnevad mitmetest hajutatud ja sidestatud kompo-
nentidest. Need komponendid koguvad keskkonna oleku ja interaktsioonis
olevate objektide kohta informatsiooni, mille alusel omakorda määratakse
kindlaks süsteemi sobilik reageering. Hajutatud sensorkomponendid tegele-
vad nende poolt jälgitud ala lokaalse olukorra hindamisega ning edastavad
informatsiooni läbi traadita sensorvõrgu (WSN) andmekogumise ja ühilda-
mise komponentidele, kus viiakse läbi globaalse olukorra hindamine.

Väitekiri käsitleb signaalitöötluse meetodeid, mis võimaldavad lokaal-
se ja globaalse olukorra hindamist, võttes arvesse piiranguid sardsüsteemi-
de arvutusvõimsusele ja spontaanvõrkude topoloogiatega seotud probleeme.
Piirangud sardsüsteemide arvutusvõimsusele on leevendatavad optimeeritud
signaalitöötluse protseduuridega, mis tarbivad vähem arvutuslike ressursse
võrreldes standardmeetoditega. Infoedastusprobleeme spontaanvõrkudes lee-
vendab autonoomne arhitektuur, kus signaalitöötlus ja esialgse olukorra hin-
damine on teostatud iseseisvatel sensorkomponentidel ning toorsignaali edas-
tamine läbi WSNi sõlmede vajalik ei ole. Väljaarendatud andmete ühildamise
meetodid on mõeldud kasutamiseks ette kindlaks tegemata või muutuva arvu
sõlmedega asünkroonsetes spontaanvõrkudes.

Väitekiri keskendub ühemõõtmeliste piiratud sagedusribaga signaalide
analüüsile. Väljapakutud signaalitöötluse meetodeid on katsetatud peamiselt
akustilistel ja vibratsioonsignaalidel, kuid need meetodid on samuti kohal-
datavad muud tüüpi signaalide töötlemiseks. Käsitletud olukorrahindamise
ülesanded hõlmavad protsessi olekute identifitseerimist ning liikuvate objek-
tide avastamist, klassifitseerimist, lokaliseerimist ja trajektoori jälgimist. Ühe
anduriga lahendustele pühendatud peatükk käsitleb statsionaarsete ja mitte-
statsionaarsete protsesside olekute identifitseerimismeetodeid. Lähemalt on
vaadeldud mitmeid eriomaste tunnusjoonte valimise ja eraldamise meeto-
deid ning korrelatsioonianalüüsil ning hägusal loogikal baseeruvaid mustrite
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tuvastamise protseduure. Mittestatsionaarsete protsesside olekute identifit-
seerimiseks on välja pakutud mitmeetapiline protseduur, mille hierarhiline
struktuur koosneb mitmetest aja- ning sagedusdomeeni signaali eriomaste
tunnusjoonte analüüsi etappidest. Mitme anduriga lahendused hõlmavad he-
liobjektide suunatuvastuse ja hajutatud akustilise lokaliseerimise meetodeid
horisontaaltasandil. Lokaliseeritud objektide trajektoori määramiseks on väl-
ja pakutud rekursiivsel Bayesi hindajal (nt. Kalman filter) baseeruv mee-
tod. Trajektoori määramine võimaldab valideerida järjestikusi lokaliseerin-
guid ning ennustada objekti paiknemispiirkonda.

Väljapakutud ühe ja mitme anduriga signaalitöötluse meetodid on reali-
seeritud sardsüsteemides ning nende töövõime reaalajas on tõestatud prak-
tikas. Väljatöötatud iseseisvaid nutisensoreid on välikatsete käigus testitud
tsiviil- ja militaarrakendustes. Statsionaarsete protsesside olekute identifit-
seerimismeetodeid on kasutatud tööstuslike seadmete monitooringul ja rikete
avastamisel. Sõidukite identifitseerimise, objektide suunamääramise, lokali-
seerimise ja trajektoori jälgimise meetodeid on rakendatud militaarsõidukite
äratundmisel ja jälgimisel ning tulistaja asukoha määramisel. Samuti on välja
töötatud jalaväe liikumiskiiruse määramiseks passiivseid infrapunaandureid
kasutav meetod.

Katsetulemused demonstreerivad väljapakutud meetodite kõrget hinda-
mistäpsust ning töövõimet reaalsetes tingimustes. Samuti näitavad katsetule-
mused, et täpne sünkroniseerimine WSN sõlmede vahel ei ole vajalik väljapa-
kutud meetodite kõrge hindamistäpsuse tagamiseks. Kuigi taustamüra kahju-
likku mõju akustiliste signaalide analüüsil baseeruvate meetodite avastamis-
ja identifitseerimistäpsusele ei ole võimalik täies ulatuses kõrvaldada, saab
nende meetodite hindamistulemusi garanteerida ja parandada muid modaal-
susi kasutavate sensorkomponentide abil.

242



Acknowledgments

The author wishes to express his deep gratitude to his supervisors, Dr. Jürgo-
Sören Preden and Dr. Andri Riid, for their support and guidance throughout
the thesis work and beyond that; all his work and research colleagues at the
Laboratory for Proactive Technologies, and especially Mr. Johannes Ehala,
Mr. Jaanus Kaugerand, and Mr. Erki Suurjaak, for collaboration in device
prototype implementation, assistance in conducting in-field experiments, and
fruitful scientific discussions; his research colleagues Mrs. Julia Berdnikova,
Dr. Aleksei Tepljakov and Dr. Eduard Petlenkov for scientific discussions
and insightful comments related to this work.

The author would like to thank his family and especially his mother for
their lifelong support.

This work was partially supported by the European Defense Agency
project IN4STARS, by the Estonian Doctoral School in Information and
Communication Technology, and by the Estonian IT Academy program.

243





Elulookirjeldus

1. Isikuandmed

Ees- ja perekonnanimi Sergei Astapov

Sünniaeg ja -koht 20.05.1988, Tallinn, Eesti

Kodakondsus Eesti

E-posti aadress sergei.astapov@ttu.ee

2. Hariduskäik

Õppeasutus
(nimetus lõpetamise
ajal)

Lõpetamise
aeg

Haridus
(eriala/kraad)

Tallinna Tehnikaülikool 2011 Arvuti- ja
süsteemitehnika, M.Sc.,
Cum Laude

Tallinna Tehnikaülikool 2009 Arvuti- ja
süsteemitehnika, B.Sc.

3. Keelteoskus (alg-, kesk- või kõrgtase)

Keel Tase
Eesti kõrgtase
Inglise kõrgtase
Vene emakeel
Saksa algtase

4. Teenistuskäik

Töötamise
aeg

Tööandja nimetus Ametikoht

2012 – ... Automaatikainstituut, TTÜ Insener
2010 – 2013 IMECC OÜ Insener

245



5. Projektid

Projekt Kirjeldus
VA598 Informatsiooni
ühilduvus ja luure
ühilduvus, kasutades
statistikat, agente,
arutlemist ja semantikat
(15.09.2013 – 15.09.2016)

Signaalitöötlusmeetodite
arendamine, akustiliste signaalide
analüüs, akustiliste mustrite
leidmine ja nende tunnusjoonte
eraldamine klassifitseerimise jaoks.
Akustiliste massiivide arendamine,
akustilise signaaliallika hajutatud
lokaliseerimisprotseduuri loomine.
Jälgimise ja trajektoorimääramise
ülesannete lahendamine.

AR12139 Targad
komposiitmaterjalid:
projekteerimine ja
valmistamine (01.07.2012
– 30.06.2015)

Andmehõive ja signaalitöötluse
ülesanded.

SF0140113As08
Proaktiivsus ja
situatsiooniteadlikkus
(01.01.2008 – 31.12.2013)

Akustiliste ja vibratsiooni signaalide
andmehõive ja töötlus. Mustrite
leidmine ja klassifitseerimine.

6. Kaitstud lõputööd

Rotatsioonpöördpendli mittelineaarse mudeli juhtimine hägusa regulaa-
toriga, B.Sc., Tallinna Tehnikaülikool, 2009.
Piiratud sagedusribaga signaalide eriomaste tunnusjoonte eraldamine ja
klassifitseerimine, M.Sc., Tallinna Tehnikaülikool, 2011.

7. Teadustöö põhisuunad

Digitaalse signaalitöötluse algoritmide arendamine ja realiseerimine sard-
süsteemides. Hajutatud signaalitöötluse ja otsuste tegemise protseduu-
ride loomine küberfüüsikaliste süsteemide kontekstis (nutisensorid, traa-
dita sensorvõrgud). Mitme anduriga süsteemid, akustiline lokaliseerimi-
ne, objektide trajektoori jälgimine ja ennustamine.

8. Teadustegevus

Ajakirja- ja konverentsiartiklite loetelu on toodud ingliskeelses eluloo-
kirjelduses.

246



Curriculum Vitae

1. Personal Data

Name Sergei Astapov

Date and place of birth 20.05.1988, Tallinn, Estonia

E-mail address sergei.astapov@ttu.ee

2. Education

Educational
institution

Graduation
year

Education (field of
study/degree)

Tallinn University of
Technology

2011 Computer and Systems
Engineering, M.Sc.,
Cum Laude

Tallinn University of
Technology

2009 Computer and Systems
Engineering, B.Sc.

3. Language competence/skills (fluent, average, basic skills)

Language Level
Estonian fluent
English fluent
Russian native
German basic skills

4. Professional employment

Period Organization Position
2012 – ... Department of Computer

Control, TUT
Engineer

2010 – 2013 IMECC Ltd. Engineer

247



5. Projects

Project Description
VA598 INformation
INteroperability &
INtelligence
Interoperability by
STatistics, Agents,
Reasoning and Semantics
(15.09.2013 – 15.09.2016)

Signal processing method
development, acoustic signal
analysis, acoustic pattern discovery
and feature extraction for the
purposes of classification.
Development of acoustic sensor
arrays and a distributed acoustic
localization and trajectory
estimation procedure.

AR12139 Smart
composites: design and
manufacturing (1.07.2012
– 30.06.2015)

Solving of data acquisition and
signal processing problems.

SF0140113As08
Proactivity and
situation-awareness
(1.01.2008 – 31.12.2013)

Acoustic and vibration signal
acquisition and processing. Pattern
discovery and classification.

6. Defended theses

Fuzzy Control of a Nonlinear Single Rotational Inverted Pendulum Model,
B.Sc., Tallinn University of Technology, 2009.
Feature Extraction from Band-Limited Signals and Classification of
Features, M.Sc., Tallinn University of Technology, 2011.

7. Main areas of scientific work

Development of digital signal processing algorithms and implementa-
tion in embedded systems. Distributed signal processing and coopera-
tive decision-making procedures through signal and information fusion
in the context of cyber-physical systems (smart sensors, Wireless Sen-
sor Networks). Multi-sensor solutions and multi-modal signal analysis.
Acoustic localization, object trajectory estimation and prediction.

8. Scientific work

1. S. Astapov and A. Riid, “A hierarchical algorithm for moving
vehicle identification based on acoustic noise analysis,” in Proc.
19th Int. Conf. Mixed Design of Integrated Circuits and Systems
(MIXDES), Warsaw, Poland, May 2012, pp. 467–472.

2. S. Astapov, J.-S. Preden, T. Aruväli, and B. Gordon, “Production
machinery utilization monitoring based on acoustic and vibration

248



signal analysis,” in Proc. 8th International DAAAM Baltic In-
dustrial Engineering Conference, Tallinn, Estonia, Apr 2012, pp.
268–273.

3. J. Berdnikova, T. Ruuben, V. Kozevnikov, and S. Astapov, “Acous-
tic noise pattern detection and identification method in Doppler
system,” Electronics and Electrical Engineering, vol. 18, no. 2,
pp. 65–68, 2012.

4. S. Astapov, J.-S. Preden, and E. Suurjaak, “A method of real-time
mobile vehicle identification by means of acoustic noise analysis
implemented on an embedded device,” in Proc. 13th Biennial
Baltic Electronics Conference (BEC), Tallinn, Estonia, Oct 2012,
pp. 283–286.

5. S. Astapov and A. Riid, “A multistage procedure of mobile vehicle
acoustic identification for single-sensor embedded device,” Inter-
national Journal of Electronics and Telecommunications, vol. 59,
no. 2, pp. 151–160, 2013.

6. S. Astapov, J. Berdnikova, and J.-S.Preden, “A method of ini-
tial search region reduction for acoustic localization in distributed
systems,” in Proc. 20th Int. Conf. Mixed Design of Integrated
Circuits and Systems (MIXDES), Gdynia, Poland, Jun 2013, pp.
451–456.

7. A. Tepljakov, E. Petlenkov, J. Belikov, and S. Astapov, “A digi-
tal fractional-order control of a position servo,” in Proc. 20th Int.
Conf. Mixed Design of Integrated Circuits and Systems (MIXDES),
Gdynia, Poland, Jun 2013, pp. 462–467.

8. S. Astapov, J.-S. Preden, and J. Berdnikova, “Simplified acous-
tic localization by linear arrays in wireless sensor networks,” in
Proc. 18th Int. Conf. on Digital Signal Processing (DSP), Fira,
Santorini, Greece, Jul 2013, pp. 1–6.

9. C. Ibala, S. Astapov, F. Bettens, F. Escobar, X. Chang, C. Valder-
rama, and A. Riid, “Combining multiple sound sources localization
hybrid algorithm and fuzzy rule based classification for real-time
speaker tracking application,” International Journal of Microelec-
tronics and Computer Science, vol. 4, no. 1, pp. 12–25, 2013.

10. S. Astapov, J. Berdnikova, and J.-S. Preden, “Optimized acoustic
localization with SRP-PHAT for monitoring in distributed sensor
networks,” International Journal of Electronics and Telecommu-
nications, vol. 59, no. 4, pp. 383–390, 2013.

11. A. Tepljakov, E. Petlenkov, J. Belikov, and S. Astapov, “Tuning
and digital implementation of a fractional-order PD controller for

249



a position servo,” International Journal of Microelectronics and
Computer Science, vol. 4, no. 3, pp. 116–123, 2013.

12. J.-S. Preden, L. Motus, J. Llinas, R. Pahtma, R. Savimaa, M.
Meriste, and S. Astapov, “Improvised explosive devices in asym-
metric conflicts: multisource data fusion for providing situational
information,” A. Gorod, B. E. White, V. Ireland, S. J. Gandhi,
B. Sauser, Eds., Case Studies in System of Systems, Enterprise
Systems, and Complex Systems Engineering, pp. 407–443, Taylor
& Francis, 2014.

13. S. Astapov, J. Ehala, and J.-S. Preden, “Collective acoustic local-
ization in a network of dual channel low power devices,” in Proc.
21st Int. Conf. Mixed Design of Integrated Circuits and Systems
(MIXDES), Lublin, Poland, Jun 2014, pp. 430–435.

14. S. Astapov, J.-S. Preden, J. Ehala, and A. Riid, “Object detec-
tion for military surveillance using distributed multimodal smart
sensors,” in Proc. 19th Int. Conf. on Digital Signal Processing
(DSP), Hong Kong, China, Aug 2014, pp. 366–371.

15. A. Riid, J.-S. Preden, and S. Astapov, “Detection, identification
and tracking of mobile objects with distributed system of sys-
tems,” in Proc. 9th Int. Conf. on System of Systems Engineering
(SOSE), Adelade, SA, Australia, Jun 2014, pp. 224–229.

16. J.-S. Preden, R. Pahtma, S. Astapov, A. Riid, E. Suurjaak, J.
Ehala, and L. Motus, “Distributed fusion and automated sensor
tasking in ISR systems,” in Proc. SPIE 9079, Ground/Air Multi-
sensor Interoperability, Integration, and Networking for Persistent
ISR IV: SPIE Defense, Security and Sensing, 2014, pp. 90790M–
90790M-10.

17. S. Astapov, A. Riid, J.-S. Preden, and T. Aruvali, “Industrial
process monitoring by multi-channel acoustic signal analysis,” in
Proc. 14th Biennial Baltic Electronics Conference (BEC), Tallinn,
Estonia, Oct 2014, pp. 209–212.

18. S. Astapov, J. Berdnikova, and J.-S. Preden, “Predictive acoustic
localization and speaker tracking for distributed sensor networks,”
in Proc. 13th Int. Conf. on Control, Automation, Robotics and
Vision (ICARCV), Singapore, Dec 2014, pp. 833–838.

19. J.-S. Preden, J. Kaugerand, E. Suurjaak, S. Astapov, L. Motus,
and R. Pahtma, “Data to decision: pushing situational informa-
tion needs to the edge of the network,” in Proc. Int. Inter-
Disciplinary Conf. on Cognitive Methods in Situation Awareness
and Decision Support (CogSIMA), Orlando, USA, Mar 2015, pp.
158–164.

250



20. S. Astapov, J. Berdnikova, and J.-S. Preden, “A two-stage ap-
proach to 2D DOA estimation for a compact circular microphone
array,” in Proc. Int. Conf. on Informatics, Electronics & Vision
(ICIEV), Kitakyushu, Japan, Jun 2015, pp. 1–6.

21. S. Astapov, J. Ehala, J. Berdnikova, and J.-S. Preden, “Gunshot
acoustic component localization with distributed circular micro-
phone arrays,” in Proc. Int. Conf. on Digital Signal Processing
(DSP), Singapore, Jul 2015, pp. 1186–1190.

22. S. Astapov, J. Berdnikova, J. Ehala, and J. S. Preden, “Shooter
localization by networked multichannel acoustic ground sensors,”
in Proc. Int. Conf. on Signal and Image Processing Applications
(ICSIPA), Kuala Lumpur, Malaysia, Oct 2015, pp. 332–337.

23. J. Kaugerand, J.-S. Preden, E. Suurjaak, S. Astopov, L. Motus,
and R. Pahtmaa, “A system of systems solution for perimeter con-
trol: combining unmanned aerial system with unattended ground
sensor network,” in Proc. 9th Annual IEEE International Sys-
tems Conference (SysCon), Vancouver, BC, Canada, Apr 2015,
pp. 317–323.

24. J.-S. Preden, J. Kaugerand, E. Suurjaak, R. Pahtma, S. Astapov,
and L. Motus, “UAV as a generic information provider in an ISR
system of systems,” in Proc. SPIE, Ground/Air Multisensor In-
teroperability, Integration, and Networking for Persistent ISR IV:
SPIE Defense, Security and Sensing, 2015, in press.

25. S. Astapov, J. Ehala, and J.-S. Preden, ”Performing acoustic lo-
calization in a network of embedded smart sensors,” International
Journal of Microelectronics and Computer Science (IJMCS), vol.
6, no. 3, pp. 86–95, 2015.

26. S. Astapov, J. Berdnikova, J. Ehala, J. Kaugerand, and J.-S. Pre-
den, “Gunshot acoustic event identification and shooter localiza-
tion in a WSN of asynchronous multichannel acoustic ground sen-
sors,” Multidimensional Systems and Signal Processing, 2016, in
press.

27. S. Astapov, A. Riid, and J.-S. Preden, “Military vehicle acous-
tic pattern identification by distributed ground sensors,” in Proc.
15th Biennial Baltic Electronics Conference (BEC), Tallinn, Es-
tonia, Oct 2016, in press.

28. A. Tepljakov, S. Astapov, and D. Draheim, “Sound localization
and processing for inducing synesthetic experiences in virtual real-
ity,” in Proc. 15th Biennial Baltic Electronics Conference (BEC),
Tallinn, Estonia, Oct 2016, in press.

251





Publications





Publication 1

Reference

S. Astapov and A. Riid, “A multistage procedure of mobile vehicle acoustic
identification for single-sensor embedded device,” International Journal of
Electronics and Telecommunications, vol. 59, no. 2, pp. 151–160, 2013.

Abstract

Mobile vehicle identification has a wide application field for both civilian and
military uses. Vehicle identification may be achieved by incorporating single
or multiple sensor solutions and through data fusion. This paper considers
a single-sensor multistage hierarchical algorithm of acoustic signal analysis
and pattern recognition for the identification of mobile vehicles in an open
environment. The algorithm applies several standalone techniques to en-
able complex decision-making during event identification. Computationally
inexpensive procedures are specifically chosen in order to provide real-time
operation capability. The algorithm is tested on pre-recorded audio signals
of civilian vehicles passing the measurement point and shows promising clas-
sification accuracy. Implementation on a specific embedded device is also
presented and the capability of real-time operation on this device is demon-
strated.





INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2013, VOL. 59, NO. 2, PP. 151–160

Manuscript received March 4, 2013; revised May, 2013. DOI: 10.2478/eletel-2013-0018

A Multistage Procedure of Mobile Vehicle Acoustic

Identification for Single-Sensor Embedded Device
Sergei Astapov and Andri Riid

Abstract—Mobile vehicle identification has a wide application
field for both civilian and military uses. Vehicle identification may
be achieved by incorporating single or multiple sensor solutions
and through data fusion. This paper considers a single-sensor
multistage hierarchical algorithm of acoustic signal analysis and
pattern recognition for the identification of mobile vehicles in
an open environment. The algorithm applies several standalone
techniques to enable complex decision-making during event iden-
tification. Computationally inexpensive procedures are specifi-
cally chosen in order to provide real-time operation capability.
The algorithm is tested on pre-recorded audio signals of civilian
vehicles passing the measurement point and shows promising
classification accuracy. Implementation on a specific embedded
device is also presented and the capability of real-time operation
on this device is demonstrated.

Keywords—vehicle identification, acoustic signal analysis, fea-
ture extraction, classification, fuzzy logic

I. INTRODUCTION

MOVING object identification is one of many tasks of

environment monitoring systems. It finds its uses in

civilian and military applications. The civilian applications

of moving motor vehicle identification vary from speed limit

control to traffic density analysis and traffic behavior predic-

tion. Military uses involve reconnaissance and identification of

friendly over enemy craft [1]. The most important aspect of

such monitoring systems is real-time computation and timely

result processing as the nature of the problem most often

implies time-critical operation. Most state of the art systems

typically rely on single sensor ultrasonic, acoustic, video,

infrared, radar, microwave, magnetic, laser, vibration based,

etc. signal analysis, otherwise they employ combinational

multisensory detectors [2], [3]. The main advantage of acoustic

[4], [5], [6], [7], [8] and video [9] methods lies in the ease of

data signal interpretability, i.e., the acquired data is perceptual

without additional manipulations.

Video based methods of vehicle identification are generally

more effective and robust in changing weather conditions if

provided sufficient visibility and illumination. However, the

large amounts of video data and significantly more complex

pattern search algorithms, if compared to algorithms for one-

dimensional data streams, put significant constraints on the

This research was supported by the Innovative Manufacturing Engineer-
ing Systems Competence Centre IMECC, co-financed by European Union
Regional Development Fund (project EU30006).

S. Astapov is with the Laboratory for Proactive Technologies, Tallinn
University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia (e-mail:
sergei.astapov@dcc.ttu.ee).

A. Riid is with the Laboratory for Proactive Technologies, Tallinn Uni-
versity of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia (e-mail:
andri@dcc.ttu.ee).

possibilities of real-time system implementation. Acoustic

systems on the other hand do not rely on visibility factors, yet

are sensitive to background acoustic noise variation. Unlike

the classical task of distinguishing the incident signal from

uniform ambient noise, the task of vehicle identification lies in

distinguishing one type of noise (i.e. vehicle-produced sound)

from other noises that occur in the environment. Acoustic

noise analysis provides the possibility to distinguish well

separable classes of motor vehicles, such as passenger cars

from large trucks. The acoustic noise patterns of mobile

vehicles consist of multiple components [10]. The harmonic

nature of the motor noise is, however, seldom present in the

civilian vehicle sound pattern due to the fact that motor sounds

are well dampened in modern cars. This fact complemented

by the Doppler Effect renders the spectral analysis based

on fundamental frequency detection (e.g. [11]) ineffective.

Instead, parameters of the spectrum overall shape and energy

distribution resembling the vehicle noise patterns may be

adopted.

This paper considers different methods of digital audio

signal analysis, namely the estimation of spectral energy

levels and energy envelope, the analysis of several frequency

spectrum instantaneous features and spectral pattern matching.

The proposed algorithm possesses a hierarchical structure,

beginning with the detection of signal perturbation, continuing

with the estimation of noise resemblance to those produced

by vehicles, and ending with the classification of the detected

vehicle. The algorithm is computationally inexpensive and thus

is well implementable on embedded devices. We focus on

a single-sensor approach in order to reduce the computational

load of the algorithm. However, the procedure can be inte-

grated into a more complex system through data fusion for

more sophisticated decision-making.

The paper is organized as follows. In Section II, the applied

methods of audio signal analysis and audio feature extrac-

tion are reviewed in detail. Section III handles the proposed

algorithm’s procedures and multistage decision-making. In

Section IV several computational simplifications are discussed

for optimization. In Section V we use two real test signals

for experimental verification of the algorithm’s identification

accuracy and present intermediate and final results of detection

and classification. This section of the paper shows that the al-

gorithm is well applicable to the task of identifying motorized

vehicles under varying weather conditions. Additionally, in

Section VI we present one option of procedure implementation

on specific embedded hardware and demonstrate the real-time

operation capability on this specific device.
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II. SIGNAL ANALYSIS METHODS

The audio signal is analyzed in the frequency domain. The

frequency domain representation of the signal is achieved by

applying a temporal signal decomposing operation, namely the

Fourier Transform (FT). Frequency features are less affected

by noise than temporal features; also most of the temporal

features may be approximated in the frequency domain. Fur-

thermore, the frequency spectrum of a temporal signal frame

consists of half as many points as there are in the temporal

frame, which is relevant in computation complexity critical

systems.

A. The Fast Fourier Transform

The discrete temporal signal is decomposed by the Discrete

Fourier Transform (DFT). For a finite duration discrete signal

x(m) of length N , the DFT function is

X(k) =

N−1∑

m=0

x(m) · e−j 2π
N mk, k = 0, . . . , N − 1. (1)

In this manner the transform is performed along two integer

dimensions: m and k, i.e. it can be presented as a linear system

transformation of complexity O(N2). In order to reduce its

computation the Fast Fourier Transforms were developed. The

proposed system applies a specific implementation of the FFT

developed by Frigo and Johnson, called FFTW [12].

The frequency spectrum [X(0), X(1), . . . , X(N − 1)] is

symmetrically divided into complex conjugate “positive” and

“negative” frequencies, the positive ones residing in the inter-

val [X(0), . . . , X(N/2 + 1)] with X(0) being the signal DC

component, which is ignored. In order to obtain the absolute

amplitude spectrum, the absolute values of this portion of the

spectrum are calculated. Thus, abiding the Nyquist – Shannon

sampling theorem, the amplitude frequency spectrum of a sig-

nal frame of length N consists of N/2 frequency components,

each of which is multiple to the frequency resolution given by

∆f = Fs/N , where Fs is the sampling rate.

B. Instantaneous Feature Extraction

In order to acquire the specific signal properties, several

features are extracted from the amplitude frequency spectrum

[13]. These are referred to as instantaneous features due to the

fact that they are extracted from every single spectral frame

independently, not relying on previous information. The list

of features is signal-specific and is formed during the process

of test signal analysis in order to distinguish well separable,

desirably weakly correlated features, which best indicate the

nature of signal fluctuations corresponding to the concerned

events. The six spectral features considered in this paper are

extracted from the absolute magnitude spectrum frame |Xt(k)|
of length , K = N/2, k = 1, . . . ,K .

Root Mean Square (RMS) Energy of the power spectrum

conveys the general spectral energy level:

XRMS =

√√√√ 1

K

K∑

k=1

|Xt(k)|2. (2)

The band energy measures the energy of the power spec-

trum at the ith band and is computed as

XBE(i) =

∑
l∈Si

|Xt(l)|2∑K
k=1 |Xt(k)|2

, (3)

where Si is the set of power spectrum samples belonging to

the ith band. The bands are chosen according to the Mel-scale

denoted by

Mel(f) = 2595 · log10
(
1 +

f

700

)
. (4)

The Mel-scale is chosen for its increasing spread towards the

higher frequencies, which ultimately means that the bands of

lower frequencies where most of the spectral energy resides,

are shorter than the bands of low-energy higher frequencies.

This allows for better distribution of spectral energy by bands.

The spectral centroid represents the first central moment

of the magnitude spectrum. It is calculated as the frequency

averaged over the absolute magnitude spectrum:

XSC =

∑K
k=1 k · |Xt(k)|∑K
k=1 |Xt(k)|

. (5)

Spectral roll-off measures the frequency below which

a certain amount of spectral energy resides. This amount is

determined by TH = [0, 1] which is the threshold. For our

application we choose it to be equal to TH = 0.9 (see Fig. 1).

XSR = argmax
p

[
p∑

l=1

|Xt(l)|2 ≤ TH ·
K∑

k=1

|Xt(k)|2
]

(6)

Spectral slope is a measure of spectral energy decrease in

the direction of higher frequencies. It is determined by the

gradient and y-intersect parameters of a straight line calcu-

lated applying linear regression to the magnitude spectrum

frame. Hereby, for a set of data points (k, |Xt(k)|), where

k = 1, . . . ,K , the gradient of the best fitted straight line is

denoted as

m =
K

∑K
k=1 k · |Xt(k)| −

∑K
k=1 k

∑K
k=1 |Xt(k)|

K
∑K

k=1 k
2 −

(∑K
k=1 k

)2 , (7)

and the y-intersect is denoted as

c =

∑K
k=1 |Xt(k)|

∑K
k=1 k

2 −∑K
k=1 k

∑K
k=1 k · |Xt(k)|

K
∑K

k=1 k
2 −

(∑K
k=1 k

)2 .

(8)

An example of spectral slope for a magnitude spectrum of

length K = 8192 is presented in Fig. 1. The overall decline

of spectral energy towards higher frequencies defines the

parameters of the straight line and not the precise energy

distribution in bands.

In the proposed algorithm the RMS energy is used indepen-

dently. The rest of the considered features are concatenated

into a feature vector, which is analyzed during the later stages

of classification. A combination of features of different nature
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Fig. 1. Spectral roll-off and spectral slope features of an acoustic signal
frame.

into a single set may prove harmful in later analysis due

to differences of their responsiveness to the incident signal.

The method of fuzzy classification, however, overcomes this

problem. The issue is further addressed in Section III.

C. Attack Sustain Release Envelope

The process of a vehicle passing the measurement point at

a given velocity consists of three stages: approach (spectral

energy increases), passing (spectral energy remains stable),

retreat (spectral energy decreases). This dynamic pattern is

detected by estimating the Attack Sustain Release (ASR)

envelope. It is conducted by analyzing the RMS spectral

energy (2).

The amount of deviation of RMS energy of the present ith

frame XRMS(i) is estimated by the difference between it and

the mean value of M previous RMS energy readings. The

parameter δ ∈ [0, 1] is the lower threshold of energy deviation.

RMS energy deviation is coded to three states by the following

principle:

statei =





1, XRMS(i) > (1 + δ) ·meanRMS(i)

−1, XRMS(i) < (1− δ) ·meanRMS(i)

0, otherwise

, (9)

where 1 denotes energy increase, 0 denotes stable energy levels

and -1 denotes energy decrease. The mean of M previous

energy levels is calculated by

meanRMS(i) =
1

M

j=i−1∑

M

XRMS(j). (10)

Therefore the transitions 1 → 0 → −1 and 1 → −1 are

suspected for a car passing event and the quantities of -1, 0,

and 1 coded frames denote the lengths of attack, sustain, and

release components, respectively.

III. THE HIERARCHICAL ALGORITHM

The proposed hierarchical algorithm, presented in Fig. 2.,

consists of two independent stages. The hierarchical decision-

making scheme (on the left) firstly differentiates relatively loud

sounds from mild background noise, secondly it distinguishes

vehicle-produced sounds from heavy background noise and

lastly estimates the vehicle type from a set of predefined

types. This part of the algorithm operates in a frame-by-frame

Fig. 2. Block diagram of the proposed hierarchical algorithm for vehicle
detection and classification.

manner, computing a single class label per signal frame. The

ASR envelope estimation procedure, on the other hand, runs

parallel to the decision-making procedure and complements

the past frames’ classifications with reassurance of positive

vehicle-passing event detection. The hierarchy of the algorithm

is conditioned by the supremacy of vehicle detection priority

over vehicle classification priority, i.e. distinction between

vehicle-produced sound and other types of noise is more

important than correct vehicle type estimation.

A. Lower Energy Threshold

The first stage of the hierarchical procedure is the estimation

of sufficient signal energy. The energy level of a signal frame

is calculated and compared to the lower energy threshold, if

the threshold is not exceeded, the procedure terminates and the

frame is marked as mild noise. The estimation of the lower

energy threshold occurs during algorithm parameter estimation

by means of test signal analysis. The initial threshold is chosen

as the minimal value of RMS energy of all the frames that

correspond to vehicle passing instances.

The optional procedure of spectrum filtering and smoothing

follows. Digital filtering may improve the Signal to Noise

Ratio (SNR) of the spectrum. However, it is effective only

in the cases where the spectral band containing the signal

is known. In our specific case the vehicle sounds overlap

with the background noise and filtering does not improve the

classification process. Furthermore, this procedure may corrupt

the vehicle acoustic pattern and thus is not applied in our

experiments.

B. Fuzzy Classification

The sound pattern of a moving object passing the measuring

device is not consistent. Changing signal energy and complex
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Fig. 3. Three clusters in a three-dimensional feature space. Features represent
energy ratios and thus units are not set.

alternations of spectrum shape caused by engine sounds, the

Doppler Effect, and also the influence of background noise –

all introduce variance to the spectral features of the signal.

It is because of this variance why the feature vectors (of

length L) corresponding to an event under the same class

label form a cluster in an L-dimensional space. Because of

the high level of variance among the samples, the clusters can

be rather complex shaped (Fig. 3). The separation of samples

into a specific class/cluster is carried out by a fuzzy classifier

derived by a heuristic training procedure [14]. The classifier

operates by applying fuzzy inference to an input feature vector.

The algorithm is relatively lightweight if L does not exceed

20-30, which is one of the reasons of applying spectral features

instead of the whole spectral vector.

The fuzzy classifier that classifies a feature vector X =
[x1, . . . , xL] of length L by assigning to it one of T different

discrete valued labels, consists of R rules of the following

structure:

IF x1 is A1r AND x2 is A2r AND . . . AND xL is ALr

THEN y belongs to class cr
,

(11)

where Air is the linguistic term of the ith input (i.e., feature

vector element, i = 1, . . . , L) associated with the rth rule and

cr ∈ (1, . . . , T ) is the class label assigned by the rth rule.

The class label is assigned in a winner-takes-all manner by

specifying the rule with the highest degree of activation

y = cr, argmax
1≤r≤R

(τr) , (12)

where τr is the activation degree of the rth rule:

τr =

L⋂

i=1

µir(xi), (13)

where µir is the MF corresponding to the linguistic term Air .

Classifier training consists of estimating the parameters of

these MFs. For the implementation of the classifier at hand

triangle-shaped MFs are used:

µir(xi) =





xi−air

bir−air
, air ≤ xi ≤ bir

cir−xi

cir−bir
, bir < xi ≤ cir

0, (xi < air) ∨ (xi > cir)

, (14)

where air and cir locate the base of the triangle and bir locates

the peak. The training is performed using a set of reference

feature vectors for which a class label is provided manually.

This is done during system off-line tuning. The procedure

consists of the following steps:

1) The set of vectors is partitioned into R subsets Sj ,

j = 1, . . . , R, each consisting of Pj vectors of the same

class.

2) The parameters of the MFs are calculated as

air = min
k∈Sj

(xi(k)), cir = max
k∈Sj

(xi(k)), bir =

1
Pj

∑
k∈Sj

xi(k), i = 1, . . . , L.

3) The base of each MF is slightly enlarged (by 1% in our

case) to give non-zero membership values to the training

samples located at the edges of multidimensional space

clusters [14].

4) The established MFs are added to the classifier rule-base

defined by (13).

If the clusters do not separate naturally in the feature space

(which is often the case), the extracted rules are bound to

have a high degree of overlap (Fig 4, upper subplot). Note

that because of (12), the rules compete for the samples and

those samples of a class that are at a sufficient distance from

the related rule center, will receive a higher activation degree

(13) and consequently, the classification decision from a neigh-

bouring rule by what they lose the connection to the rule they

were originally assigned to. In such a case, it makes sense

to readjust the MF parameters by excluding the lost samples

from corresponding Sj and applying the tuning procedure

again. Quite often this ignites a minor chain reaction because

the updated rules are inclined to lose additional samples to

neighbouring rules and we need to readjust them again. In the

end, however, what we obtain is a classifier with much more

compact rules and MFs (Fig. 4, lower subplot). Moreover,

usually this comes at no loss of classification accuracy.

Note, that the classifier that employs triangular MFs cannot

operate on samples that fall beyond the rule borders specified

by the MF base parameters. This can be fixed, if desired, by

replacing the triangular MFs with near-equivalent Gaussian

curves defined as

µir(xi) =





exp

{
− (xi−bir)

2

2·(0.4247·(bir−air)
2)

}
, xi < bir

exp

{
− (xi−bir)

2

2·(0.4247·(cir−bir)
2)

}
, xi ≥ bir

. (15)

While this improves the ability to properly classify the un-

seen samples, performance of the classifier first and foremost

depends on the quality of the training data set. The reference

features must be chosen with moderate amounts of background

noise. Very noisy reference features will most likely produce

large, sparse and heavily overlapping clusters dependent on

the stationary properties of this particular noise. On the other
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Fig. 4. Initial (upper) and refined (lower) representation of three clusters by
triangular MFs.

hand, increasing the size of the reference feature vector will

provide more information on the distribution of points in the

feature space thus allowing for more efficient MF parameter

tuning.

In the proposed hierarchical algorithm, the heuristic fuzzy

classification may be applied in two different manners. First,

a general cluster corresponding to all vehicle types in question

may be estimated and the resulting classifier is used for pure

detection purposes, just to distinguish all vehicle produced

noise from ambient noise. Final classification is then per-

formed by correlation analysis. Alternatively, a separate cluster

for each vehicle class is built and the classifier is applied for

specific vehicle type estimation. Here both the fuzzy classifier

and the correlation analysis produce separate class estimates,

which may reinforce each other. In Section V both methods

are used during hierarchical algorithm testing.

C. Correlation Coefficient Analysis

The final stage of vehicle identification is the correlation

analysis between the unknown amplitude spectrum vector and

the reference spectrum vectors, each corresponding to a single

vehicle type class. For a more rigorous classification, several

reference vectors per class may also be used. Correlation

coefficients are simple and effective metrics for similarity

estimation, however, this method is very susceptible to noise.

A spectrum of loud background noise may correlate to any of

the reference spectra enough to receive incorrect classification.

Application of the fuzzy classifier in the previous stage of the

algorithm relieves this problem.

During correlation analysis, the correlation coefficients be-

tween an unlabeled spectrum vector x = |Xt(k)| and C
reference vectors of length K , ri = [ri(1), . . . , ri(K)], i =
1, . . . , N , are calculated using the following equation:

ρi =
[
K

∑K
k=1 x(k) · ri(k)−

∑K
k=1 x(k)

∑K
k=1 ri(k)

]
/[√

K
∑K

k=1 x(k)
2 −

(∑K
k=1 x(k)

)2

×
√
K

∑K
k=1 ri(k)

2 −
(∑K

k=1 ri(k)
)2

] .

(16)

The correlation is defined on the interval , −1 ≤ ρi ≤ 1, -

1 meaning total inverse correlation, 0 specifying uncorrelated

patterns, and 1 meaning total direct correlation. The class label

corresponding to the reference vector of maximum correlation

is declared the winner:

y = argmax
1≤i≤C

(ρi) . (17)

D. Reassurance by ASR Envelope

As it was mentioned earlier, the detection of the ASR

dynamic of signal energy complements the past identification

results. If the ASR pattern is detected, a notification is gen-

erated and presented along with the final class estimate. The

class labels generated during the period of the detected ASR

are inspected for the most frequent one (mode in statistical

sense), which is presented in the notification. This reduces

inconsistencies in the series of class estimates, e.g. when the

vehicle type cannot be clearly classified. Additional restric-

tions may also be applied to the ASR envelope detection. If

the potential velocity of the moving object is known, the lower

and upper bounds for the attack, sustain or release components

may be specified, so the detection is invalid if these restrictions

are not met. For example, if the vehicles are known to stop

at the measurement point, the expected values of the sustain

component have to be large in order to not confuse this stop

with multiple vehicles. On the other hand, for quickly passing

vehicles on a highway the ASR components are expected to

be short.

IV. ALGORITHM COMPLEXITY MINIMIZATION

The most time consuming operations of the procedure

are feature extraction and correlation coefficient calculation
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due to a large number of lengthy vector summations. To

reduce the number of summations several feature extraction

techniques were specifically chosen with similar summands.

Analyzing equations (2), (3), (5) – (8), the repeating elements

are
∑K

k=1 |Xt(k)|,
∑K

k=1 |Xt(k)|2 and
∑K

k=1 k · |Xt(k)|,
the first two of which are also present in the correlation

calculating equation (16). Computing these sums only once

and minimizing the number of cycles during feature extraction

greatly reduces the number of overall operations.

Equations (7) and (8) may be further simplified if k is taken

as an integer vector index of the corresponding frequency

component. The closed form for the sum of K first successive

integers is equal to

K∑

k=1

k =
1

2
K (K + 1) , (18)

and the sum of squares of K first successive integers is

K∑

k=1

k2 =
1

6
K (K + 1) (2K + 1) . (19)

Even if k is chosen non-integer, the sums of the resulting

recurrences may still be evaluated [15], however these closed

forms will definitely require more computations than it is

needed for (18) and (19).

Calculating the sums of reference vectors and the sums

of squared reference vectors only once during the off-line

stage of algorithm parameter specification turns (16) to a more

lightweight equation with only one specific summation, which

must be performed for each correlation coefficient calculation:∑K
k=1 x(k) · ri(k).
Using a power of two as the signal frame length also reduces

computation complexity. FFT operation is optimized for frame

lengths multiple to powers of two, also in this case many

multiplications and divisions are replaced by simpler and faster

bitwise arithmetic shifts.

V. ALGORITHM TESTING RESULTS

The performance of the algorithm is tested on real signals

acquired in an open environment. The signals are manually

analyzed prior to algorithm accuracy evaluation. This is done

in order to estimate the number of classes, that are used in the

algorithm and to assign reference class labels to every frame.

Each signal is divided into a training and test portion. The

partitioning is performed so, that the event of each class occurs

at least once in each portion. In our experiments we divide

the signals equally, half of the signal is used for training and

another half for testing. The training portion is used for fuzzy

classifier training and for choosing reference vectors for the

correlation analysis procedure. For the fuzzy classifier training,

the features are extracted from every frame of the training

signal and gathered to the training dataset. For correlation

analysis, several spectral vectors corresponding to different

classes are manually chosen. The test portion of the signal is

used for the estimation of detection and classification accuracy.

Fig. 5. Spectrogram (upper) and extracted features (lower) of the first
experimental signal.

A. First Test Signal

The first test audio signal was measured using a Shure

SM58 microphone and a Roland Edirol UA-25EX audio signal

processor at 44.1 kHz sampling rate in mono channel mode

and saved in 16-bit Waveform Audio File (WAV) format. For

the acquisition of the test signal, a microphone was placed at

an empty parking lot and two cars (Mercedes S320 and Mazda

MX-5) were in turn passing the microphone stand at a speed

of 35 – 45 km/h at the passing point, starting to accelerate

from a distance of approximately 40 meters. Each car passed

the microphone three times: the Mercedes first three times and

the Mazda three times afterwards. The sounds were acquired

during summer time in mild weather conditions, thus ambient

noise levels were relatively low. The signal’s spectrogram is

presented in Fig. 5. Six instances of passing car sounds are

clearly visible.

For testing, the frame length of 214 = 16384 samples is

chosen, which corresponds to 0.3715 seconds at a sampling

rate of 44.1 kHz. The signal feature vector comprises of eight

features: four band energy features (four bands of 1-824, 824-
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2616, 2616-6514, 6514-15000 Hz), spectral centroid, spectral

roll-off and spectral slope:

X = [XBE(1), . . . , XBE(4), XSC , XSR,m, c] . (20)

These features per every signal frame are presented in Fig. 5.

Because the SNR is high the features corresponding to car

passing events are clearly visually identifiable. For classifica-

tion a total of 2 class labels are used: 1 for Mercedes and 2

for Mazda. The reference spectral vectors used in correlation

analysis are estimated by averaging several spectra of sounds

produced by vehicles of the same class, one reference vector

per class is applied.

The results of algorithm testing are presented in Fig. 7. The

general results are satisfying – every vehicle is detected and

successfully classified. As it can be seen in the second and

third subplots of Fig. 7, each vehicle passing instance ASR

envelope is correctly detected. Though it can be noticed that

approximately on the 107th frame the ASR dynamic is falsely

detected, the energy of the signal is below the threshold and the

fuzzy classifier gives no classification decision, consequently

the detection does not occur. Also approximately at the 145th

frame the ASR dynamic is present, but is not detected, as

for the known vehicle speed corridor the attack and release

components of the envelope are set to be no less than 2 frames

in duration for the dynamic to be detected. For this signal the

fuzzy classifier is trained for detection purposes, i.e. all car

types vs. ambient noise. The detection decisions of the fuzzy

classifier concur with the ASR envelope.

The heuristic fuzzy algorithm, trained to identify the

general vehicle feature space, succeeds in doing so for

the majority of signal frames thus allowing the correlation

coefficient calculation procedure to analyze only the frames

corresponding to vehicle pass time intervals. The fourth

subplot of Fig. 7 shows that the correlation coefficient values

are unreliable during the periods between vehicle passing

instances, during these instances, however, they become more

separate, indicating an obvious leader.

B. Second Test Signal

The second test signal was acquired using a condenser mi-

crophone Sennheiser KE 4-211-2 and an embedded computing

device Gumstix Overo Water. The signal was also sampled at

44.1 kHz mono channel mode and saved to a 16-bit WAV file.

Signal acquisition was conducted at a lively two-lane highway

during dense traffic in late fall under heavy wind and light rain.

Consequently the noise levels in this signal are quite high. The

spectrogram, presented in Fig. 6., confirms this. Ambient noise

from wind and rain pollutes the whole frequency band, unlike

in Fig. 5. Dense traffic results in vehicle passing instances

being much less visually separable.

The frame length was chosen the same as for the first test

signal. Two vehicle classes were chosen: 1 for passenger cars

and 2 for trucks and busses. Feature vectors comprise of eight

features, which are the same as for the first signal, except the

bands for the band energy features are less spread: 220-818,

Fig. 6. Spectrogram (upper) and extracted features (lower) of the second
experimental signal.

818-2592, 2592-6438, 6438-14780 Hz. Fig. 6. presents these

feature vectors. Low SNR makes the features corresponding

to vehicle passing instances visually almost unidentifiable. For

the derivation of reference spectral vectors, the same technique

as for the first signal is used.

The results of signal analysis are presented in Fig. 8. As

the time intervals between car passes are very short and often

non-existent altogether, reference class labels, which are also

used during fuzzy algorithm training, are introduced in the

first subplot. The intermediate results are, on the other hand,

not presented due to possible problems with readability. The

results are as follows: out of 46 instances of class 1 vehicles,

37 were successfully detected and classified, 5 were undetected

and 4 were confused with class 2; for 11 instances of class

2 vehicles, 9 were correctly classified, 1 was not detected

and 1 confused with class 1. Thus the classification accuracy

for class 1 vehicles is 80.43% and for class 2 – 81.82%.

Considering the harsh environmental conditions, the overall

detection and classification accuracy is admissible.

The main problems causing the lowered classification accu-

racy are:
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Fig. 7. Algorithm testing results, first test signal. From top to bottom, First Subplot: test signal with 6 instances of passing vehicles (grey); final estimated
labels with values 0.05 corresponding to class 1 and 0.1 – to class 2 (black); Second Subplot: RMS energy readings per frame (grey); signal energy threshold
(black horizontal line); energy peaks approximated by ASR envelope (black stems); Third Subplot: coded RMS energy dynamic of the ASR envelope; Fourth
Subplot: intervals of positive fuzzy membership to vehicle feature subspace (dotted vertical lines); coefficients of correlation to the reference spectral vectors
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Fig. 8. Algorithm testing results: second test signal. From top to bottom, First Subplot: test signal with instances of passing vehicles (grey), reference labels
with values 1 corresponding to class 1 and 2 – to class 2 (black); Second Subplot: final estimated labels with values 1 corresponding to class 1 and 2 – to
class 2.

1) Severe pollution of the whole signal frequency band with

high levels of ambient noise.

2) Due to dense traffic the time interval between vehicle

passes is very short and often does not allow for dis-

tinguishing between successive vehicle passes. Further-

more, sounds of vehicles driving on lanes of opposite

direction may overlap and distort one another.

3) Sound masking. A heavy truck can emit a noise loud

enough to mask the sound of a nearer but lighter car,

thus making this car undetectable.

4) Intermediate vehicle types (e.g. minibus or pickup truck)

make the boundary between passenger and heavy cars

more ambiguous. As a result, for some specific types of

vehicles precise classification is not possible.

C. General Testing Results

The algorithm operates sufficiently well in both cases of

motor vehicles passing with a certain time interval between

the passes and heavy traffic. However if the flow of vehicles

is consistent and very dense, a decrease of identification

quality is witnessed. The influence of background noise,

though reduced due to the algorithm’s multistage decision-

making logic, cannot be eliminated completely. The algorithm

is applicable under different weather conditions, which is

demonstrated on the examples of both high and low SNR

recordings. Possessing a variety of tunable parameters, the

sensitivity of the algorithm can be adjusted to the needed

extent. This provides the opportunity to apply the algorithm for

classification of various types of moving objects not limited

to motorized vehicles.
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TABLE I
ALGORITHM OPERATION TIMINGS

Processing times (s)
Algorithm sub-procedures

1) 2) 3) 5) Total

Mean 0.0350 0.0022 0.0110 0.0044 0.0526

Maximum 0.0367 0.0027 0.0119 0.0048 0.0564

VI. REAL-TIME OPERATION ON EMBEDDED DEVICE

For the implementation we choose the embedded device

Gumstix Overo Water with System-on-Chip OMAP3530 (600

MHz ARM-Cortex-A8), 256MB RAM with a 4GB microSD

card. The test signal for the real-time operation experiment is

similar to the second test signal considered in Section V-B.

The test signal was acquired prior to the experiment. After

training the fuzzy rule-base and tuning all the parameters of

the algorithm, the signal file is streamed to the device input

buffer bypassing the ADC at the rate of the sampling frequency

in order to simulate real-time data acquisition and operation

[16]. The frame length is chosen, as in the previous sections,

to be 214 = 16384, which corresponds to 0.3715 seconds

at the sampling rate 44.1 kHz. To operate in real-time, the

identification procedure therefore must take less than 0.3715

seconds to compute.

The test signal is 625.27 seconds long, which corresponds to

1683 frames of length 16384. The processing time is measured

for the following procedures:

1) FFT execution

2) RMS energy calculation

3) Feature extraction

4) Fuzzy Classification

5) Calculation of correlation coefficients

6) ASR envelope estimation

During the experiment the algorithm is made to run to full

extent, not terminating during negative detection, i.e. after 2)

or 4), in order to achieve consistent results. The mean and

maximal values of processing times are presented in Tab. I.

Operations 4) and 6) are excluded from the table, as the times

of 4) are either 30-31 or rarely 61 µs, and for 6) – 30-31 µs.

Thus the mean values do not need to be estimated.

As expected, the most time-consuming operations are FFT

execution (consuming more than half of the total processing

time) and feature extraction. Process RMS energy calculation

takes very little time, so during non-detection the system

resources are greatly spared. Correlation computation also

consumes much time, growing along with frame length and the

number of reference vectors. Thus finding a faster alternative

to this method will increase system performance. Altogether,

the mean total processing times are significantly smaller than

frame durations, thus the algorithm can easily operate in real-

time on the given platform.

The distributions of processing times of the computation

steps with most variance are presented as histograms in

Fig. 9. The variance of processing time is small and thus the

predictability of computation time is high. A small amount

of values noticeably larger that the mean exist for every

sub-procedure and the total process. These abnormalities of

long processing durations are most certainly influenced by the
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Fig. 9. Histograms of processing times of three sub-procedures with most
variance and the whole process.

hardware limitations and problems with memory allocation.

Taking this into account and calculating the worst-case total

processing time, consisting of maxima of every sub-procedure

time, gives 0.0564 seconds for frame length 16384, which is

still much less than the signal frame duration.

VII. CONCLUSION

In this paper we have introduced a hierarchical algorithm

for mobile vehicle identification by means of acoustic noise

analysis. The algorithm is developed specifically for real-

time applications and is therefore computationally inexpensive.

The hierarchical structure of the algorithm embeds several

signal analysis and classification techniques that are applied

in a systemized manner to support complex decision-making.

The testing results indicate that the algorithm has a potential

to detect and classify motor vehicles under varying weather

conditions. A possible implementation of the algorithm on

an embedded device is presented and its real-time operation

capability is experimentally proven.

For future developments the algorithm’s robustness may be

increased by applying soft discretization to the transitions of

the algorithm decision-making path [17] thus transforming its

appearance to a fuzzy tree. The final class label therefore may

be decided based on degrees of membership. Final class label

derivation logic may also be reconsidered to support hierarchy

in class label assignment, that will allow for increasing the

number of classes by using sub-classes and thus covering the

intermediate vehicle types. Another direction of development

lies in the integration of other types of sensors in order to en-

able enhanced environment perception by means of data fusion

[3]. On the other hand, application of several microphones in

an array configuration would permit to localize the vehicles’

positions in the monitored area [18].
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Abstract—Acoustic localization by means of sensor arrays
has a variety of applications, from conference telephony to
environment monitoring. Many of these tasks are appealing for
implementation on embedded systems, however large dataflows
and computational complexity of multi-channel signal processing
impede the development of such systems. This paper proposes a
method of acoustic localization targeted for distributed systems,
such as Wireless Sensor Networks (WSN). The method builds on
an optimized localization algorithm of Steered Response Power
with Phase Transform (SRP-PHAT) and simplifies it further by
reducing the initial search region, in which the sound source
is contained. The sensor array is partitioned into sub-blocks,
which may be implemented as independent nodes of WSN. For
the region reduction two approaches are handled. One is based on
Direction of Arrival estimation and the other – on multilateration.
Both approaches are tested on real signals for speaker localization
and industrial machinery monitoring applications. Experiment
results indicate the method’s potency in both these tasks.

Keywords—Acoustic localization, wireless sensor networks,
direction of arrival, multilateration, SRP-PHAT

I. INTRODUCTION

IN recent years acoustic signal analysis has grown in pop-
ularity in environment monitoring applications. Acoustic

signal analysis has a wide area of application because one-
dimensional audio signals are relatively easy to process, they
are highly comprehensive without additional manipulations,
and because acoustic signal acquisition does not require either
full direct sight of view of the monitored object, or sufficient
highlighting. On the other hand, acoustic signals are prone to
noise pollution, especially in unconfined environments, where
ambient noise variance and the nature of different background
noises are undetermined. For single-sensor solutions, noise
poses a great problem because these solutions are unable
to efficiently filter unknown noise types [1]. However, the
situation changes radically if the acoustic sensors are used
in array configurations. Multi-sensor solutions enable con-
centrating on a specific region of the monitored area and
consequently filtering the sound incoming from that region
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alone. Another application of sensor array solutions lies in
sound source localization and tracking.

There exists a variety of methods for acoustic localization,
e.g. [2]–[5]. These methods are all based on simple principles
of acoustic wave propagation. Having several sensors set in
a specific configuration, the direction and distance to the sound
source can be estimated by the time delays of wave arrival to
these sensors, also called Time Difference of Arrival (TDOA).
The Direction of Arrival (DOA) can be estimated from the
TDOA or by other methods, as for example in the MUSIC
algorithm [4]. For our application we employ the localization
method of Steered Response Power with Phase Transform
(SRP-PHAT). The method is established to be robust and
tolerant to both noise and acoustic reverberation.

One of the main problems related to acoustic localiza-
tion methods is high computational complexity. Multi-channel
signal processing requires large amounts of computational
resources for real-time operation. The significantly reduced
resources of embedded hardware of Wireless Sensor Networks
(WSN) aggravate the situation. Furthermore, for WSN the
amounts of data exchanged between nodes must also be max-
imally reduced. For these reasons the main focus of research
in the area lies in the simplification of localization algorithms.
Yet, WSN applications with small embedded hardware so-
lutions allow to widen the ordinary localization techniques
with more complex multi-node sound source detection and
recognition solutions, e.g. [6]–[9].

In this paper we propose a method of Initial Search Region
Reduction (ISRR) for the SRP-PHAT, that significantly re-
duces computational load. For the implementation we use sev-
eral linear microphone arrays, that together constitute a large-
aperture array with a wide area of observation. The ISRR is
performed by estimating the DOA for every sub-array and
finding the region of common direction. Alternatively we
also use multilateration for the region estimation. For final
localization we apply the optimized version of SRP-PHAT,
which uses Stochastic Region Contraction (SRC) for global
energy maximum search. The proposed method is tested on
real signals for moving speaker localization and industrial
machinery monitoring [10] applications. Based on the results,
we consider the advantages and shortcomings of the DOA and
multilateration approaches to ISRR.

II. ACOUSTIC LOCALIZATION WITH SRP-PHAT

Acoustic localization may be performed either in a three
or two-dimensional space. For our grounded applications we
focus on the horizontal plane, thus acoustic source coordinates
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(x, y) are estimated. In the two-dimensional space the use
of linear arrays is sufficient and computationally less com-
plicated. Linear arrays consist of several microphones with
equal distances between each other. The TDOA from one
microphone to another then specifies the DOA of the source.
The calculation of DOA relies firstly on the speed of sound
(in air in our case), the dependence of which on the ambient
temperature is expressed by the following equation:

c = 331.45
√

1 + θ/273, (1)

where c is the speed of sound and θ is the temperature in
Celsius. Secondly, DOA depends on the assumption of near
or far field signal source location. For our implementation we
assume the far field disposition of the sound source. The near
and far field assumptions specify the trigonometry to be used
for DOA computation. Sound waves propagate spherically, and
while in the near field this curvature of the wave front is
accounted for in DOA calculation, in the far field the fronts are
well spread and considered linear. We combine several linear
array blocks to achieve a large-aperture array with a Field of
View (FOV) of up to 25 m2. A FOV is an area where the
sound source is localizable, it directly depends on the array’s
configuration. Large FOV require much time and resources for
the source to be localized.

A. Conventional SRP-PHAT

SRP-PHAT is a technique of estimating the DOA of sound
signals in a reverberant environment. The SRP P (~a) is a real-
valued functional of a spatial vector ~a, which is defined
by the FOV of a specific array. The high maxima in P (~a)
indicate the estimates of the sound source location. P (~a) is
computed for each direction as the cumulative Generalized
Cross-Correlation with Phase Transform (GCC-PHAT) value
across all pairs of microphones at the theoretical time-delays
associated with the chosen direction. Consider a pair of signals
xk(t), xl(t) of an array consisting of M microphones. The
time instances of sound arrival from a point a ∈ ~a for the two
microphones are τ(a, k) and τ(a, l) respectively. Hence the
time delay between the signals is τkl(a) = τ(a, k) − τ(a, l).
The SRP-PHAT for all pairs of signals is then defined as

P (a) =

M∑

k=1

M∑

l=k+1

∫ ∞

−∞
ΨklXk(ω)X∗l (ω)ejω(τ(a,k)−τ(a,l))dω,

(2)
where X(ω) is the spectrum (the Fourier transform) of signal
x and X∗(ω) is the conjugate of the spectrum [11]. Ψkl is the
PHAT weight of the inverse of the spectral magnitudes:

Ψkl =
1

|Xk(ω)X∗l (ω)| . (3)

The PHAT is an effective weighting of a GCC for finding
TDOA from signals in a highly-reverberant environment.

Computing the SRP for every point in the area ~a results
in a SRP image of the whole observable FOV. These images
are highly suitable for manual analysis as they portray signal
energy distributions and reverberation effects very clearly. For
example, consider a result of speaker localization in a room
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Fig. 1. SRP image of speaker localization using the conventional SRP-PHAT.

performed by conventional SRP-PHAT, presented in Fig. 1.
However, for automated processing (i.e. global maximum
estimation) these images contain an overwhelming amount
of information. Consequently, the processing, as the image
generation itself, is highly time and resource consuming.
Several propositions have been made for SRP optimization
[11]–[13]. For our work we choose the method of locating
high maxima of SRP energy by applying Stochastic Region
Contraction (SRC).

B. SRP-PHAT with SRC
The conventional SRP-PHAT performs as many functional

evaluations (2), or FE, as there are points in ~a, the number
of which is defined by the dimensionality of the FOV and
the accuracy measure, that partitions the area into small
discrete regions. This analysis is highly resource demanding,
particularly when applied for large areas of observation. The
number of computations is significantly reduced by applying
Stochastic Region Contraction, which iteratively reduces the
search volume for the global maximum. SRC starts with
the initial search volume (i.e. the whole FOV), stochastically
explores the functional of that volume by randomly picking
a specific number of points, and then contracts the volume into
the sub-volume containing the desired global optimum and
proceeds iteratively until the global maximum can be located
with a finite precision [11]. The procedure may be described
in pseudo code as:

1) Initialize iteration i = 0.
2) Set initial parameters: V0 = Vroom – initial volume; J0 –

the number of random points that need to be evaluated
to ensure, that one or more is likely to reside in the
sub-volume of higher values, surrounding the global
maximum; N0 – number of points used to define the
new sub-volume Vi+1.

3) Calculate P (~a) for Ji points.
4) Sort out the best (highest) Ni � Ji points.
5) Contract the search volume to the smaller volume Vi+1,

defined by a rectangular boundary vector Bi+1 =
[xmin(i + 1), xmax(i + 1), ymin(i + 1), ymax(i + 1),
zmin(i+ 1), zmax(i+ 1)] , that contains these Ni points.
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6) IF Vi+1 < Vu (a sufficiently small sub-volume, in which
the global optimum is contained) AND FEi < Φ (the
total number of FE-s for iteration i is less than the
maximum number of allowed FE-s), THEN determine
the global maximum, STOP.

7) ELSE IF FEi ≥ Φ, STOP, discard results.
8) ELSE Among the Ni points keep a subset Gi of points,

which have values greater than the mean µi of the Ni
points.

9) Evaluate Ji+1 new random points in Vi+1.
10) Form the set of Ni+1 as the union of Gi and the best

Ni+1 − Gi points from the Ji+1 just evaluated. This
gives Ni+1 high points for iteration i+ 1.

11) i = i+ 1, GO TO Step 5.
There are several proposed ways of selecting Ni and Ji
depending on the specific FOV and on the condition of
monotonic or non-monotonic increase of the mean µi. The
one, emphasized in [11], consists of fixing Ni and adjusting
Ji incrementally in the following fashion: Ni is chosen as
Ni ≡ N = 100; Ji is the number of FE-s to find N − Gi
points greater than µi. For our system we propose a different
method, which is presented in Section III-C.

III. INITIAL SEARCH REGION REDUCTION

However, optimized localization algorithms still require
a significant amount of resources while starting the evaluation
on the initial search area. Furthermore, the convergence on
a sharp maximum may be guaranteed only if it exists in
the FOV. For many applications and monitored objects this
is not always true. Large objects, like vehicles or other
machinery, do not have a single point of sound emission,
rather they appear as distributed regions of heightened acoustic
energy with several maxima. On the other hand, if no sound
source is present, the localization algorithms will search for
maxima in ambient noise, which produces useless results while
consuming resources. The reduction of the initial search area,
firstly, allows to estimate the presence of the sound source in
the FOV, and secondly, greatly reduces the computational load
of localization.

We focus on an array setup targeted for use in WSN.
The sub-array blocks are places in different positions in the
environment, their orientation may be at all random. The
position of the sub-array is specified by the coordinates of
its center (which may be found using [14] or [15]) and the
angle α, by which the array is steered from the global zero
angle, as it is shown in Fig. 2. Knowing the coordinates of a
block center (x0, y0), ith sensor before rotation (xi, yi) and
the angle α, the steering is performed as
[
x
(rot)
i

y
(rot)
i

]
=

[
x0
y0

]
+

[
cos(α) − sin(α)
sin(α) cos(α)

] [
xi − x0
yi − y0

]
. (4)

Such a configuration is convenient for WSN, where each
sub-block may be implemented on a separate network node.
Sub-arrays with common FOV form large-aperture arrays and
cooperate on localization. Such a configuration enables ad-
hoc array composition and increases robustness due to high
decentralization. Also a large number of sub-blocks simplifies

Fig. 2. Initial search region estimation by (a) DOA calculation and (b)
multilateration in random configuration of sensor array blocks.

multiple source localization, as the monitored area is divided
into smaller local regions.

The ISRR is performed by estimating the DOA for every
sub-array and finding the region of common DOA (i.e. the
intersection of vectors pointed by the DOA) as is shown in
Fig. 2a. We also consider an alternative approach of choosing
sensor triplets and performing multilateration to retrieve the
source coordinate estimates. The aggregate of these estimates
then denotes the sought-for region (Fig. 2b).

A. The DOA Approach to ISRR

Having K microphone arrays, each consisting of M micro-
phones, observing a common FOV, the ISRR is performed in
the following steps:

1) Estimate the DOA for each of K arrays.
2) Generate vectors spanning from the arrays’ centers to

the bounds of the FOV in the directions of DOA.
3) Find points of intersections of these vectors.
4) Find groups of points no farther than Dmax distance

units (meters) from their centroid and enclose the areas,
in which these groups coincide, in rectangles.

5) Perform control of false detection, discard areas not
meeting specific criteria (optional).
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Fig. 3. DOA estimation for a pair of microphones.

The DOA are estimated for the array front, i.e. from −90◦

to 90◦. As we operate in the horizontal plane, it is sufficient to
acquire the azimuth (angle of arrival) of the incoming signal
to estimate the DOA [16]. The estimation is performed for all(
M
2

)
combinations of M microphone pairs. Considering Fig. 3,

the sound wave originating from a source in the far field is
acquired by the microphones m1 and m2 with a time delay
τ ∈ [−τmax, τmax], where τmax is the delay of sound traveling
directly from one microphone to the other (i.e. at ±90◦). To
estimate τ we apply cross-correlation to the two signals:

R(τ) =
n∑

k=0

m1(k) ·m2(k − τ), (5)

where n is the length of the signals in samples. The maximum
of the cross-correlation defines the time delay, and the azimuth
is obtained by

ϕ = arcsin
τ · c
l

= arcsin
∆k/fs · c

l
, (6)

where c is the speed of sound, l is the distance between
two microphones and τ is represented in terms of delay in
samples ∆k and the sampling frequency fs. Depending on
the chosen pair of microphones in the array, l will vary from l
to l(M − 1). At this point data validation may be performed.
If the maximum of correlation is less than some threshold, the
azimuth ϕ may be discarded. This way, in absence of a sound
source or in case of high noise, invalid estimates are avoided
early on. We use the deviation from the mean for this metric:

max (R(τ)) > (1 + TH) ·R(τ), (7)

where TH is the threshold of deviation, which depends on
the Signal to Noise Ratio (SNR). We use 0.2-0.3 in our
experiments.

Having Ci ≤
(
M
2

)
azimuth estimates for every array

(varying slightly due to varying inter-microphone distance and
accounting for the far field error), the final DOA for each ith
array, i ∈ (1, . . . ,K), is derived according to the following
special cases:

1) DOA spread uniformly (leftmost pairs point left, right-
most – right, and center – straight): no common DOA,
φi = ∅.

2) DOA are consensual with slight variance: common DOA
is the mean of pair-wise ones

φi =
1

Ci

Ci∑

j=1

ϕi,j . (8)

3) Same as Case 2), but with some DOA outside variance
of consensual group: exclude these DOA from mean.

4) Several distinct groups of consensual DOA: choose one
with more members and less variance (several may
be considered for heavily multi-source applications),
calculate mean.

Having estimated K1 ≤ K of the existing array DOA φi∗ ,
i∗ ∈ (1, . . . ,K1) and added the nodes’ rotation angles αi
to them, vectors

−−→
ABi∗ are computed with the starting point

Ai∗ = (x1,i∗ , y1,i∗) being the coordinate of i∗th array’s center
and the ending point Bi∗ = (x2,i∗ , y2,i∗) being the point at
a bound of the FOV steered by φi∗ from the array’s center.
Intersection points of all pairs

−−→
ABh,

−−→
ABk are calculated by

Ihk = (Ix, Iy) =(
(x1,hy2,h−y1,hx2,h)(x1,k−x2,k)−(x1,h−x2,h)(x1,ky2,k−y1,kx2,k)

(x1,h−x2,h)(y1,k−y2,k)−(y1,h−y2,h)(x1,k−x2,k)
,

(x1,hy2,h−y1,hx2,h)(y1,k−y2,k)−(y1,h−y2,h)(x1,ky2,k−y1,kx2,k)
(x1,h−x2,h)(y1,k−y2,k)−(y1,h−y2,h)(x1,k−x2,k)

)
.

(9)
As a result we have a set of Ii∗∗ intersections, i∗∗ ∈
(1, . . . ,K2), K2 ≤

(
M
2

)
. To get the initial search areas, these

intersection points are partitioned by their relative distance. For
the maximum distance Dmax the partitioning is performed in
the following manner:

1) IF no points I = ∅ THEN no partitions P = ∅, STOP
2) ELSE IF only 1 point I1 THEN P1 = I1 STOP
3) ELSE number of partitions j = 0
4) WHILE |I| > 0, where |I| is the cardinality of the set

I, calculate centroid of free points Cent = 1/|I|·∑ I.
5) Calculate Euclidean distance of all free points to cen-

troid Dk =
√∑

s=1,2 (Ik,s − Cents)
2, choose point

with minimal distance, j = j + 1, insert point to Pj ,
remove point from set of free points I.

6) Calculate partition centroid Cent(Pj) = 1/|Pj |·
∑

Pj ,
get Euclidean distance for all free points Dk =√∑

s=1,2 (Ik,s − Cent(Pj)s)
2.

7) IF min(D) ≤ Dmax THEN insert point corresponding
to min(D) into Pj , delete point from set of free points
I, GO TO Step 6.

8) ELSE IF |I| > 1 THEN GO TO Step 4.
9) ELSE j = j + 1, put last remaining point to Pj .

After obtaining the partitions, their areas are enclosed by
rectangles with the edges denoted by the partitions’ minimal
and maximal values of x and y, added a constant in order to
ensure minimal area (in the experimental part we choose 0.1
m). As a result several initial regions may occur in the same
FOV. Also while a vector of DOA from one array may cross
with several other vectors, redundant “echoing” regions may
arise. These may be removed by additional control metrics or
by analyzing previously estimated positions (i.e. tracking).
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B. Multilateration Approach to ISRR

Multilateration is a technique of estimating the signal source
coordinates based on TDOA from the source to the receiving
sensors. The distance between the sensor with coordinates
xi, yi, zi and the acoustic object could be defined as the length
of vector ~d:

∥∥∥~d
∥∥∥ =

√
(xi − x)

2
+ (yi − y)

2
+ (zi − z)2, (10)

where x, y, z are the acoustic source coordinates. For the
multi-sensor WSN ground applications we simplify the so-
lution with constant z dimension. Thus having a TDOA τij
between two nodes i and j, the acoustic source location
coordinates are calculated directly by

dij = c · τij = c (τi − τj) =√
(xi − x)

2
+ (yi − y)

2 −
√

(xj − x)
2

+ (yj − y)
2 ,

(11)
where dij is the distance difference estimate between sensors
i and j, and (xi, yi)and (xj , yj) are the sensors’ respective
coordinates [16]. If τij is represented in terms of delay in
samples ∆kij with sampling frequency fs, then the difference,
similar to (6), is computed as dij = ∆kij/fs ·c. The delay τij
is calculated using cross-correlation, as in (5), also applying
the control metric (7). For any three separate sensors (1, 2, 3)
acoustic source is localizable by the following system of
equations:



d12 =

√
(x1 − x)

2
+ (y1 − y)

2 −
√

(x2 − x)
2

+ (y2 − y)
2

d13 =

√
(x1 − x)

2
+ (y1 − y)

2 −
√

(x3 − x)
2

+ (y3 − y)
2

(12)
To estimate the solution to this system of nonlinear equations
we apply a numerical method called Trust-Region Dogleg [17].

We use multiple sensor triplets in order to establish several
triangles for multilateration. Every triplet gives a separate
position estimate and then all the estimates are partitioned
by minimal distance, as in Section III-A, in order to get the
reduced regions. The general direct multilateration solution in
real-time WSN applications is solved with larger number of
nodes [18], where the incorrectly placed regions or multiple
sound sources are eliminated by feedback from the object
tracking stage. We, however, do not expand beyond three
sensor batches in order to simplify and accelerate the solution
estimation procedure.

C. Application of SRP-PHAT with SRC to ISRR Estimates

Our approach initializes the SRP-PHAT on already con-
tracted areas and often more than once for a single signal
frame. The typical approach to SRC suggests choosing fixed
values for Ni ≡ N = 100 and J0 = 3000 for a FOV
of approximately 20 m2, however this is not suitable for
constantly varying initial search areas. In our approach the
parameters are rather estimated by linear functions. Building
on the test results in [11], considering peak estimation quality,
and performing our own testing, we derive the two functions

Fig. 4. Layout of the experiment with one speaker and four array blocks.

for the task:

J0(s) =

{
[297.6 · s+ 24], S < 10

3000, S ≥ 10
,

N(s) =

{
[9.9 · s+ 1], S < 10

100, S ≥ 10
,

(13)

where s is the area of the FOV in m2 and [·] denotes the
operation of rounding to the nearest integer. The application of
these functions optimizes the SRC process by greatly reducing
the number of SRP evaluations for reduced regions of acoustic
source search [19].

IV. EXPERIMENTAL RESULTS

For the experimental installation we use Vansonic PVM-
6052 condenser microphones. The microphones are mounted
with a spacing of 15 cm between each other. We use 4
sub-arrays with 4 microphones in each sub-array (width of
a single sub-array is thus equal to 45 cm), which results in
a large aperture 16-microphone array. For signal acquisition
an Agilent U2354A data acquisition device (DAQ) is used
with the sampling rate set to 8 kS/s per channel. The data is
acquired to and processed in the Matlab environment using the
Data Acquisition Toolbox. Processing is performed in frames
with a step of 0.2 seconds by conventional SRP-PHAT and by
ISRR followed by SRP-PHAT SRC on estimated regions.

A. Human Speaker Localization

For the human speaker localization experiment the micro-
phones are placed in a room as it is portrayed in Fig. 4. The
FOV is set to be 1 meter wider in every direction than the
corner points of the array (approximately 18 m2). Sub-arrays
SA1, SA2 and SA3 form a triangular array, while sub-array
SA4 is diverted from the common direction of view, simulating
the belonging to a different group. The speaker takes 3 paths
while walking with an average pace (approximately 1-1.5 m/s)
and reciting the rainbow passage (designed to contain all the
English phonemes and used in speech evaluations). For the
DOA approach to ISRR all 16 microphones are used, for
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Fig. 5. Two instances of ISRR and localization for the speaker experiment. Blue lines denote sub-array DOA, pink stars – the intersections of DOA rays,
black boxes – the estimated regions and black circles - the energy maximum of a region followed to the right by its value. For triangulation the coordinate
estimates are denoted by green diamonds, the regions – by dotted boxes and energy maxima – by black circles.

TABLE I
RESULTS OF REGION REDUCTION FOR SPEAKER LOCALIZATION

FOV'18 m2 DOA estimation Multilateration
Mean area (m2) 0.1374 0.0621

RMSE x (m) 0.1143 0.1227
RMSE y (m) 0.1107 0.1230

multilateration the triplets are chosen in the following order:
1 4 12; 1 4 16; 5 8 12; 5 8 16; 1 8 12; 1 8 16; 4 5 9; 4 5
13. Several resulting triangles with small areas may perform
better on closer distances to the source and those with larger
areas – on greater distances.

In this experiment the ISRR with DOA estimation and
multilateration operate with approximately equal accuracy.
Problems arise for both approaches in the region behind and
between SA2 and SA3 (path 1), where neither SA2 or SA3
have a sufficient view of the source and SA1 and SA4 are
overly steered away (Fig. 5 left). For SA4 the DOA totally
exceeds its limits. A slight advantage of multilateration is,
however, evident due to its non-directional approach. The latter
part of path 1 and both paths 2 and 3 are well traceable by
both approaches. In the leftmost region of the FOV, where
SA4 is also active, the ISRR achieves the best results (Fig. 5
right).

The impact of the ISRR is substantial, the mean area is
reduced from 18 m2 of the whole FOV range to a fraction
of a square meter (see Tab. I). To estimate the divergence
from the global maximum estimated over the FOV, we find
the difference between the result of conventional SRP-PHAT
and the result of our method. Error variation over time is
presented in Fig. 6, and the Root Mean Square Errors (RMSE)
are presented in Tab. I. As it can be seen from the x-axis
values in Fig. 6, the DOA approach discards less frames
than multilateration (due to non-detection operation) and is
therefore more sensitive to the sound source. Also the RMSE
is slightly lower for the DOA approach. The overall errors are
sufficiently low for speaker localization. Rare bursts of error do
occur, however they are instantaneous and appear only during
moments of speaker acceleration.
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Fig. 6. Difference in localization between SRP-PHAT over the whole FOV
and using ISRR: DOA approach (upper) and multilateration (lower). Blue line
denotes the x and the green line – the y coordinates.

Fig. 7. Array placement at an industrial facility for CNC lathe monitoring.

B. Industrial Machinery Monitoring

For the industrial machinery monitoring experiment the
same hardware implementation as for speaker localization is
used. The microphones and their triplets are chosen in the
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Fig. 8. CNC lathe noise localization with conventional SRP-PHAT (left) and using ISRR followed by SRP-PHAT with SRC (right).

same manner. The placement scheme and the room layout
is presented in Fig. 7. The two sub-arrays are placed near
a wall at a right angle to the other two sub-arrays, i.e.
α = {0, 0, 90, 90}. The monitored object in the experiment is
a large Computer Numerical Control (CNC) lathe. The main
noise sources of the lathe are the motor with the gear box and
the spindle. The lathe is put through a short working cycle:
the motor is activated, the spindle rotates and the carriage with
the cutting tool moves beside the cutting area, after which the
spindle and then the motor are shut down.

In this experiment the DOA approach to ISRR performs
significantly better than multilateration. It seems that multilat-
eration, considering this specific configuration of the array and
the large sound emitting area of the lathe, cannot estimate the
region confined by the specified maximal distance Dmax = 0.5
(see Section III-A). A frame corresponding to the active motor
and spindle noise is presented in Fig. 8. The region of the
motor noise is correctly located by the DOA approach and
corresponds to the result of the conventional SRP-PHAT.
Multilateration estimates only one small correct region. The
triangular array configuration used is evidently not appropriate
for localization of large sound sources by multilateration.

V. DISCUSSION AND FUTURE WORK

The ISRR method has proven to perform well for both
experimental tasks. The DOA and multilateration approaches
perform differently in various situations. The non-directional
nature of multilateration enables it to locate the sources
out of view for DOA. On the other hand, the directional
approach eliminates the possibility of regions duplicating
on the opposite side of the array due to reverberation. For
a more complicated task of localizing a large noise region,
the supremacy of the DOA approach is more evident. The
DOA method performs better in a triangular configuration
and worse in a square-like configuration. The situation with
multilateration is absolutely opposite. Thus, ISRR type may be
chosen based on the configuration of the array and the specific
application. Both approaches may be used in conjunction for
mutual reassurance.

For future work we intend to develop a fully embedded sys-
tem with array blocks implemented on individual devices. The
dataflows between the devices must be thoroughly researched
in order to achieve smooth real-time operation. As SRP-PHAT
demands information from different sub-arrays, a cooperation
scheme with resource allocation must be developed. The oper-
ation may proceed in an ad-hoc manner, where the operations
are equally distributed between nodes, or a separate node may
be allocated for sophisticated computations.

A. Aspects of WSN Organization
The underlying computation and communication system

realizing the localization method described in the paper must
be able to cope with the real-time requirements set by the em-
ployed algorithms. The data delivered to the fusion algorithm
from the individual microphone arrays must be temporally
valid, i.e. the age of the data delivered to the fusion algorithm
must not exceed a set maximum and the data from distinct
sources processed by an algorithm must be coherent in time
and space. In the current application the spatial aspect is
of special importance as due to uncertainties inherent in
a distributed architecture – the locations of the individual
arrays are not known beforehand and the configuration of the
system may change over time. This means that the spatial
aspects must be explicitly considered in communication and
computation. As the communication and processing delays are
dynamic, the system must be also able to cope with these
variances. In order to manage with these uncertainties we
suggest the use of a proactive middleware [20] as an active
mediator of data to and from the individual computing nodes.
The middleware enables deterministic data exchange between
autonomous (sensing) systems according to the constraints set
by individual fusion algorithms and devices. This is achieved
by performing constraint propagation from the computing
nodes and online data validation based on the propagated
constraints. In addition to the data propagation tasks, the
middleware can be also used as a tool to synchronize the
spatial properties of devices, such as location and orientation,
making it for example possible to perform data alignment
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for the angles and coordinates among the WSN nodes at the
level of the middleware. The proactive middleware can also
distribute the individual tasks (e.g. to compute the SRP per
FOV) among the WSN nodes using a prescribed scenario
(partiture) as proposed in [21].

VI. CONCLUSION

The paper proposes a method of search region reduction for
the purpose of optimizing acoustic localization. The method
targets the sensor array configurations implementable on sep-
arate nodes of WSN. Two approaches to the method are
proposed and tested on two real experimental signals. The
results are positive with the method succeeding with substan-
tially reducing the search region and localizing with small
amounts of error. The differences in localization quality for
the two approaches under different circumstances do not show
definite supremacy of either approach. The results suggest the
application of both approaches to region reduction in the final
implementation.
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Abstract

Situation awareness is an important aspect of ubiquitous computer systems,
as these systems of systems are highly integrated with the physical world
and for successful operation they must maintain high awareness of the en-
vironment. Acoustic information is one of the most popular modalities, by
which the environment states are estimated. Multi-sensor approaches also
provide the possibility for acoustic source localization. This paper considers
an acoustic localization system of dual channel smart sensors interconnected
through a Wireless Sensor Network (WSN). The low computational power of
smart sensor devices requires distribution of localization tasks among WSN
nodes. The Initial Search Region Reduction (ISRR) method is used in the
WSN to meet this requirement. ISRR, as opposed to conventional local-
ization methods, performs significantly less complex computations and does
not require exchange of raw signal between nodes. The system is imple-
mented on smart dust motes utilizing Atmel ATmega128RFA1 processors
with integrated 2.4GHz IEEE 802.15.4 compliant radio transceivers. The
paper discusses complications introduced by low power hardware and ad-hoc
networking, and also reviews conditions of real-time operation.
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uitous computer systems, as these systems of systems are highly
integrated with the physical world and for successful operation
they must maintain high awareness of the environment. Acoustic
information is one of the most popular modalities, by which
the environment states are estimated. Multi-sensor approaches
also provide the possibility for acoustic source localization. This
paper considers an acoustic localization system of dual channel
smart sensors interconnected through a Wireless Sensor Network
(WSN). The low computational power of smart sensor devices
requires distribution of localization tasks among WSN nodes.
The Initial Search Region Reduction (ISRR) method is used
in the WSN to meet this requirement. ISRR, as opposed to
conventional localization methods, performs significantly less
complex computations and does not require exchange of raw
signal between nodes. The system is implemented on smart
dust motes utilizing Atmel ATmega128RFA1 processors with
integrated 2.4GHz IEEE 802.15.4 compliant radio transceivers.
The paper discusses complications introduced by low power
hardware and ad-hoc networking, and also reviews conditions
of real-time operation.
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I. INTRODUCTION

THE continuous process of computer systems integration
into all aspects of everyday life paves the way for

cyber-physical systems with diverse abilities for interfacing
with human operators and the environment, in which these
systems exist. Future Internet of Things applications are also
envisioned to be ubiquitous systems, which must maintain
good situation awareness in order to be able to provide the
expected services proactively. Situation awareness is achieved
by constant analysis of environment states by sensing different
modalities (e.g. acoustic, video, vibration, magnetic, etc.) and
sophisticated decision-making through data fusion and system
component cooperation. One of the most popular modalities
for the majority of environments and human-machine inter-
action is acoustic signals. Acoustic information is widespread
and may be acquired during various physical processes accom-
panied by sound emission and during human speech analysis.

Acoustic signal analysis has been applied for a great variety
of tasks concerning both environment monitoring and human-
machine interfaces (HMI). Applications for open environments
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span from traffic monitoring [1] and military reconnaissance
[2] to monitoring woodland and aquatic wildlife [3]. For
confined environments the main applications are person and
process monitoring, raging from home automation [4] and
security systems [5] to industrial process control [6]. The
majority of monitoring tasks assume pattern matching and
classification and use single-sensor solutions. Single channel
information is sufficient for low-noise environments with a
well defined list of expected events and signal patterns (e.g.
HMI with a finite list of voice commands). For the majority
of open environments, however, multi-sensor systems are
beneficial from several standpoints. Firstly, the monitored area
is observed from multiple points of view, which provides more
information than a single-sensor system. Secondly, if joint
analysis is applied, position of the acoustic source may be
localized in observed space. Thirdly, if localization is possible,
the sound emitted by a specific source may be filtered from
sounds incoming from other directions via beamforming.

The advantages of multi-sensor acoustic systems are even
more evident if implemented in Wireless Sensor Networks
(WSN). Compact sensor network solutions allow to widen
the ordinary localization techniques with more complex multi-
node source detection and recognition solutions, e.g. [7]–[10].
A WSN consists of several smart sensor nodes distributed in
the observed environment and communicating with each other.
The aggregate of local measurements from single nodes can
be used to generate a global assessment of the situation. The
downside of WSN application is low computational power
of sensor nodes. In order to ensure the small size of smart
sensors and the longevity of their power supplies, the hardware
used in even modern smart sensors is quite limited in terms
of computational power. However, these limitations may be
overcome to a certain extent through node cooperation and
distributed computations.

In this paper we consider a localization approach of Initial
Search Region Reduction (ISRR), previously developed by our
research group [11], [12], and its implementation in WSN.
In our work we use smart sensors of particularly small size
and low computational power, known as smart dust motes.
Low power imposes many restrictions on signal acquisition
and processing, e.g. low sampling rates, limited memory. The
paper addresses these restrictions and proposes a system ar-
chitecture for workload distribution, as well as discusses inter-
node communication problems and system real-time operation
capabilities. The decrease in localization quality resulting from
the sampling rate decrease is demonstrated on a practical
example of single speaker localization performed on an eight
sensor system.



Fig. 1. Schematic diagram of proposed WSN architecture.

II. DISTRIBUTED LOCALIZATION IN WSN

The WSN system is designed for localizing grounded acous-
tic sources. The motes are placed in the monitored environ-
ment in the horizontal plane and localization is performed by
estimating the coordinates (x, y) of sound emitting objects.
Each mote is equipped with two acoustic sensors spaced by
a specific distance l from one another. Localization is based
on estimating the time delays of acoustic wave arrival to the
sensors, also called Time Difference of Arrival (TDOA). The
Direction of Arrival (DOA) of sound from a specific acoustic
source is calculated using TDOA. The whole localization
system consists of a large number of motes, each one of
which plays its specific role in the localization process. This
section presents the proposed WSN architecture along with
the distributed approach to localization.

A. WSN Architecture

The proposed WSN architecture is designed for applications
in both open (urban, woodland, etc.) and confined (home,
office, industrial facility, etc.) environments. The network
consists of two types of motes: smart sensors and fusion nodes.
Dual channel smart sensors acquire acoustic information and
perform DOA estimation. Fusion nodes gather DOA estimates
and perform further steps of localization, which are discussed
in Section II-C. The schematic diagram of the architecture is
presented in Fig. 1.

The sensor motes are dispersed in the monitored environ-
ment either in an orderly or random fashion. In confined
environments an orderly placement is more likely, because
sensors are usually mounted on room walls or ceilings. In open
environments, however, its is rarely the case — the sensors
may be attached to buildings, light posts, trash bins, etc. in
urban and to trees, rocks, etc. in natural environments. Thus a
general case is assumed, where the sensor’s location is defined
by the coordinates of its point of reference (xr, yr) and the
angle α, by which the sensor is steered from the global angle
reference. For example, sensor location may be estimated via
the Global Positioning System (GPS), in which case the point

of reference is the GPS unit. For environments, where GPS
signals are unavailable, other location algorithms based on
Radio Frequency (RF) [13] or sound [14] may be adopted. The
global angle reference may be defined by Earth’s magnetic
field and the angle α estimated using a magnetometer. The
central point of the microphone pair (x0, y0), for which the
DOA is actually estimated, is defined by the reference point
(xr, yr) and may coincide with it. The coordinates of the i-
th microphone (xi, yi) are shifted by ±l/2 from (x0, y0) and
then the steering by α is performed as
(
x
(rot)
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y
(rot)
i

)
=

(
x0

y0

)
+

(
cos(α) − sin(α)
sin(α) cos(α)

)(
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Sensor motes are partitioned into groups, where a single
mote can belong to any number of groups. Each group must
have a common Field of View (FOV), i.e. all motes observe the
same area. The whole network may consist of several groups
or each group can constitute a separate sub-network. Group
partitioning is in essence a clustering task, for which two
aspects are taken into consideration. Firstly, motes must have a
common field of view as the considered localization procedure
uses a directional approach. In this regard, the observed area
is not necessarily enclosed by motes, as shown in Fig. 1, but
may be observed from one or several sides. Secondly, a group
must have certain homogeneity. Motes located too far from the
group’s centroid may be useless to the localization effort in low
Signal to Noise Ratio (SNR) environments or when the sound
emitted by the source of interest is too weak. Furthermore,
non-homogeneous groups present additional challenges for
wireless communication.

Fusion nodes of the WSN perform mote grouping during
network initialization and later participate in localization. For
an orderly configuration of motes a single fusion node may
be assigned to coordinate the activity of the whole WSN. In
a random configuration each sensor mote may be a part of
several groups and each group may be governed by several
fusion nodes. In order to ensure coverage of all groups, fusion
nodes reach an agreement concerning which node will govern
which mote group. In this process communication signal
strength is taken into account, meaning that a fusion node
will adopt a group, to which it has the strongest connection.
However, if there exists an ungoverned group, a redundant
(i.e. covering an already covered group) fusion node closest
to it will switch to that group. Mote communication is further
discussed in Section III-C.

B. Acoustic Source Localization

Acoustic localization consists of estimating the DOA and
distance to the sound source. DOA, in turn, consists of
estimating the Angle of Arrival (AOA) and elevation of the
acoustic wave front. As we operate only in the horizontal
plane, we assume zero elevation, and thus for DOA estimation
only the AOA is needed to be computed. The AOA, as it was
mentioned earlier, is calculated based on TDOA. In choosing
the trigonometric approach to AOA calculation an assumption
of near or far field source location must be made. As sound
waves propagate spherically, wave front curvature must be



accounted for in the calculations. The near field disposition
assumes spherical fronts, whereas waves originating in the far
field are spread enough by the time they reach the sensor to be
considered linear. The far field assumption is met for a linear
microphone array if the inequality

|r| > 2 (Md)
2

λmin
(2)

holds, where M is the number of microphones, d is the inter-
microphone distance, λmin is the minimal wave length of the
wide-band acoustic signal and r is the radial distance from the
array center to the source. For our implementation we assume
the far field disposition.

There exists a variety of methods for acoustic localization,
most of which also employ TDOA as a basic principal.
The methods utilize sensor array structures, in which a large
number of microphones is arranged in some specific manner
(e.g. linear, tetrahedron, spherical, etc.). The TDOA and con-
sequently DOA is generally estimated using some measure
of correlation between different sensor signals. For example
a popular method of Steered Response Power with Phase
Transform (SRP-PHAT) computes cross-correlation across all
pairs of microphones at the theoretical time delays associated
with all possible DOA to estimate the cumulative signal
energy for each discrete point of the FOV [15]. MUltiple
SIgnal Classification (MUSIC) applies eigenspace analysis
to the signal correlation matrix in order to get the largest
eigenvalues corresponding to the most probable DOA [16].
Multilateration methods estimate distances from every sensor
to the source and calculate the position of that source using
geometry of triangles and circles (spheres for 3D cases).
Distance estimation is usually based on TDOA [17].

Notice that typical acoustic localization methods utilize
information from every sensor. This fact does not pose a
problem for wired systems with a single powerful compu-
tational hub. In WSN, however, collecting raw signals from
nodes is a real challenge, especially if the number of nodes
is large and signal frames are long. Recent developments in
distributed localization combine individual sensor estimates
for source positioning by applying, for example, maximum
likelihood iterative search [18], or fuzzy clustering [19]. We try
to overcome problems associated with communicating signal
frames by applying a simplified localization approach of Initial
Search Region Reduction (ISRR), recently developed by our
research group.

C. Initial Search Region Reduction in WSN

The main idea behind ISRR lies in maximally confining
the region of acoustic source disposition as a preliminary
procedure to SRP-PHAT or other localization method [12].
Having already established that SRP-PHAT requires raw in-
formation from all sensors in the network, we do not apply it
for this specific implementation. For object or person moni-
toring applications, where localization to a single point is not
obligatory, ISRR confined regions serve as a sufficient estimate
of object location. This section presents ISRR for the specific
implementation of dual sensor mote WSN.

Fig. 2. DOA estimation for a pair of microphones.

Having a group of K dual sensor motes, the ISRR is
performed in the following steps:

1) Estimate the DOA for each of K motes.
2) Generate vectors spanning from the mote sensor pair

centers to the bounds of the FOV in the directions of
DOA.

3) Find points of intersections of these vectors.
4) Find groups of points no farther than Dmax distance units

(meters) from their centroid and enclose the areas, in
which these groups reside, in rectangles.

5) Perform control of false detection, discard areas not
meeting specific criteria (optional).

Step 1 is performed on each sensor mote, steps 2–5 are
performed on the group’s fusion node.

The DOA are estimated for the front view of the sensor
pair, i.e. from −90◦ to 90◦. Considering Fig. 2, the sound
wave emitted by a source in the far field is acquired by the
microphones m1 and m2 with a time delay τ = Δd/c, where
c is the speed of sound in m/s. The delay takes the values
τ ∈ [−τmax, τmax], where τmax is the delay of sound traveling
directly from one microphone to the other (i.e. at ±90◦). To
estimate τ we apply cross-correlation to the two signals:

R(τ) =
n−1∑

k=0

xm1
(k) · xm2

(k − τ), (3)

where n is the length of the signals in samples. The maximum
of the cross-correlation defines the time delay, and the AOA
is obtained by

ϕ = sin−1 τ · c
l

= sin−1 Δk/fs · c
l

, (4)

where l is the distance between the microphones and τ is
represented in terms of delay in samples Δk and the sampling
frequency fs. The speed of sound in air is dependent on the
ambient temperature and is equal to

c = 331.45
√

1 + θ/273, (5)

where θ is the air temperature in Celsius.
At this point AOA validation is performed. If the correlation

peak is not sharp and outstanding enough, the AOA ϕ is
discarded. This way, in absence of a sound source or in case
of high ambient noise, invalid estimates are avoided early on.
We use the deviation from the mean for this metric:

max (R(τ)) > (1 + TH) ·R(τ), (6)



where TH is the threshold of deviation, which depends on
the SNR in the environment. We use TH = 0.2 in our
experiments. The angles ϕ from every mote are sent as DOA
estimates to the fusion node.

The fusion node receives K1 ≤ K DOA estimates φi∗ , i∗ ∈
(1, . . . ,K1) and adds the mote’s rotation angles αi to them.
Vectors

−−→
ABi∗ are computed with the starting point Ai∗ =

(x1,i∗ , y1,i∗) being the coordinate of i∗-th sensor pair’s center
and the ending point Bi∗ = (x2,i∗ , y2,i∗) being the point at
a bound of the FOV steered by φi∗ from the pair’s center.
Intersection points of all pairs

−−→
ABh,

−−→
ABk are calculated by

Ihk = (Ix, Iy) =(
(x1,hy2,h−y1,hx2,h)(x1,k−x2,k)−(x1,h−x2,h)(x1,ky2,k−y1,kx2,k)

(x1,h−x2,h)(y1,k−y2,k)−(y1,h−y2,h)(x1,k−x2,k)
,

(x1,hy2,h−y1,hx2,h)(y1,k−y2,k)−(y1,h−y2,h)(x1,ky2,k−y1,kx2,k)
(x1,h−x2,h)(y1,k−y2,k)−(y1,h−y2,h)(x1,k−x2,k)

)
.

(7)
As a result we have a set of Ii∗∗ intersections, i∗∗ ∈

(1, . . . ,K2), K2 ≤
(
K1

2

)
. To get the initial search areas, these

intersection points are partitioned by their relative distance. For
the maximum distance Dmax the partitioning is performed in
the following manner:

1) IF no points I = ∅ THEN no partitions, P = ∅ STOP
2) ELSE IF only 1 point I1 THEN P1 = I1 STOP
3) ELSE number of partitions j = 0
4) WHILE |I| > 0, where |I| is the cardinality of the set I,

calculate centroid of free points CI = 1/|I|·∑ I.
5) Calculate Euclidean distance of all free points to centroid

Dk =
√∑

s=1,2 (Ik,s − CI,s)
2, choose point with mini-

mal distance, j = j+1, insert point to Pj , remove point
from set of free points I.

6) Calculate partition centroid CPj
= 1/|Pj | ·

∑
Pj ,

get Euclidean distance for all free points Dk =√∑
s=1,2

(
Ik,s − CPj ,s

)2
.

7) IF min(D) ≤ Dmax THEN insert point corresponding
to min(D) into Pj , delete point from set of free points
I, GO TO Step 6.

8) ELSE IF |I| > 1 THEN GO TO Step 4.
9) ELSE j = j + 1, put last remaining point to Pj .

After obtaining the partitions P, their areas are enclosed by
rectangles with the edges denoted by the partitions lowest
leftmost and highest rightmost points. As a result several
regions may occur in the same FOV. Also while a vector
from one array may cross with several other vectors, redundant
’echoing’ regions may arise. These can be removed by apply-
ing SRP-PHAT to every region and comparing SRP values, or
by using tracking filters. This work, however, does not focus
on redundant region removal.

The procedure is applicable to multiple target localization. If
more than two sensors are used in the array, several AOA may
be estimated [12]. Each dual channel mote, however, points to
a single direction of the strongest acoustic source. As sound
pressure decreases exponentially with propagation, each mote
group identifies a source closest to it. If a group is well spread,
several targets may be identified within the FOV based on the
same principle.

Fig. 3. Packaged WSN mote with a sensor amplification circuit (scale in cm).

III. WSN IMPLEMENTATION

The proposed distributed localization method with ISRR is
implemented on a small WSN comprising several smart dust
motes. The motes are equipped with Atmel ATmega128RFA1
microprocessors, which conveniently provide an on-chip AD
converter for signal acquisition and a radio transceiver for
WSN communication. The microprocessor has a clock speed
of 16 MHz and provides 16kB of SRAM memory for oper-
ation with an additional 128kB of flash memory for program
code. The on-chip Analog to Digital Converter (ADC) has a
resolution of 10 bits and is able to sample with rates up to
330 kHz. However, actual experiments were carried out with
a sampling rate of 2 kHz for each microphone channel, since
higher sampling rates provided inconsistent and erroneous
results during data acquisition. We were able to determine
that erroneous results were caused by signal leakage from
the previous ADC channel to the succeeding channel when
switching between channels, but the cause of the leakage
could not be determined. Mote-to-mote communication was
realized with the IEEE standard 802.15.4 compliant radio
transceiver with an effective indoor communication range
of approximately 30 meters. The IEEE 802.15.4 standard
supports transfer rates up to 250 kbit/s and packet sizes not
larger than 127 bytes. Vansonic PVM-6052 electret condenser
microphones were used for acoustic signal acquisition with
additional circuitry performing signal amplification and the
normalization needed for the microprocessor ADC input. For
every mote a pair of microphones was mounted facing the
same direction on a plastic board, which was then attached to
the mote’s plastic chassis.

The smart sensor mote chosen for the experiments is pre-
sented in Fig. 3. Microphone amplification circuitry is situated
on the right and the microphone itself — in the bottom
right corner. The mote is powered by a 3.7 V, 6600 mAh
battery block (left from the sensor circuit). The motes are
packaged in protective frames 16 cm in length. The poor
computational characteristics listed above are typical for smart
sensor motes. The reason for this is that these motes must
work ubiquitously and autonomously with the battery they are
provided for as long as possible. For example, the battery used
in our configuration can sustain the motes for 1–1.5 years in a
low duty cycle mode and approximately a month in constant



Fig. 4. Discretization of the AOA scope, defined by Δkmax.

TABLE I
INTER-SENSOR DISTANCE FOR DIFFERENT SAMPLING RATES

Δkmax nAOA
l (cm)

fs = 44.1 kHz fs = 2 kHz fs = 500 Hz
1 3 0.8 17.2 68.7
2 5 1.6 34.4 137.4
3 7 2.4 51.6 206.1
10 21 7.8 171.7 686.8

operation mode. The goal here is to show that if localization
and ISRR can be carried out on a smart sensor mote network,
it is reasonable to assume it can also be implemented on larger
networks with computationally more powerful motes.

A. Implications of Using Low Sampling Rates

The essential operation for AOA estimation is the signal
cross-correlation (3). As our time delay τ is bounded by τmax

and τ is expressed in delay in samples Δk, then Δk is also
bounded by a maximal sample shift Δk ∈ [−Δkmax,Δkmax],
where Δkmax is calculated as

Δkmax =

⌊
l · fs

c

⌋
, (8)

where �·� denotes rounding to the largest previous integer
(floor function). Consequently the view scope of the sen-
sor pair is reduced to the number of possible AOA values
nAOA = 2 ·Δkmax + 1. Fig. 4 depicts a view scope divided
into 9 sectors. For any actual AOA ϕ, only its discrete margin
ϕ̂ ∈ [γ−Δkmax , γΔkmax ], corresponding to the correlation
maximum, can be estimated. For devices capable of only low
sampling rates this poses a problem in terms of compromise
between the values of l and Δkmax . Consider Table I. The
standard CD sampling rate of 44.1 kHz is used for reference
and l is calculated using (8): l = Δkmax · c/fs. The table
shows that to provide even the smallest nAOA the inter-sensor
distances must be quite considerable at low fs. It is clear that
if mote dimensions do not exceed 15–20 cm, it would not be
reasonable to make l = 1.7 m to provide the sensor scope
with 21 possible AOA.

We chose l = 0.7 m for our motes, which gives nAOA = 9
possible AOA values with an average step of 19.7◦ at the
used rate of fs = 2 kHz. These are calculated using (4)
and presented in Fig. 5. The substantial difference with high
sampling rates is also evident from the figure — for the same
sensor distance at a rate of fs = 44.1 kHz, the AOA number
is equal to 179 with an average step of 0.92◦. A small nAOA

introduces additional error into the localization process as the

Fig. 5. Possible values of AOA for a sensor pair with l = 0.7 m and sampling
rate fs = 2 kHz (top); fs = 44.1 kHz (bottom).
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Fig. 6. Results of signal cross-correlation at different sampling rates.

ISRR estimated regions may become larger and get shifted
from the true area occupied by the sound source. For example
an angle step of 19.7◦ can give an error of 1.8 m if the
sound source is situated only 5 m away from the sensors.
To manage the situation a large number of motes must be
used, preferably steered by different angles α (i.e. not facing
in exactly the same direction). Random mote placements allow
AOA uncertainty regions to superimpose on one another thus
reducing the discrete gaps.

Low sampling rates also influence cross-correlation in two
ways. Firstly, if the signal contains many strong components in
the higher frequencies, they are not acquired at low sampling
rates. As a result aliasing may occur, which in turn reduces
the correlation reliability. A precise peak corresponding to a
single Δk loses its steepness and spreads to several values.
This makes AOA estimation and the control metric (6) less



Fig. 7. Sensor mote architecture schematic.

reliable. Secondly, the cross-correlation yields exactly nAOA

coefficients, and if this number is low, the correlation peak
cannot stand out from the average correlation level as much
as in the case of high sampling rates. At low SNR the peak
becomes almost uniform with the average level and control
metric (6) declares the result invalid for the majority of signal
frames. Both effects are evident from Fig. 6. The upper subplot
shows the result of cross-correlation of two signals sampled at
44.1 kHz and the lower — at 8 kHz. For both cases the inter-
microphone distance was equal to l = 0.45 m and the AOA
from the acoustic source, as well as signal power, were the
same. As nAOA is more than five times larger in the case
of fs = 44.1 kHz and more signal energy information is
contained in a single frame, the correlation peak is much more
steep and evident than in the fs = 8 kHz case. Generally
at a fixed fs correlation results are improved by increasing
the signal frame length, thus providing more signal energy
information. Here a compromise between correlation result
reliability and the device refresh rate, as well as the amounts
of required memory must be reached.

B. Resource Management and Scheduling

The smart sensor mote must divide its computational re-
source between two main tasks: sampling the ADC and
performing cross-correlation (3) on the sensor signals. With
the current hardware setup and computational power of the
motes, sampling the ADC and doing correlation calculations
at the same time is not possible, therefore currently these tasks
are performed separately. A simplified schematic of sensor
mote architecture and computational steps is presented in
Fig. 7. First the ADC samples both channels and obtains a
0.2 second frame (totaling 400 samples at 2 kHz sampling
rate) from each channel. Since we have a single ADC, both
channels cannot be sampled simultaneously. Therefore there
is a channel switching delay of about 150 microseconds. The
phase shifts between channels due to these switching delays
can be accounted for and they do not affect cross-correlation
calculations significantly.

After the frames have been acquired, the ADC is stopped
and the cross-correlation of frames is calculated. If a sound
source is detected in the FOV of the sensor mote and the
DOA of sound waves is found, then this information along
with the spatial and temporal metadata is broadcast over the
sensor network. Calculating the cross-correlation of frames
and composing and transmitting the DOA message does not
require much time (50 – 100 ms). Nevertheless, the smart

sensor mote keeps track of this elapsed time and right before
broadcasting the DOA message, appends the elapsed time to
the message. Elapsed time is the time difference between the
moment when the acoustic data reaches the processing unit and
the moment of message composition. It indicates the ’age’ (in
milliseconds) of the calculated DOA value.

The fusion node has also two key tasks: listening to mes-
sages broadcast by sensor motes and performing sound source
region estimation. As mentioned in Section II-A, sensor motes
are partitioned into groups. Group membership is established
by position metadata (coordinates and steering angle) found
in the messages. Every fusion node maintains a lookup table
consisting of coordinates of motes, which the node includes
in its group. The table is updated every time a mote with
new coordinates appears. A fusion node is only interested in
messages arriving from motes in its own group and discards
others. Sound source region estimation is performed when
enough DOA messages with fresh data have been received.
When the last data received becomes too old to be useful and
no new data is received then the fusion node switches to idle
mode until new messages arrive. Currently the expiration time
for DOA information is 3 seconds, after which the fusion node
discards the data.

C. Communication Strategy and Real-Time Operation

The benefit from using smart sensors is that preliminary
sensor signal analysis is done on spot. With large networks it
is not conceivable that raw sensor data is forwarded to some
fusion unit. With the sampling parameters proposed for the
WSN experiment (2 kHz sampling rate on both channels and
frame lengths of 400 samples) it would take one sensor node
in ideal conditions at least 0.15 seconds to communicate its
entire measurement buffer to a fusion node. It is clear that with
only a small number of motes the communication channel will
be congested and system operation will be paralyzed. Hence, it
is necessary to perform signal processing on the sensor motes
and only communicate forward the results. This is what is
proposed in our approach.

In the WSN experiment the communication scheme is built
upon indirect messaging, i.e. motes broadcast the messages,
which are to be received by fusion nodes. The indirect
approach offers a quick and robust method for validating the
data processing algorithm. The approach makes the network
scalable to a certain extent and easily integrable into a larger
system of systems [20].

In the algorithm validation experiment the sensor nodes
broadcast messages about their latest DOA estimates and
include their location and orientation metadata as well as
temporal metadata with the broadcast message. A fusion node
receiving these messages collects the DOA and metadata
information and regularly initiates the ISRR algorithm to
locate possible sound sources. Note that communication is
performed in one direction — from sensor motes to fusion
nodes. Therefore sensor motes do not possess any information
concerning group partitioning.

The proposed WSN communication strategy is asyn-
chronous, i.e. sensor motes do not have a global clock, which



Fig. 8. Main problems situated with asynchronous data interchange.

would enable coordination of signal acquisition and message
broadcasting. Rather every mote transmits a DOA estimate
after every signal acquisition and processing loop (in our case
it lasts 250–300 ms). The receiving fusion node can then esti-
mate the time of DOA calculation in its own local time using
the elapsed timestamp value and the common understanding
of the millisecond time unit. For real-time operation two
parameters must be strictly defined: the maximum duration of
the DOA estimation loop and the maximum communication
and processing delay for incoming messages. This must be
done to enable estimating the validity of DOA estimates for
position estimation. The asynchronous decentralized approach
described above is robust and simple, suitable for algorithm
validation, however in operational systems better control over
data paths is desirable, which can be achieved by applying
proactive middleware, as described in the next section.

D. Proactive Middleware and Data Validation

Performing computations in dynamic ad-hoc wireless sensor
networks presents many challenges in terms of guaranteeing
data correctness. The data used in the fusion process must
satisfy certain temporal and spatial constraints (i.e. its age must
not be greater than a pre-specified value or come from a certain
location). It is easy to achieve such guarantees in a system
with a fixed configuration, however in a dynamic setting the
systems must evaluate these data properties at runtime.

For effective acoustic localization the DOA calculations
ideally must be performed simultaneously. In real conditions
a time interval must be specified in which the estimates are
considered temporally coherent. Due to undefined transmission
delays the data may arrive with considerable delays and there-
fore not satisfy the coherence requirement. Coherent data is
vital for all signal processing tasks, like tracking and trajectory
estimation. Fig. 8 graphically explains the validity interval
mismatch and wrong order of message arrival. The validity
interval specifies the time period, during which the data is
considered coherent. Due to undetermined transmission delays
the coherent messages may not fit in the interval. On the other
hand, they may arrive in time, but in a wrong order, which may
later cause errors in tracking procedures.

In [20], [21] we have presented the concept of proactive
middleware, called ProWare, which is a lightweight distributed
middleware component running on every element of the WSN
system (see Fig. 9). ProWare implements a subscription based

Fig. 9. Principle diagram of proactive middleware mediation.

information exchange scheme, where the data consumer (fu-
sion node) can subscribe for data from the providers (sensor
nodes computing DOA estimates). ProWare also handles data
validity checking ensuring that the data received at the fusion
node satisfies the constraints for a given fusion operation (i.e.,
that the data is temporally coherent). ProWare manages the
process of finding appropriate data providers (in our case
sensor motes with overlapping fields of view) and setting up
the data exchange paths with the consumers (fusion nodes).
Both the validity checking and provider-consumer agreements
are performed on-line. Among other tasks the middleware
component keeps track of the different clock offsets of the
motes and regularly checks and updates the change (caused
by clock drift, jitter etc.) in these offsets. This temporal
information is then used to estimate the time of measurement
of the data in local time of the data consumer.

IV. EXPERIMENTAL RESULTS

We demonstrate the applicability of our proposed method of
acoustic localization and the implications situated with using
low sampling rates by performing an experiment of single
speaker localization. For the initial experimental validation
we performed data acquisition using an Agilent U2354A data
acquisition device (DAQ) and performed localization offline
in the MATLAB environment. Data acquisition is performed
at two sampling rates: fs = 8 kHz and fs = 2 kHz per
sensor (as the motes are able to sample the signal at 2 kHz).
For the experiment we use four microphone pairs arranged
in an angular configuration — two microphone pairs are
placed perpendicular to the other two. For comparison with our
proposed approach we apply the SRP-PHAT method, which
was mentioned in Section II-B. The fact that SRP-PHAT is
a highly resource demanding procedure is another reason for
choosing MATLAB for computations. The ISRR procedure
implemented in MATLAB is identical to the one running on
the motes, therefore there is no difference in localization. Mote
communication and asynchronous data validation is not con-
sidered in this experiment. Additionally we apply simplified
SRP-PHAT with Stochastic Region Contraction (SRC) to the
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Fig. 10. Results of acoustic source localization using four pairs of microphones and two approaches: SRP-PHAT and the proposed ISRR.

source areas estimated by ISRR in order to determine the
cumulative acoustic energy levels in these areas. The principles
of SRP-PHAT and SRC are briefly introduced in the Appendix.
For better comprehension of the result analysis it is advised
to get familiarized with these localization methods.

The results of speaker localization are presented in Fig. 10.
The speaker is placed at position (0.7, 2) meters and a short
speech recording is made. We analyze the signal frame by
frame, as it is done in our WSN implementation, using a
frame length of 200 ms. For SRP-PHAT the area discretization
value is set to 1 cm2. Fig. 10 portrays localization results for
a single signal frame related to the same time instance. In
the figure microphones are represented by red squares with
numbers inside them. The four microphone pairs are then 1, 2;
3, 4; 5, 6; 7, 8. SRP-PHAT results of cumulative energy values

are plotted using a red-green-blue color scale. DOA vectors
of ISRR are denoted by blue lines, their intersections — by
magenta stars, the estimated regions — by black rectangles and
the maximum of SRP-PHAT with SRC — by black circles.

It can be seen from the two upper plots of Fig. 10, that
at fs = 8 kHz both SRP-PHAT and ISRR localize the sound
source efficiently. The SRP-PHAT region of particularly high
cumulative energy (i.e. orange to red on the scale) is reduced
to approximately 0.01 m2. The region estimated by ISRR
is significantly larger, but proportionate to the SRP-PHAT
region of medium cumulative energy (i.e. green on the scale).
However, the sound source is fully confined by the region, as
confirmed by the SRP-PHAT with SRC estimate on the region.

On the other hand, both methods suffer from the problems
situated with the low sampling rate of fs = 2 kHz, as it can



be clearly seen in the lower plots of Fig. 10. SRP-PHAT high
cumulative energy region enlarges to approximately 0.25×0.3
meters with an ’echoing’ region situated in the top left corner
of the FOV. The decrease of nAOA and the number of signal
samples in a frame, described in Section III-A, affects SRP-
PHAT, producing a more rough and less comprehensive image.
Nevertheless, SRP-PHAT localizes the source properly. ISRR
performs worse, missing the source slightly up the y-axis. The
reason lies in the fourth microphone pair failing to estimate
the DOA correctly. Although the confined region is close to
the source position, it does not confine it fully. This example
clearly shows the need for a larger number of microphone
pairs (motes) to be used for successful localization.

Generally the performance of ISRR is comparable to the
performance of SRP-PHAT in terms of localization accuracy,
with the deviation of ISRR estimates from the localization
results over the whole FOV being less than 0.13 m [12].
Considering the dimensions of usual acoustic sources under
localization (no less than 15–20 cm), this deviation is quite
permissible. In the case of low sampling rates, however, both
SRP-PHAT and ISRR become less reliable. Therefore it cannot
be explicitly stated, that our proposed method suffers from
the limitations of embedded hardware more than the other.
On the contrary, ISRR significantly reduces the number of
computations required for localization up to an area of a
fraction of a square meter [11].

V. DISCUSSION AND FUTURE WORK

The paper mainly considers the limitations of data pro-
cessing hardware and touches upon the implications of asyn-
chronous data interchange slightly. The proactive middleware
component, which has been tested on abstract data, was not
fully implemented for the purposes of acoustic localization on
a large number of smart dust motes. Thus further testing on
a large network of motes is required in order to estimate the
feasibility of the component for our specific purpose.

Considering our recent developments, we have achieved
a reliable 4 kHz sampling rate per channel on the Atmel
ATmega128RFA1. As a consequence, the localization quality
has noticeably improved. The problem of signal leakage
when changing channels is still not solved, but the higher
sampling rate was reached by changing the ADC clock speed,
which consequently affected the settling time (i.e., the time
automatically inserted by hardware to clear and prepare the
ADC registers for channel change) in-between changing ADC
channels and alleviated the signal leakage problem. We do not
plan on improving this hardware platform any further, instead
we are considering more powerful embedded devices, such
as the Gumstix Overo series, for our localization approach.
The implementation on Atmel ATmega displays promising
results, however, it requires a significant number of motes
and their significant dispersion in the FOV to sustain the
localization quality on low sampling rates, and not every
application and environment will allow these things. For the
applications, where only a few motes are permitted, the motes
must estimate the DOA more accurately, and that requires
more resources. With the increase of computational power it

will be also possible to increase the number of sensors on each
mote, which will increase the reliability of DOA estimates.

Increasing the number of sensors per mote will also allow
for 3D acoustic localization. As the elevation AOA cannot be
accurately estimated by a pair of horizontally placed micro-
phones, 3D localization will require additional microphones to
be utilized to estimate the AOA in the vertical plane. For this
direction of future research the proposed ISRR method is to
be expanded in order to be able to confine volumetric regions,
as opposed to planar areas, discussed in this paper.

VI. CONCLUSION

The paper considers an acoustic source localization sys-
tem and its implementation in a WSN consisting of dual
channel low power smart sensors. A decentralized ad-hoc
WSN structure for distributed computation is proposed, which
reduces the number of computations per network node and
introduces redundancy to the system, making it more reliable.
The applied localization approach is presented and different
problems situated with system implementation on specific
hardware are handled. Computationally weak smart sensor
hardware imposes limitations on the signal sampling rate,
processing time and communication bandwidth. A compro-
mise between a reliable sampling rate, suitable sensor pair
geometry and localization accuracy is established. The applied
asynchronous communication strategy reduces message inter-
change and does not overwhelm the network’s fusion nodes.
A practical experiment is held to test the proposed localization
method and compare it to a popular and effective, but resource
demanding approach. Experimental results show, that both
methods suffer from the limitations induced by low power
embedded hardware. However, the proposed method is capable
of localization with permissible accuracy.

APPENDIX
OVERVIEW OF SRP-PHAT AND SRC

Steered Response Power with Phase Transform (SRP-
PHAT) is a technique of estimating the DOA of sound signals.
The SRP P (	a) is a real-valued functional of a spatial vector 	a,
defined by the FOV of a specific microphone array. The high
maxima in P (	a) indicate the estimates of sound source loca-
tion. P (	a) is computed for each direction as the cumulative
Generalized Cross-Correlation with Phase Transform (GCC-
PHAT) across all pairs of microphones at the theoretical time
delays associated with the chosen direction. Consider a pair of
signals xk(t), xl(t) of an array consisting of M microphones.
The times of sound arrival from point a to the two micro-
phones are τ(a, k) and τ(a, l) respectively. Hence the time
delay between the two signals is τkl(a) = τ(a, k) − τ(a, l).
The SRP-PHAT for all pairs of signals is then defined as

P (a) =
M∑

k=1

M∑

l=k+1

ˆ ∞

−∞
ΨklXk(ω)X

∗
l (ω)e

jωτkl(a)dω, (9)

where Xi(ω) is the spectrum (the Fourier transform) of signal
xi and X∗

i (ω) is the conjugate of that spectrum. Ψkl is the
PHAT weight of the inverse of spectral magnitudes:

Ψkl =
1

|Xk(ω)X∗
l (ω)|

. (10)



Conventional SRP-PHAT performs as many evaluations (9),
as there are points in 	a, the number of which is defined by
the dimensionality of the FOV and the accuracy measure,
that partitions the area (or volume) into small discrete re-
gions. The method is highly resource demanding, particularly
when applied to large areas of observation. The number of
evaluations (9) is significantly reduced by applying Stochastic
Region Contraction (SRC), which iteratively narrows down the
search volume for the global maximum [15]. SRC starts with
the initial search volume (i.e. the whole FOV), stochastically
explores the functional of that volume by randomly picking
a specific number of points, then contracts the search volume
into a sub-volume containing the desired global optimum and
proceeds iteratively until the SRP maximum can be located
with a finite precision.

REFERENCES

[1] S. Astapov and A. Riid, “A multistage procedure of mobile vehicle
acoustic identification for single-sensor embedded device,” International
Journal of Electronics and Telecommunications (JET), vol. 59, no. 2, pp.
151–160, 2013.

[2] S. Astapov, J.-S. Preden, J. Ehala, and A. Riid, “Object detection for
military surveillance using distributed multimodal smart sensors,” in
Proc. 19th Int. Conf. on Digital Signal Processing (DSP 2014), 20–23
Aug. 2014, pp. 366–371.

[3] H. Lohrasbipeydeh, A. Zielinski, and T. Gulliver, “A new acoustic
method for passive sperm whale depth tracking,” in Proc. IEEE Region
10 Conference TENCON 2012, Nov 2012, pp. 1–5.

[4] J.-C. Wang, C.-H. Lin, E. Siahaan, B.-W. Chen, and H.-L. Chuang,
“Mixed sound event verification on wireless sensor network for home
automation,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1,
pp. 803–812, Feb 2014.

[5] Y. Lee, K. Kim, D. Han, and H. Ko, “Acoustic and visual signal based
violence detection system for indoor security application,” in Proc. 2012
IEEE Int. Conf. on Consumer Electronics (ICCE), 2012, pp. 737–738.

[6] S. Astapov, J. S. Preden, T. Aruvali, and B. Gordon, “Production
machinery utilization monitoring based on acoustic and vibration signal
analysis,” in Proc. 8th Int. Conf. DAAAM Baltic Industrial Engineering,
2012, pp. 268–273.

[7] A. Dhawan, R. Balasubramanian, and V. Vokkarane, “A framework for
real-time monitoring of acoustic events using a wireless sensor network,”
in Proc. IEEE Int. Conf. Technologies for Homeland Security (HST),
2011, pp. 254–261.

[8] T. Liu, Y. Liu, X. Cui, G. Xu, and D. Qian, “MOLTS: Mobile object
localization and tracking system based on wireless sensor networks,” in
Proc. IEEE 7th Int. Conf Networking, Architecture and Storage (NAS),
2012, pp. 245–251.

[9] Z. Merhi, M. Elgamel, and M. Bayoumi, “A lightweight collaborative
fault tolerant target localization system for wireless sensor networks,”
IEEE Transactions on Mobile Computing, vol. 8, no. 12, pp. 1690–1704,
2009.

[10] G. Vakulya and G. Simon, “Fast adaptive acoustic localization for sensor
networks,” IEEE Transactions on Instrumentation and Measurement,
vol. 60, no. 5, pp. 1820–1829, 2011.

[11] S. Astapov, J.-S. Preden, and J. Berdnikova, “Simplified acoustic local-
ization by linear arrays for wireless sensor networks,” in Proc. 18th Int.
Conf. on Digital Signal Processing (DSP), 2013, pp. 1–6.

[12] S. Astapov, J. Berdnikova, and J. S. Preden, “Optimized acoustic local-
ization with SRP-PHAT for monitoring in distributed sensor networks,”
International Journal of Electronics and Telecommunications, vol. 59,
no. 4, pp. 383–390, 2013.

[13] Q. Wang, R. Zheng, A. Tirumala, X. Liu, and L. Sha, “Lightning: A
hard real-time, fast, and lightweight low-end wireless sensor election
protocol for acoustic event localization,” IEEE Transactions on Mobile
Computing, vol. 7, no. 5, pp. 570–584, 2008.

[14] E. Mangas and A. Bilas, “FLASH: Fine-grained localization in wireless
sensor networks using acoustic sound transmissions and high precision
clock synchronization,” in Proc. 29th IEEE Int. Conf. Distributed
Computing Systems ICDCS, 2009, pp. 289–298.

[15] H. Do, H. F. Silverman, and Y. Yu, “A real-time SRP-PHAT source
location implementation using stochastic region contraction (SRC) on
a large-aperture microphone array,” in Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing ICASSP, vol. 1, 2007, pp. 121–124.

[16] C. T. Ishi, O. Chatot, H. Ishiguro, and N. Hagita, “Evaluation of a
MUSIC-based real-time sound localization of multiple sound sources
in real noisy environments,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems IROS 2009, 2009, pp. 2027–2032.

[17] Y. Liu and Z. Yang, Location, Localization, and Localizability: Location-
awareness Technology for Wireless Networks. Springer, 2010.

[18] D. Blatt and A. O. Hero, “Apocs: a rapidly convergent source localization
algorithm for sensor networks,” in Proc. IEEE/SP 13th Workshop
Statistical Signal Processing, 2005, pp. 1214–1219.

[19] Z. Merhi, M. Elgamel, and M. Bayoumi, “Acoustic target localization
in sensor networks with FUZZYART,” in Proc. 50th Midwest Symp.
Circuits and Systems MWSCAS 2007, 2007, pp. 1536–1539.

[20] J. S. Preden, J. Llinas, G. Rogova, R. Pahtma, and L. Motus, “On-line
data validation in distributed data fusion,” in SPIE Defense, Security
and Sensing, Ground/Air Multisensor Interoperability, Integration, and
Networking for Persistent ISR IV, vol. 8742, 2013, pp. 1–12.

[21] J. S. Preden, L. Motus, R. Pahtma, and M. Meriste, “Data exchange for
shared situation awareness,” in 2012 IEEE Int. Multi-Disciplinary Conf.
on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA), March 2012, pp. 198–201.

Sergei Astapov received his M.Sc. degree in the
field of Computer System Engineering at the Tallinn
University of Technology in 2011. He continues
his education as a PhD student at the Department
of Computer Control at the Tallinn University of
Technology and is a member of the Department’s
Research Laboratory for Proactive Technologies.
His research interests include object tracking us-
ing wide-band signal analysis, classification tasks
and distributed computing in embedded multi-agent
systems. His recent research concerns object local-

ization and identification in open environments and acoustic signal based
diagnostics of industrial machinery.

Johannes Ehala received his M.Sc. degree in the
field of Computer System Engineering at the Tallinn
University of Technology in 2012. Currently he is a
PhD student at the Department of Computer Control
at the Tallinn University of Technology and is a
member of the Research Laboratory for Proactive
Technologies. His doctoral studies and research in-
terests include self-organization and emergent be-
havior in cyber-physical systems and computational
models of distributed computer systems. Currently
he is involved in analyzing the temporal aspects of

ProWare and developing a computational model to describe ProWare.

Jürgo-Sören Preden received his PhD degree in
Computer Science from the Tallinn University of
Technology, the topic being “Enhancing Situation-
Awareness, Cognition and Reasoning of Ad-Hoc
Network Agents”. He is a senior researcher and the
head of the Research Laboratory for Proactive Tech-
nologies at the Tallinn University of Technology.
Jürgo’s research interests are focused on distributed
computing systems, more specifically on cognition
and situation awareness of such systems. His spec-
trum of activities involves sensing technologies, data

processing, computation and communication in ad-hoc sensing systems.



Publication 4

Reference

S. Astapov, A. Riid, J.-S. Preden, and T. Aruvali, “Industrial process mon-
itoring by multi-channel acoustic signal analysis,” in Proc. 14th Biennial
Baltic Electronics Conference (BEC), Tallinn, Estonia, Oct 2014, pp. 209–
212.

Abstract

Machinery monitoring at the shop floor bears relevance in preventive main-
tenance applications and for manufacturing process optimization. As the
installation of monitoring hardware directly on the machinery may be haz-
ardous and expensive due to installation costs, the use of contactless sensors
is preferable. In this paper we propose a solution for machinery monitoring
based on multi-channel acoustic information analysis. We apply large aper-
ture microphone arrays, perform machine noise source localization using the
SRP-PHAT method and classify machine acoustical patterns by means of
fuzzy rule-based classification. The results of experiments, performed in an
industrial setting, indicate the feasibility of our solution in real conditions.





Industrial Process Monitoring by Multi-Channel
Acoustic Signal Analysis

Sergei Astapov#, Andri Riid#, Jürgo-Sören Preden#, Tanel Aruväli*
#Department of Computer Control, *Department of Machinery

Tallinn University of Technology
Ehitajate tee 5, 19086, Tallinn, Estonia

sergei.astapov@ttu.ee, andri.riid@ttu.ee, jurgo.preden@ttu.ee, tanel.aruvali@student.ttu.ee

Abstract—Machinery monitoring at the shop floor bears rele-
vance in preventive maintenance applications and for manufac-
turing process optimization. As the installation of monitoring
hardware directly on the machinery may be hazardous and
expensive due to installation costs, the use of contactless sensors
is preferable. In this paper we propose a solution for machinery
monitoring based on multi-channel acoustic information analysis.
We apply large aperture microphone arrays, perform machine
noise source localization using the SRP-PHAT method and
classify machine acoustical patterns by means of fuzzy rule-
based classification. The results of experiments, performed in
an industrial setting, indicate the feasibility of our solution in
real conditions.
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I. INTRODUCTION

Accurate monitoring of industrial machinery is essential in
almost any production process. Receiving on-line feedback
on equipment utilization ensures uninterrupted flow of the
production process. Analysis of machinery utilization also
allows for process optimization and thus increases efficiency
of the production facility [1]. Monitoring performance and
condition of the machinery makes it possible to eliminate
faults and malfunctions in equipment prior to breakdown,
which decreases the number of accidental failures.

Most high-end industrial devices are equipped with inte-
grated monitoring solutions that enable interconnection and
data exchange through a network. Very often, however, a
production process is manually operated or equipped with
outdated machinery, that lacks integrated sensors and control
hardware. Applying a monitoring system to this machinery
presents a set of challenges, including integration of hardware.
Installation of sensors may prove hazardous and also expensive
due to interruptions in the production process. Furthermore, if
the machine requires a safe zone or is concealed in a safety
chamber, sensor installation may be simply prohibited by
safety regulations. One of the solutions lies in the application
of contactless, remote sensors. High levels of acoustic noise
emitted by industrial machinery suggest the choice of acoustic
sensors among others [2], [3].

Our previous work regarding acoustic information analysis
applied in industrial machinery monitoring [2] was concerned
with single-sensor solutions. High levels of noise originating

from different machines in close proximity in a highly rever-
berant environment of the shop floor may pollute the signal
to a degree, where the classification of the machine’s working
state becomes unreliable. Using several sensors in an array
configuration provides the possibilities of concentrating on a
specific noise source and attenuating unwanted noise digitally.
In this paper we propose a multi-sensor solution for an acoustic
monitoring system.

Microphone arrays in industrial applications are mainly used
for acoustic holography, in which machinery or products are
examined for areas of high or abnormal noise [4]. These
techniques have been applied in a wide range of applica-
tions, e.g. diagnostics of vehicle internal and external noise
sources [4], estimation of fan and turbine noise [5], detection
of compressed air leakage [6], etc. Multi-channel acoustic
signal analysis also benefits the optimization of processes, for
example laser welding [7]. Research in our particular field of
interest, i.e. machinery noise localization at the shop floor and
monitoring, has been described in [8] and [9].

II. SYSTEM COMPOSITION AND METHODS

The proposed solution consists of several small sub-arrays
that form a large-aperture array with a Field of View (FOV)
of 15–25 m2 (FOV is a region where the sound source is
susceptible to be found by a specific array). The position of a
sub-array is specified by the coordinates of its center and the
angle α, by which the array is steered from the global zero
angle. With each such array, the system monitors a separate
machine or part of the conveyer-chain. Several tasks are per-
formed, namely localization of the machine’s noise source and
signal de-noising, processing, and classification of machine
status. We use acoustic localization in the horizontal plane
and identify the signal from the monitored machine and/or
its specific components. To obtain machine state estimates,
we apply beamforming to attenuate unwanted noise, perform
feature extraction on the de-noised signal and do classification
of the signal features.

A. SRP-PHAT Acoustic Localization

Steered Response Power with Phase Transform (SRP-
PHAT) is a popular technique of estimating the DOA of sound
signals. The SRP P (�a) is a real-valued functional of a spatial
vector �a, defined by the FOV of an array. High maxima in



P (�a) indicate the source location. P (�a) is computed for each
direction as the cumulative Generalized Cross-Correlation
with Phase Transform (GCC-PHAT) value across all pairs of
microphones at the theoretical time delays associated with the
chosen direction:

P (a) =
M∑

k=1

M∑

l=k+1

ˆ ∞

−∞
ΨklXk(ω)X

∗
l (ω)e

jωτkl(a)dω, (1)

where Xi(ω) is the spectrum (the Fourier transform) of signal
xi, X∗

i (ω) is the conjugate of the spectrum and τkl(a) =
τ(a, k)− τ(a, l) is the time delay between signals xk(t) and
xl(t) of a wave originating from a point a ∈ �a and reaching
sensors k and l. Ψkl is the PHAT weight of the inverse of the
spectral magnitudes:

Ψkl =
1

|Xk(ω)X∗
l (ω)|

. (2)

We compute the SRP for every discrete point of the ob-
served area in order to obtain SRP images of the whole
FOV. These images are very informative for manual analysis,
however for real-time autonomous processing we propose to
use a different approach.

B. Simplified Approach to Localization

The conventional SRP-PHAT performs as many evaluations
(1), as there are points in �a, the number of which is defined by
the dimensionality and discretization of the FOV. This analysis
is highly resource demanding, particularly when applied to
large FOVs. The number of computations is significantly
reduced by applying Stochastic Region Contraction (SRC),
which iteratively reduces the search region for the global
maximum [10]. SRC starts with the initial search region
(i.e. the whole FOV), stochastically explores the functional
by randomly picking a specific number of points, contracts
into a sub-region containing the desired global optimum and
proceeds iteratively until the SRP peak is located. To reduce
the computational load further we propose to first estimate the
initial search region instead of using the whole FOV [11].

Having K microphone arrays, each consisting of M micro-
phones, observing a common FOV, the initial search region
reduction is performed in several steps:

1) Estimate the DOA for each of K arrays.
2) Generate vectors spanning from the array centers to the

bounds of the FOV in the directions of DOA.
3) Find points of intersections of these vectors.
4) Find groups of points no farther than Dmax distance units

(meters) from their centroid and enclose the areas, in
which these groups reside, in rectangles.

5) Perform verification and control of false detection.
As we work in the horizontal plane, for DOA it is sufficient to
know the azimuth (i.e. angle of arrival) of the incoming signal.
The DOA estimation is performed for all

(
M
2

)
combinations of

M microphone pairs. Consider a pair m1 and m2. The sound
wave originating from a source in the far field (i.e. assuming
a planar wave front) is acquired by the pair with a time delay
τ ∈ [−τmax, τmax], where τmax is the delay of sound traveling

directly from one microphone to the other (i.e. at ±90◦). To
estimate τ we apply cross-correlation to the two signals:

R(τ) =
N−1∑

k=0

xm1(k) · xm2
(k − τ), (3)

where N is the signal frame length in samples. The maximum
of the cross-correlation defines the time delay, and the azimuth
is obtained by

ϕ = arcsin
τ · c
l

= arcsin
Δk/fs · c

l
, (4)

where c is the speed of sound, l is the distance between two
microphones and τ is represented in terms of delay in samples
Δk and the sampling frequency fs. Depending on the chosen
pair of microphones in the array, l will vary from l to l(M−1).

Having Ci ≤
(
M
2

)
azimuth estimates for every array, the

final DOA φi for each i-th array, i ∈ (1, . . . ,K), is computed
by finding the common direction of azimuth. If no common
direction is found, φi is not assigned, φi = ∅.

Having estimated K1 ≤ K of the existing array DOA
φi∗ , i∗ ∈ (1, . . . ,K1) and added the nodes’ rotation angles
αi to them, vectors

−−→
ABi∗ are computed with the starting

point Ai∗ = (x1,i∗ , y1,i∗) being the coordinate of i∗th array’s
center and the ending point Bi∗ = (x2,i∗ , y2,i∗) being the
point at a bound of the FOV steered by φi∗ from the array’s
center. Intersection points of all pairs of these vectors are then
calculated. As a result we have a set of i∗∗ intersections,
i∗∗ ∈ (1, . . . ,K2), K2 ≤

(
K1

2

)
. To get the initial search

areas, these intersection points are partitioned by their relative
distance. The resulting partitions are strictly speaking clusters
Pj with each point not further than the maximum distance
Dmax from the cluster’s centroid Cent(Pj) = 1/|Pj | ·

∑
Pj .

After obtaining the partitions, their areas are enclosed by
rectangles with the edges denoted by the partitions minimal
and maximal values on both the x- and y-axis.

C. Feature Extraction

Prior to feature extraction the signal is de-noised using De-
lay and Sum beamforming (DSB). Beamforming is a technique
of steering the main lobe of the array’s directivity pattern to
the desired direction. Given the direction or coordinates of
the sound source, the DSB first temporally shifts signals by
τ = [τ1, . . . , τM ], where τi = Δki/fs is the time of sound
arrival from the specified source to the microphone i, and then
weigh-sums the signals into a single array output. We use equal
weights for all microphones, so the DSB is performed as

xDSB(k) =
1

M

M∑

i=1

xi(k −Δki). (5)

To prepare the de-noised signal for classification, we extract
specific signal properties that represent the acoustic pattern of
the machine state in a compact way. Below we present only
some of the utilized features, a more detailed review may be
found in our previous research [12] and in a larger glossary
of audio signal features [13].



For every signal frame’s absolute magnitude spectrum
|X(k)| = |FFT {xDSB(k)}| /N of length N , the features
are extracted as follows:

Band energy, which measures the energy of the power
spectrum in the i-th band and is computed as

FBE(i) =
∑

l∈Si

|X(l)|2
/N−1∑

k=0

|X(k)|2 , (6)

where Si is the set of power spectrum samples belonging to
the i-th band, chosen according to the Mel-scale.

Spectral centroid, calculated as the frequency averaged
over the absolute magnitude spectrum:

FSC =

N−1∑

k=0

k · |X(k)|
/N−1∑

k=0

|X(k)| . (7)

Spectral roll-off that determines the frequency, below
which a certain amount of spectral energy resides. The amount
is determined by a threshold TH = [0, 1]:

FSR = argmax
p

[
p∑

l=0

|X(l)|2 ≤ TH ·
N−1∑

k=0

|X(k)|2
]
. (8)

Spectral slope, which is a measure of spectral energy
decrease in the direction of the higher frequencies. It is
specified by the gradient and the y-intersect of a straight line
fitted to the magnitude spectrum by linear regression.

The extracted features are concatenated into a feature vector
F = [F1, . . . , FL], where L is the number of features. This
vector is later used during the classification stage.

D. Fuzzy Rule-Based Classification

Acoustic signals emitted by some industrial machinery in
steady working states can be considered stationary and peri-
odic, which makes them classifiable using simple correlation
methods [2]. We propose to use a more robust fuzzy rule-based
method in order to account for variance in signal features.
This brief section describes only the rule base structure and
the inference method. The full process of rule base derivation
is described in Section III.

A feature vector F = [F1, . . . , FL] is classified by assigning
one of R different discrete valued labels to it, using the
classifier that consists of R rules:

IF F1 is A1r AND . . . AND FL is ALr

THEN F belongs to class cr, (r = 1, . . . , R)
, (9)

where Air is the linguistic term of the i-th input (i.e. feature
vector element) associated with the r-th rule and cr is the class
label assigned to the r-th rule. This form is the minimal rule
classifier (MRC) that contains only one rule for each class (see
[12] for details). The class label is assigned in a winner-takes-
all manner by specifying the rule with the highest degree of
activation

cr = argmax
1≤r≤R

(τr) , (10)

Fig. 1. Microphone sub-array placement at the shop floor.

where τr is the activation degree of the r-th rule:

τr =
L⋂

i=1

μir(Fi), (11)

with μir being the Membership Function (MF) corresponding
to the linguistic term Air.

III. EXPERIMENTAL RESULTS

For our experiments we use Vansonic PVM-6052 condenser
microphones mounted with a spacing of 15 cm between each
other. In total we use 4 sub-arrays with 4 microphones in
each sub-array, and place them in a factory workshop in
different configurations. For data acquisition Agilent U2354A
data acquisition device (DAQ) is used with the sampling rate
set to 8 kS/s per channel. Two array configurations are used:
linear, where the sub-arrays are placed in a straight line and
angular, where two sub-arrays are placed perpendicular to
the remaining two. For monitored machinery we choose a
Computer Numerical Control (CNC) lathe, and a manually
operated lathe. The array installations for the CNC lathe and
manual lathe are presented in Fig. 1a and 1b, respectively.

Acoustic localization proves to be successful for every
tested machine. Lathe parts that emit most noise are the DC-
motor, transmission, spindle and the area of manufactured
object. In the motor no-load state (i.e. the transmission is off
the spindle) the motor itself is well identifiable, as it is shown
in Fig. 2 left; spindle rotation causes a much more diffused,
but nevertheless detectable region (see Fig. 2 center). Angular
array configuration performs better than the linear one, which
is not able to confine the broad noise emitting regions of
the monitored machine. Results of the proposed approach to
localization coincide with regular SRP-PHAT, as it can be seen
in Fig. 2 right compared to Fig. 2 left.

Classification experiments were performed on the CNC and
manual lathe. For both machines we specified 3 classes of
working state: 1 — Idle, 2 — Motor no-load, 3 — Spindle
rotation. The signals were de-noised using DSB and 8 features
were extracted (4 band energies, spectral centroid, spectral
roll-off and 2 features of spectral slope). For the DSB we used
the sound source coordinates, obtained during localization.
Two datasets were generated for both machines: a training
set for fuzzy rule base derivation and a test set for verification
of classification quality.
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Fig. 2. SRP images of CNC lathe, motor no-load (left) and spindle rotation (center). Proposed localization (right) for the signal instance covered in left plot.

The training and testing datasets for the manual lathe signal
contain 165 and 140 samples respectively. Using the training
data, we construct a MRC, which is usually not 100% accurate
(see Table I). To reduce the error, the number of classification
rules is then iteratively increased until the error on training data
disappears. At each iteration of this procedure a subset of data
corresponding to the rule with the highest number of erroneous
samples is split into two further subsets using the Hierarchical
Complete Linkage Clustering Algorithm [14]. Upon those two
subsets, two new rules are modeled and replace the original
rule. As Table I shows, this classifier is 100% accurate on
training data, but very inaccurate on test data. In the next
step, the number of rules is decreased by rule consolidation
in which samples are transferred from minor rules (those
governing few samples) to major rules (those governing a
lot of samples) as long as classification accuracy does not
suffer. The consolidated classifier contains 7 rules, including
two singleton rules (governing just one sample), two minor
rules and three major rules. We discard the singleton and minor
rules (assuming that they represent outliers or irregular data)
and the remaining three rules undergo rule compression (that
discards less relevant features from individual rules, see [14]).
In the last step triangular MFs of the classifier are converted
into Gaussian ones to improve generalization ability [15].

The resulting simple classifiers contain less than 8 rules.
For example, for the distinction between classes 1 and 2 of
the manual lathe, it is sufficient to consider only the y-intersect
of spectral slope and class 3 is separated from the rest by the
3rd band energy. The final classification quality for the manual
lathe is 94.5% and for the CNC lathe it reaches 90.5%, which
is more than satisfying, considering the high surrounding noise
and reverberation levels.
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Abstract—This paper considers an autonomous ground Intelli-
gence, Surveillance and Reconnaissance (ISR) system comprising
of multiple distributed, wirelessly communicating smart sensors.
The ISR system, in turn, is a part of a larger System of Systems
(SoS) consisting of aerial, manned, etc. surveillance systems and
information collection centers. The smart sensors of the ISR
system perform environment monitoring using different modal-
ities and exchange object detection and identification results to
assess the situation and provide other SoS components with this
information. In the paper we discuss using acoustic, magnetic and
Passive Infrared (PIR) sensor information for target detection
and identification. We also propose an approach of distributed
acoustic source localization and a method of velocity estimation
using PIR data. For sensor communication an asynchronous ad-
hoc WSN configuration is proposed. The system is implemented
on low power smart sensors utilizing Atmel ATmega128RFA1
processors with integrated 2.4GHz IEEE 802.15.4 compliant
radio transceivers.

Index Terms—Multimodal information, acoustic source local-
ization, object detection, distributed computing, smart sensors.

I. INTRODUCTION

Military Intelligence, Surveillance and Reconnaissance
(ISR) is steadily heading in the direction of unmanned op-
eration. For ISR large areas of (often ragged) terrain must
be constantly and systematically monitored. With increasing
availability of smart sensors and devices it is only natural that
computer systems become more involved in ISR. Very often
human operators in such systems handle raw data incoming
from surveillance cameras, reconnaissance drones, motion
detectors, etc., and perform situation evaluation themselves.
In state of the art systems with higher levels of computer
system integration, raw data is processed by the autonomous
system and human operators handle the provided situation
assessments, which adds agility and greater area coverage.

Furthermore, modern ISR systems are increasingly being
assembled from standalone systems, so the resulting ISR
systems are Systems of Systems (SoS). Situation evaluation in
such systems is performed on-site by every sub-system, rather
than in the information hub and system-to-system interaction
greatly exceeds machine-to-human interaction. In order to

The work presented in this paper was partially supported by the Estonian
Ministry of Defence, the European Defense Agency project IN4STARS and
the Nations Support Program for ICT in Higher Education "Tiger University".
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Fig. 1. Concept diagram of the ground ISR system in the SoS.

take full advantage of the capabilities of the ISR SoS, the
architecture and the design of these SoS should be different
from the approaches currently used in design of ISR systems.

In this work we consider an ISR SoS for ground recon-
naissance comprising of multiple distributed smart sensors
interconnected in a Wireless Sensor Network (WSN). The
smart sensors perform environment monitoring using different
modalities and exchange object detection and identification
results to achieve situation awareness. The larger SoS com-
prises of various ground and aerial ISR systems, information
collection and fusion databases. Autonomous situation evalu-
ation results are available to human operators in the operation
center, as well as to local scout patrols (see Fig. 1). All these
systems are considered external information consumers as the
focus lies on the ground ISR SoS alone.

This paper presents the ISR system structure, smart sensor
operation and communication principals. Smart sensors em-
ploy several modalities, which include acoustic, magnetic and
Passive Infrared (PIR) sensor information. Acoustic signals are
used for both acoustic source localization and identification.
For localization a recently developed method of Initial Search
Region Reduction (ISRR) is used [1] to manage localization
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on low power hardware of smart sensors. Magnetic and PIR
sensor readings complement acoustic information in detection
of vehicles and foot soldiers. PIR sensor also estimates object
movement speed. Local situation assessments are collected for
global situation evaluation and sent to external consumers. For
efficient and timely data interchange, a WSN communication
strategy is proposed. Experimental results of system compo-
nent tests are presented along the course of the paper.

II. ISR SYSTEM ARCHITECTURE AND OPERATION

The ground ISR system is intended for operation in open
(urban, woodland, desert, etc.) environments. The system
consists of a large number of smart sensors, known in military
applications as Unattended Ground Sensors (UGS). UGS po-
sitioning depends on the landscape and may be at all random
(see Fig. 2). The position of each UGS is defined by its
coordinates (x0, y0) and the angle α, by which the sensor is
steered from the global angle reference (which may be defined,
for example, by the Earth’s magnetic field). The coordinates
may be estimated by GPS or other location algorithms, e.g.
based on Radio Frequency (RF) [2]. Each UGS employs one
or several modalities for environment state assessment in its
local region. The local metadata is interchanged amongst UGS
in order to get a global estimate of the situation in the entire
Field of View (FOV) of the ISR system. In our case we
use low power devices which cannot simultaneously process
acquired data and collect the metadata from other UGS, so
in our topology we divide the UGS for local assessments and
central UGS for information collection and decision making.

A. Chosen Modalities and WSN Topology

The variety of possible signal types applicable for ground
monitoring is quite large. This short paper handles only a
few in a specific system configuration. This being stated, we
choose acoustic, magnetic and PIR signals for the following
reasons. Firstly, the acquisition of these types of signals does
not require direct contact with either the monitored object,
or the surface, with which that object interacts (as is not
the case with e.g. seismic sensors). Secondly, acoustic and
infrared waves and magnetic field do not suffer from minor
obstacles in the line of view to the monitored object (e.g. thin
tree branches) as seriously as, for example, video information.
Thirdly, these types of sensors operate equally well during
any time of day because they are independent of lighting
conditions. The proposed signal processing methods for every
sensor type are reviewed in Chapter III.

The system operates in an ad-hoc WSN with an unde-
termined number of nodes. This way UGS that have been
for some reason disabled or restored at certain times do
not seriously affect the overall system operation. Therefore,
providing a number of redundant UGS introduces additional
robustness and reliability to the system. UGS do not exchange
raw signal data in order not to overwhelm the network, rather
send metadata on local and global situation assessments. Data
exchange procedures are discussed further in Chapter IV.

Fig. 2. UGS distribution in real environment (upper left), prototype of acoustic
UGS with the microphone amplification circuit (bottom left) and a PIR UGS
in a camouflage case designed by Defendec Inc. (right).

B. Implementation Hardware

UGS prototypes are implemented on embedded hardware
running TinyOS, equipped with Atmel ATmega128RFA1 mi-
croprocessors, which provide an on-chip 10-bit ADC for signal
acquisition and a IEEE 802.15.4 compliant radio transceiver
for WSN communication. Each UGS is powered by a 3.7 V,
6600 mAh battery block which can sustain the sensors for
1–1.5 years in sleep mode and for approximately a month in
operation mode. The sensors are packaged in protective boxes
16 cm in length (see Fig. 2).

Acoustic UGS are equipped with a pair of condenser
microphones (Vansonic PVM-6052), sampled at 2 kS/s per
channel (due to specific hardware limitations) and processed
in frames of 400 samples (frame duration is thus 0.2 s).
Magnetic UGS uses a single 3-axis sensor which is sampled
at 80 S/s and processed in a sliding window of 10 samples.
PIR UGS acquires data by a pyroelectric crystal sensor with
detects changes in thermal radiation in zones, defined by
a specific Fresnel lens. The lens used in our experiments
produces zones for 180◦ observation angle from the level of
the lens and upwards. This design is aimed at reducing false
alarms produced by small animals. The slowly oscillating PIR
signal is acquired at 100 S/s and is processed in frames of 5 s
duration (500 samples) with a window step of half a frame.

III. MULTIMODAL SIGNAL PROCESSING IN WSN

This chapter reviews signal processing procedures for all
considered types of UGS. Testing results for every signal type
are presented separately to avoid ambiguity.

A. Acoustic Source Localization

For grounded acoustic localization the UGS are placed
in the monitored environment in the horizontal plane and
localization is performed by estimating the coordinates (x, y)
of sound emitting objects. Each UGS is equipped with two
acoustic sensors spaced by a specific distance l from one
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Fig. 3. Acoustic source localization in a network of distributed UGS.

another. Localization is based on estimating the time delays
of acoustic wave arrival to the sensors, also called Time Dif-
ference of Arrival (TDOA). The Direction of Arrival (DOA)
of sound from a specific acoustic source is calculated using
TDOA. The network consists of two types of UGS: smart
sensors and central nodes. Dual channel smart sensors acquire
acoustic information and perform DOA estimation. Nodes that
have assumed a central role gather DOA estimates and perform
source region estimation. The schematic diagram of system
architecture is presented in Fig. 3.

Sensors are partitioned into groups. Each group must have a
common Field of View (FOV), i.e. all UGS observe the same
area. Group partitioning is performed by clustering, taking
two aspects into consideration. Firstly, UGS must be facing in
the common direction as the considered localization procedure
uses a directional approach. In this regard, the observed area
is not necessarily enclosed by UGS, as shown in Fig. 3, but
may be observed from one or several sides. Secondly, a group
must have certain homogeneity. UGS located too far from the
group’s centroid may be useless to the localization effort in low
Signal to Noise Ratio (SNR) environments or when the sound
emitted by the source of interest is too weak. Furthermore,
non-homogeneous groups present additional challenges for
wireless communication.

Central nodes of the WSN perform UGS grouping during
network initialization and later participate in localization.
Central nodes must reach an agreement concerning which node
governs which UGS group. In this process communication sig-
nal strength is taken into account, meaning that a central node
will adopt a group, to which it has the strongest connection.

Typical acoustic localization methods, like SRP-PHAT [3],
MUSIC [4] or multilateration [5] utilize information from
every available sensor. This fact does not pose a problem
for wired systems with a single powerful computational hub.
In WSN, however, collecting raw signals is a real challenge,
especially if the number of nodes is large and signal frames are
long. To overcome problems associated with communicating
signal frames we apply a simplified localization approach of
Initial Search Region Reduction (ISRR), recently developed

by our research team [1]. The main idea behind ISRR lies in
maximally confining the region of acoustic source disposition
as a preliminary procedure to SRP-PHAT or other localiza-
tion method [6]. Having already established that SRP-PHAT
requires raw information from all sensors in the network, we
do not apply it for this specific ISR system configuration. For
detection of vehicles or people, localization to a single point is
not obligatory and ISRR confined regions serve as a sufficient
estimate of object location.

Having a group of K dual sensor UGS, the ISRR is
performed in the following steps:

1) Estimate the DOA for each of K UGS.
2) Generate vectors spanning from sensor pair centers

(x0, y0) to the FOV bounds in the directions of DOA.
3) Find points of intersections of these vectors.
4) Find groups of points not farther than Dmax distance

units (meters) from their centroid and enclose the areas,
in which these groups reside, in rectangles.

5) Perform control of false detection, discard areas not
meeting specific criteria (optional).

Step 1 is performed on each UGS, steps 2–5 are performed
on the group’s central node.

The DOA are estimated for the front view of the sensor
pair, i.e. from −90◦ to 90◦. A pair of microphones m1, m2

receive a sound wave emitted by a source in the far field (i.e.
wave fronts are considered linear) with a time delay τ , which
takes the values τ ∈ [−τmax, τmax], where τmax is the delay
of sound traveling directly from one microphone to the other
(i.e. at ±90◦). To estimate τ we apply cross-correlation to the
two signals:

R(τ) =
n∑

k=0

xm1
(k) · xm2

(k − τ), (1)

where n is the signal length in samples. The maximum of
the cross-correlation defines the time delay, and the DOA is
obtained by

ϕ = arcsin
τ · c
l

= arcsin
∆k/fs · c

l
, (2)

where l is the distance between the microphones, c is the
speed of sound in air and τ is represented in terms of delay
in samples ∆k and the sampling frequency fs.

At this point DOA validation is performed. If the correlation
maximum is less than some threshold, the DOA ϕ is discarded.
This way, in absence of a sound source or in case of high
ambient noise, invalid estimates are avoided early on. We use
the deviation from the mean for this metric:

max (R(τ)) > (1 + TH) ·R(τ), (3)

where TH is the threshold of deviation, which depends on
the SNR in the environment. We use TH = 0.2 in our
experiments. DOA estimates, which pass control, are sent to
central nodes.

A central node receives K1 ≤ K DOA estimates φi∗ , i∗ ∈
(1, . . . ,K1) and adds UGS rotation angles αi to them. Vectors−−→
ABi∗ are computed with the starting point Ai∗ = (x1,i∗ , y1,i∗)
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Fig. 4. Localization and tracking of a moving acoustic source using four smart
sensors. Blue lines denote DOA vectors of every sensor; magenta stars —
vector intersection points; black box — localized region; red line — trajectory
estimated by Kalman filter; green dotted line — smoothed trajectory; red box
— predicted region of acoustic source.

being the coordinate of i∗-th sensor pair’s center and the
ending point Bi∗ = (x2,i∗ , y2,i∗) being the point at a bound
of the FOV steered by φi∗ from the pair’s center. Intersection
points of all pairs of established vectors are then calculated.

As a result we have a set of Ii∗∗ intersections, i∗∗ ∈
(1, . . . ,K2), K2 ≤

(
K1

2

)
. To get the initial search areas, these

intersection points are partitioned by their relative distance.
The resulting partitions are strictly speaking clusters Pj with
each point not further than the maximum distance Dmax from
the cluster’s centroid Cent(Pj) = 1/|Pj | ·

∑
Pj .

After obtaining the partitions, their areas are enclosed by
rectangles defined by the lower left and upper right points.
As a result several regions may occur in the same FOV. Also
while a vector from one array may cross with several other
vectors, redundant “echoing” regions may form. These can be
removed by applying tracking filters. Localization results for
four UGS and a single moving acoustic source are presented
in Fig. 4. Here the source position is estimated as a roughly
0.5×0.4 m region, which is well sufficient for ISR application.

The procedure is also applicable to multiple target localiza-
tion. If more than two sensors are used in the array, several
DOA may be estimated. Each dual channel UGS, however,
points to a single direction of the strongest acoustic source.
As sound pressure decreases exponentially with propagation,
each UGS group identifies a source closest to it (if not masked
by louder sources). If a group is well spread, several targets
may be identified within the FOV based on the same principle.

B. Detection and Speed Estimation Using PIR Sensors

We propose to use PIR data for both movement detection
and speed estimation, aimed mainly at foot soldier activity
monitoring. The principal block-diagram of the proposed
processing procedure is presented in Fig. 5.

The first stage of signal processing consists of raw signal
pre-processing (bias removal, scaling, etc.), Low Pass filtering

Fig. 5. Diagram of PIR signal processing steps.

(we use 5th order Butterworth IIR filter) and taking the signal
derivative. The derivative is calculated as the first order finite
difference ∆x[k] = x[k]− x[k − 1], where x[k] and x[k − 1]
are the k-th and previous signal samples respectively. Further
signal analysis is performed on the signal derivative due to
the fact that signal settling time after movement is quite long
— not less than 1–2 seconds for our specific sensor, and
these signal perturbations during settling time are reduced
in the derivative. The effect is evident in Fig. 6, where
the perturbations on approximately 11th–13th and 20th–22nd
seconds are due to movements stopping.

The movement patterns in the PIR signal can easily be
contaminated by ambient noise or by insignificant movements.
For this reason we perform target movement detection prior
to object velocity estimation. Movement detection consists of
computing the envelope of the absolute valued signal, and
thresholding the envelope (see Fig. 6 middle subplot). Low
signal dynamics (causing near zero derivative) suggest to use
a sliding average value of the envelope amplitude

x̄[k] =
1

N

∑

k−N<i≤k
x[i], (4)

where N is the sliding window length.
For pattern matching we extract a set of temporal features

and apply an inference mechanism, which maps the feature
vectors onto speed estimates. PIR is a weakly oscillating signal
with lengthy perturbations. For this reason frequency analysis
and correlation based pattern matching is inapplicable. The
features are extracted during periods of movement detection:

1) Zero crossing interval (ZCI) — time between two suc-
cessive signal zero crossings xZCI = kZC(i−1)−kZC(i),
which can be considered a rough estimate of half-period.
All other features are computed once for every ZCI.

2) Amplitude (AMP) — maximum of half-period absolute
values xAMP = max

(∣∣x[kZC(i−1)]
∣∣ , . . . ,

∣∣x[kZC(i)]
∣∣).

3) Gradient (GR) — value of half-period maximal increase
rate xGR = max

(∣∣∆x[kZC(i−1)]
∣∣ , . . . ,

∣∣∆x[kZC(i)]
∣∣).

4) Mean gradient (MGR) — mean value of half-period
increase rate xMGR = 1

xZCI

∑kZC(i)

j=kZC(i−1)
|∆x[j]|.

5) Mean square energy (MSE) — mean value
of signal half-period squared amplitudes
xMSE = 1

xZCI

∑kZC(i)

j=kZC(i−1)
x2[j].

In our approach we apply fuzzy inference, which provides effi-
cient non-linear mapping for a set of features. For this solution
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blue) and signal average level (magenta). Lower: normalized signal (dotted
blue) and interval of detection (between red lines).

we use a Sugeno-type Fuzzy Inference System (FIS), which
is composed as an Adaptive Network-based Fuzzy Inference
System (ANFIS) and trained using pre-acquired feature data.
An example of walking speed estimation is presented in Fig. 6.
In the experiment a person went past the sensor with two
speeds. It can be seen that the approach distinguishes between
moderate walking (app. 1 m/s) and jogging (app. 2.5 m/s)
speeds well.

C. Object Detection Using Magnetic Sensors

Applied magnetic sensors operate on the electromagnetic
induction principle, i.e. passing of ferromagnetic material in
front of the sensor produces voltage fluctuations in the signal.
Thus, magnetic sensors are susceptible to vehicles and other
personnel carrying things made from ferromagnetic materials.
In the proposed system we apply a fairly simple approach to
detection based on observing signal deviation.

For every signal sample x[k], the mean amplitude x̄[k]
of N = 10 previous samples is computed using (4) and

subtracted from the signal to remove the bias. If the absolute
value |x[k]− x̄[k]| is above a pre-defined threshold ∆min, the
moment t0 is fixed and the detection system status goes from
state 0 to state 1 (during which the hypothesis whether the
deviation is caused by a passing object is verified). When the
value |x[k]− x̄[k]| drops below ∆min, the time tf is fixed and
the system drops to state 0. Note that in state 1 the value of
x̄[k] is not updated.

To eliminate false detection due to noise, the lower threshold
for detection period tmin is defined. If the considered period
tf − t0 is greater than the threshold tf − t0 > tmin, detection
is considered successful and the values t0, tf are sent to
control nodes along with the absolute deviation amplitude
|max (|x[i]|)− x̄[k]|, i ∈ [t0, tf ].

The choice of ∆min and tmin determines the sensitivity of
the algorithm. Using these parameters the sensor may be tuned
to detect certain objects with known properties. The specific
values of t0 and tf , along with the perturbation amplitude give
a rough estimate of object type, e.g. vehicle or armed soldier.
We use a 3-axis sensor and each axis is processed separately.
Fig. 7 presents a result of vehicle detection with ∆min = 10
and tmin = 0.1 for the x-axis. In the experiment a passenger
car drove by 1.5 m from the sensor at 20 km/h. A large ∆min

results in a short but definite detection interval.

D. Object Identification, Tracking and Global Assessment

In the current ISR system configuration object identifica-
tion is possible through acoustic data analysis. A previously
developed multistage algorithm for vehicle identification [7]
is applied in acoustic UGS. In [8] we show the ability of the
method to operate in real-time on embedded hardware with
various frame lengths. For this work we, however, use separate
UGS for acoustic identification in order not to interfere with
localization. The identification method consists of signal shape
tracking, frequency analysis and classification procedures. It is
able to distinguish between pre-defined vehicle classes (light
versus heavy transport) or identify specific vehicle models
using supplied reference patterns.

For tracking we use the discrete Kalman filter (KF) applied
to localization results. KF provides the closed form recursive
solution for the a linear dynamic system of the form:

xk = Ak−1xk−1 + qk−1
yk = Hk−1xk + rk−1

, (5)

where xk is the system state vector at time step k, yk is
the measurement vector, Ak−1 is the transition matrix of the
dynamic model, Hk−1 is the measurement matrix, qk−1 ∼
N (0,Qk−1) is the process noise with covariance Qk−1 and
rk−1 ∼ N (0,Rk−1) is the measurement noise with covariance
Rk−1. KF consists of a prediction step, where the next state of
the system is predicted given the previous measurements, and
an update step, where the current state is estimated given the
measurement at the time. Movement of the acoustic source is
described as a discretized Wiener process velocity model [9]
with the state vector defined as xk =

[
xk yk ẋk ẏk

]T
,

where (xk, yk) is object position and (ẋk, ẏk) — the velocity.
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Tracking is performed on central nodes of the WSN using
the coordinates of acoustically localized regions. For final
trajectory estimation the Rauch-Tung-Striebel (RTS) smoother
is applied [9]. It removes trajectory irregularities, which appear
due to slight errors during localization (see Fig. 4). Addition-
ally we use the KF predictions to determine object position
regions for the next localization iteration. This helps to remove
redundant regions mentioned in the end of III-A.

Global assessments are made based on acoustic localization
and identification, detection results by magnetic and PIR
UGS and estimated trajectories. Events are sequenced in time
(which is discussed in the next chapter) and estimation of the
number of objects, their types and trajectories is performed.
While objects remain in the system’s FOV, reports on this
information are sent to other systems of SoS after every
assessment iteration.

IV. NETWORKING AND DATA VALIDATION

Performing computations in a distributed dynamic SoS
with wireless communication between the individual systems
presents many challenges in terms of guaranteeing data cor-
rectness. The data that is used in situation awareness com-
putation must satisfy certain temporal and spatial constraints
(i.e. its age must not be greater than a pre-specified value
or come from a certain location). It is easy to achieve such
guarantees in a system with a fixed configuration, however
in a dynamic setting the systems must evaluate these data
properties at runtime.

A. Proactive Middleware

Validity checking can be successfully performed with proac-
tive middleware, called ProWare. It relies on the concept of
active data mediators that are part of every system to ensure
the correctness of data and the resilience of the SoS. ProWare
is responsible for ensuring data validity and also mediates the
process of finding data providers (in our case local UGS) and
bringing them together with data consumers (central UGS).
We have shown the viability of this data mediation approach
and its ability to ensure temporal and spatial correctness of
data in our previous work [10]. Checking temporal constraints
of measured data involves estimating the offset of the clocks
of data providers and consumers. Our middleware component
keeps track of the different clock offsets of system components
and regularly checks and updates the change (caused by clock
drift, jitter etc.) in these offsets. This temporal information is
then used to estimate the time of measurement of the data in
local time of the data consumer.

B. Communication and Data Validation

Temporal data validation is very important in our time-
critical application. Metadata synchronization plays a major
part in global assessment generation. For effective acoustic
localization, for example, the DOA calculations ideally must
be performed simultaneously. In real conditions a time interval
must be specified in which the estimates are considered simul-
taneous. Due to undefined transmission delays “simultaneous”

data may arrive at different times and not get in this validity
interval. Correct data order, on the other hand, is vital for
tracking and trajectory estimation. Delayed messages can
easily be placed out of order on the receiving side, which
will affect the situation assessment.

Our system uses an asynchronous ad-hoc topology of the
wireless network. Global time thus is not specified. Each UGS
operates in its local time and metadata is broadcasted. Central
UGS receive all messages and choose the ones they will use
for their procedures (specific localization group, metadata of
specific type, etc.). Every metadata message is equipped with
a time label specifying data age in milliseconds. Immediately
after a signal is acquired, it is given a time label in local time.
At the moment of message composition this label is subtracted
from the present time reading and the elapsed time label is
sent out with the metadata. The receiving UGS then perform
transmission time estimation using ProWare and get the data
age estimates in their own local time.

V. CONCLUSION

The paper discusses the possibility of using low power
sensors in a multimodal ISR system. By using low computa-
tional cost signal processing approaches along with distributed
computing and special communication schemes, adequate and
timely situation assessments can be made. Connecting the
sensors through an ad-hoc WSN and using redundant sensors
reduces the role of every lone sensor and provides robustness,
which is very important in military applications.
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Abstract

Microphone arrays and, specifically, circular arrays have been used for sound
source localization and multimedia applications for more than a decade. In
recent years the development of compact arrays for implementation in Wire-
less Sensor Networks (WSN) has risen in popularity. This paper considers
a 2D Direction of Arrival (DOA) estimation method for a compact circular
array, equipped with additional vertically placed microphones. The proposed
method is aimed at reducing the computational cost of DOA estimation for
implementation on embedded hardware of WSN smart sensors. The method
is compared with a well known localization algorithm of SRP-PHAT and is
proven to provide adequate DOA estimates, while being more computation-
ally effective.
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Abstract—Microphone arrays and, specifically, circular arrays
have been used for sound source localization and multimedia
applications for more than a decade. In recent years the de-
velopment of compact arrays for implementation in Wireless
Sensor Networks (WSN) has risen in popularity. This paper
considers a 2D Direction of Arrival (DOA) estimation method
for a compact circular array, equipped with additional vertically
placed microphones. The proposed method is aimed at reducing
the computational cost of DOA estimation for implementation
on embedded hardware of WSN smart sensors. The method is
compared with a well known localization algorithm of SRP-PHAT
and is proven to provide adequate DOA estimates, while being
more computationally effective.

Index Terms—Circular microphone array, Direction of Arrival,
SRP-PHAT, Wireless Sensor Networks.

I. INTRODUCTION

Applying an array of microphones for acoustic signal acqui-
sition, instead of a single sensor, provides additional possibili-
ties for signal processing, namely, acoustic source localization
and more efficient signal filtering via beamforming. In this
lies the reason behind the increasing popularity of multi-
sensor approaches to audio processing. Different acoustic
array configurations are thoroughly researched and applied to
different fields of audio signal processing, the most common
being speaker localization for signal quality improvement in
multimedia devices. Small microphone arrays are implemented
in audio recording devices, such as conference microphones
and headsets, which produce clearer speech signals in low
Signal to Noise Ratio (SNR) conditions [1].

The application range of acoustic arrays is, however, much
broader than just multimedia devices. The increase of produc-
tivity of embedded hardware and Analog to Digital Converter
(ADC) microsystems paves the way for standalone smart
sensors, equipped with acoustic arrays, among other types
of sensors. Interconnected through Wireless Sensor Networks
(WSN), these smart sensors may perform a large number of
different tasks, both civilian and military. In our previous work
we have shown the feasibility of a WSN consisting of small
and relatively cheap smart sensors performing the tasks of
an on-ground Intelligence, Surveillance and Reconnaissance
(ISR) system [2]. In this system smart sensors, equipped
with linear microphone arrays, are used for the detection
and localization of moving enemy ground forces. Civilian
applications of our approach include speaker localization and
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Fig. 1. Configuration of the considered circular microphone array and its
desired Field of View.

industrial machinery monitoring [3]. Aside from linear arrays,
circular array configuration has been a popular choice for
different applications besides speaker localization, ranging
from more common ones, like robot sensory systems [4], to
human fall detection systems for the elderly [5] and aircraft
tracking at airport runways [6]. Circular arrays are appealing
because they provide a 360◦ horizontal Field of View (FOV)
with a very simple geometry.

In this paper we consider a circular microphone array, which
will be implemented in our WSN systems in the future. This
paper discusses a reduced computational cost 2D DOA estima-
tion algorithm for an array configuration presented in Fig. 1.
For such a configuration we propose a two-stage approach
of azimuth and elevation estimation using cross-correlation in
the time domain. For comparison we apply a well known,
effective, but computationally expensive localization algorithm
of Steered Response Power (SRP-PHAT). Later in the paper
we experimentally prove the ability of our approach to provide
adequate DOA estimates, while consuming significantly less
computational power than SRP-PHAT.

II. ARRAY CONFIGURATION AND APPLICATION FIELD

The task of 2D DOA search consists of estimating the
horizontal Angle of Arrival (AOA), or azimuth φ, and the polar
AOA, or elevation θ, of incoming acoustic waves. The micro-
phone array configuration is designed to meet the desired FOV
for localization of on-ground objects. The targeted application



field assumes localization of slow-moving sources (no more
than 5 m/s) at a distance of less than 10 m from the array in
both indoor and open outdoor environments. The array consists
of Mh microphones, equidistantly mounted in a horizontal
circular shell, and Mv microphones, placed vertically upwards
from the center of the circular shell (Mh = 6, Mv = 2 in
Fig. 1). The flat bottom then allows for mounting the array
on different surfaces. All the microphones used in the imple-
mentation are omnidirectional, however, the shell mounting
reduces the directivity of horizontal microphones. In a closed
indoor environment this helps reducing the susceptibility to
reverberation. In an open environment, where noise sources
may arise at any given time and their number is unpredictable,
the microphones, facing the sound source of interest, are less
affected by noise sources arising in other directions.

The array must also be compact for our applications (well
integrable and not obstructing movement). For the experi-
mental prototype we use a circular shell with the radius of
r = 0.075 m. For a uniform array the angle between two
successive microphones α = ∠mh

i Om
h
i+1, relative to the array

center O, is

α = ∠mh
i Om

h
i+1 =

2π

Mh
, (1 ≤ i < Mh). (1)

In the case of six microphones α = π
3 . The two vertical

microphones mv
1 , mv

2 are set at distances of 0.1 and 0.2 m
from the horizontal plane, respectively, to meet the desired
vertical FOV of [−60◦, 60◦].

III. DOA ESTIMATION WITH SRP-PHAT

Steered Response Power with Phase Transform (SRP-
PHAT) is a method of DOA estimation for acoustic signals.
The SRP P (~a) is a real-valued functional of a spatial vector
~a, defined by the FOV of a specific array. The maxima
in P (~a) indicate the estimates of sound source location.
P (~a) is computed for each direction in ~a as the cumulative
Generalized Cross-Correlation with Phase Transform (GCC-
PHAT) across all pairs of microphones at the theoretical
time delays, associated with the chosen direction. Consider a
pair of signals xk(t), xl(t) of an arbitrary array, consisting
of M microphones. The times of soundwave arrival from
point a to the two microphones are τ(a, k) and τ(a, l),
respectively. Hence the time delay between the two signals
is τkl(a) = τ(a, k) − τ(a, l). The SRP-PHAT for all pairs of
signals is then defined as

P (a) =

M∑

k=1

M∑

l=k+1

ˆ ∞

−∞
ΨklXk(ω)X∗l (ω)ejωτkl(a)dω, (2)

where Xi(ω) is the spectrum (i.e. the Fourier transform) of
signal xi, and X∗i (ω) is the conjugate of that spectrum. Ψkl

is the PHAT weight of the inverse of spectral magnitudes:

Ψkl =
1

|Xk(ω)X∗l (ω)| . (3)
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Fig. 2. A volumetric SRP image of an acoustic source with DOA angles equal
to φ = 300◦ and θ = 30◦. Red region indicates the direction to source.

A. Exhaustive DOA Search with SRP-PHAT

SRP-PHAT is a more general tool for acoustic localization
and DOA estimation [7]. It is typically used to estimate the
SRP values over the whole area or volume of the FOV. This
enables localization of multiple sound sources, while also
reducing reverberation and masking effects. In this approach
the FOV volume is discretized into a spatial grid, with a
SRP value computed for every point. Though the approach
is most comprehensive, the immense number of computations
it requires makes the process extremely slow and demanding.

Consider the example presented in Fig. 2. The figure por-
trays an SRP image of a part of the considered FOV — the
fourth quadrant of the horizontal plane with array center at
(0, 0, 0). This volumetric part of the FOV, measuring 0.5 m in
length, depth and height, is discretized with a distance space of
0.01 m along every axis. Thus the volume vector ~a consists of
0.53/0.013 = 125000 discrete directions, and so the evaluation
(2) must be performed the according number of times. The
procedure clearly visually indicates the DOA of the acoustic
source, however, it presents a challenge for autonomous search
of elevated SRP values. There exist numerous propositions
of simplifying the SRP-PHAT exhaustive search procedure,
e.g. applying a stochastic search for the SRP maxima in the
functional [8], or contracting the initial search volume [3],
previously proposed by us. In this paper we reduce the number
of computations by choosing a reduced functional.

B. Search with SRP-PHAT over a Reduced Functional

To reduce the SRP-PHAT functional we propose to perform
horizontal and vertical DOA estimation separately. So, the
horizontal plane is divided into nh and the vertical plane —
into nv possible AOA angles, respectively. A single angle is
calculated, similarly to (1), as φh = 2π

nh
and θv = π

nv
. The

points are chosen in the volumetric FOV along a spherical
surface with radius rFOV . The horizontal SRP-PHAT evalua-
tion is performed over the entire circumference [0, 2π) for the



points ah,i = (xh,i, yh,i, 0):

xh,i = rFOV cos (iφh) , (0 ≤ i < nh) ,
yh,i = rFOV sin (iφh) , (0 ≤ i < nh) .

(4)

The azimuth is estimated in the directions of elevated SRP
values. For a single source case it is equal to

φ = i
max(P (~ah))

φh. (5)

Then the vertical SRP-PHAT evaluation is performed over the
vertical half-circumference from the positive z-axis downward,
i.e. [0, π], in the direction of established azimuth φ for the
points av,i = (xv,i, yv,i, zv,i):

xv,i = rFOV cos (φ) sin (iθv) , (0 ≤ i ≤ nv) ,
yv,i = rFOV sin (φ) sin (iθv) , (0 ≤ i ≤ nv) ,

zv,i = rFOV cos (iθv) , (0 ≤ i ≤ nv) .
(6)

The elevation angle is estimated in the direction of elevated
SRP, and also brought to a more comprehensive interval from
the positive z-axis downward

[
π
2 ,−π2

]
:

θ =
π

2
− i

max(P (~av))
θv. (7)

IV. PROPOSED APPROACH TO DOA ESTIMATION

Even with a reduced functional, SRP-PHAT requires signif-
icant resources and processing time because it operates in the
frequency domain and employs cross-correlation between all
pairs of microphones. Taking into account the Doppler Effect,
signal processing in the frequency domain is advantageous
for moving source localization [9]. For our applications we
consider velocities, which produce minimal to no frequency
shifts. So, we focus on reducing the burden of the Fourier
Transform by operating in the time domain, while also reduc-
ing the number of microphone pairs for cross-correlation.

Here we review our two-stage approach for a circular array
with Mh horizontal and Mv vertical microphones, discussed in
Section II. As the horizontal microphones take a directional
DOA estimation approach, the pairs of microphones for az-
imuth estimation are chosen such, that their inter-sensor angle
is less than π

2 : αij = ∠mh
i Om

h
j <

π
2 . Let us denote the set

of these pairs as

Ah =
{(
mh
i ,m

h
j

)
⊆ SMh

2 | αij <
π

2

}
, (8)

where SMv
2 is the set of all combinations of horizontal micro-

phone pairs,
∣∣∣SMh

2

∣∣∣ =
(
Mh

2

)
. Through a procedure, discussed

in Section IV-A, a separate azimuth estimate ϕ̂ij is computed
for every pair (mh

i ,m
h
j ) ⊆ Ah, and a final estimate φ is made.

For the elevation angle estimation a set of horizontal mi-
crophones, situated within the half-circumference of direction
φ, is chosen: Aact =

{
mh
i | −π2 ≤ αφ,mh

i
< π

2

}
, where

αφ,mh
i

= φ− αmh
i

is the angle between the azimuth estimate
and the microphone position. Aact here denotes the set of so-
called “active” horizontal microphones. The pairs participating
in elevation estimation consist of: pairs between every active
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Fig. 3. Horizontal (left) and vertical (right) angle of arrival estimation for a
far field acoustic source.

microphone and every vertical microphone; every pair of
vertical microphones. Lets denote this set as

Av =
{(
mh
i ,m

v
j

)
| mh

i ∈ Aact, j = [1,Mv]; S
Mv
2

}
, (9)

where SMv
2 is the set of all combinations of vertical micro-

phone pairs,
∣∣∣SMv

2

∣∣∣ =
(
Mv

2

)
. A separate elevation estimate

θ̂ij is computed for every pair (m∗i ,m
∗
j ) ⊆ Av , and a final

estimate θ is made, as discussed in Section IV-B.

A. Azimuth Angle of Arrival Estimation

For azimuth estimation we assume the far field disposition
of the acoustic source (i.e. the spherical wavefront is spread
enough to be considered planar). As it was previously stated,
the initial azimuth estimates are made for every pair of
horizontal microphones

(
mh
i ,m

h
j

)
⊆ Ah. Consider Fig. 3

(left). For any pair
(
mh
i ,m

h
j

)
of consecutive microphones, the

azimuth estimate can be obtained by

ϕ̂ij = sin−1
(τij · c

l

)
= sin−1

(
∆kij/fs · c

l

)
, (10)

where c is the speed of sound, l is the distance between two
consecutive microphones, calculated as

l = 2r sin
(α

2

)
= 2r sin

(
π

Mh

)
, (11)

and τij is the Time Difference of Arrival (TDOA) of the
wavefront to microphones mh

i and mh
j . For non-consecutive

microphones, l is calculated by substituting α in (11) with
its multiple. In (10), τij is also represented in terms of delay
in samples ∆kij and the sampling frequency fs. Note, that
the TDOA is always limited to τ ∈ [−τmax, τmax], where
τmax = l/c is the delay of sound traveling directly from one
microphone to the other (i.e. at ±π2 ). To estimate τij we apply
cross-correlation to the pair of signals:

R (τij) =

n−1∑

k=0

xmh
i
(k) · xmh

j
(k − τij), (i < j), (12)

where n is the length of the signals in samples. The maximum
of the cross-correlation max (R (τij)) then defines the TDOA.
The quality of the estimate is measured as cross-correlation
peak distinctness from its mean level:

qij = max (R (τij))−mean (R (τij)) . (13)



Each estimate ϕ̂ij is made for the middle point if the inter-
microphone distance and takes the values of ϕ̂ij ∈

[
−π2 , π2

]
,

taking negative values if the source is left, positive — if
the source is right, and zero — if the source is in front of
the pair. Thus, ϕ̂ij are adjusted to array angle coordinates:
ϕ̂∗ij = ϕ̂ij + ((i− 1)α+ (j − 1)α) /2. Next, coherent direc-
tions are found among the estimates. This is done by applying
a partitioning procedure, similar to the one we presented in [3].
The procedure performs the task of clustering the ϕ̂∗ij estimates
such, that the coherent estimates must lie within a sector with
a central angle no mare that ϕmax. For example, if ϕmax = π

6 ,
then each cluster’s coherent estimates must lie no more than[
− π

12 ,
π
12

]
from the cluster’s centroid.

The resulting clusters Φp, p = 1, . . . , P , where P is the
number of clusters, each contain np estimates ϕ̂k, k = [1, np],
and the associated quality qk. The clusters are evaluated in
order to find the final azimuth estimates. Algorithm 1 handles
the final azimuth calculation for the single source case. There
σ = (0, 1) is the lower threshold of tolerance. The final
azimuth estimate φ cannot be made if there are insufficient
coherent estimates or if they are of low quality.

Algorithm 1 Final azimuth φ estimation for a single source
Require: Φp, qk ∼ ϕ̂k ∈ Φp, p = 1, . . . , P

get largest cluster size |Φ|max, maximum quality qmax

if |Φ|max = 1 or qmax < allowed then
return φ← ∅

else if Φp of size |Φ|max contains ϕ̂k with qmax then
return φ←∑np

k=1 qkϕ̂k/
∑np

k=1 qk . weighted mean
else search in smaller Φp, np > 1 for qk ≥ σ · qmax

case found: return φ←∑np

k=1 qkϕ̂k/
∑np

k=1 qk
case not found: return φ← ∅

end if

B. Elevation Angle of Arrival Estimation

Elevation estimation is performed once the azimuth is set.
As the horizontal microphones are not in line with the wave-
front, incoming at φ, the signals of active microphones must
be shifted to meet the TDOA at φ. In computing this shift, we
maintain the far field assumption, however, its inconsistency
produces negligible error. Both the shifting procedure and
estimation of near field error are addressed in the Appendix.

After the signals xmh
i ∈Aact

have been shifted to meet the
φ AOA, elevation estimates θ̂ji for all microphone pairs in
Av are made using (10) and (12). The pairs of horizontal and
vertical microphones, as portrayed in Fig. 3 (right), are set at
angles γj , j = [1,Mv], relative to the vertical plane. Thus, the
initial estimates are steered by

θ̂∗ji = γj − θ̂ji = tan−1
(

r

zmv
j

)
− θ̂ji, (14)

where zmv
j

is the distance from O to mv
j on the z-axis.

Final elevation AOA estimation is performed by applying the
clustering procedure, addressed in the previous section, and
Algorithm 1 for clusters Θp and sought-for angle θ.

V. EXPERIMENTAL RESULTS

The array implementation parameters are: r = 0.075 m,
Mh = 6, α = π

3 , Mv = 2, zmv
j

= {0.1, 0.2} m. We
use Vansonic PVM-6052 condenser microphones, connected
through a custom-built amplification board to an Agilent
U2354A data acquisition device, which samples the signals at
fs = 48 kS/s per channel. The data is acquired and processed
in the Matlab environment using the Data Acquisition Toolbox.
The processing is performed frame-by-frame with a step of 0.1
seconds for both the proposed method and SRP-PHAT.

The experiments for single source DOA estimation are
performed indoors under SNR conditions of app. 20 dB. A
loudspeaker, reproducing human speech, is placed at certain
angles within a distance of 1–2 m from the array. Here we con-
sider four experiments. For the first two the speaker remains at
φ = 300◦ (i.e. in the direction of the 6-th microphone) and is
lifted and lowered to test θ estimation accuracy. The speaker
either remains at a certain θ for 3–4 seconds (Experiment I),
or moves constantly (II). For the other two experiments the
speaker is moved around the array, varying in both φ and θ.
Here the speaker is also carried either fixing the position with
stops (III), or moving constantly (IV).

For the SRP-PHAT approach, reviewed in Section III-B, we
choose rFOV = 0.5 m and nh = 500, nv = 250, which results
in accuracy φh = θv = π

250 ' 0.72◦. The approach thus
requires 750 evaluations (2), as opposed to many thousands
in case of exhaustive search. The result of a single frame
evaluation is presented in Fig. 4. Both global maxima of
φ = 300◦ and θ = 30◦ are distinctive among local surplus
peaks of SRP, likely arising due to reverberation. The elevated
θ levels at app. −10◦ are noteworthy, apparently arising due
to sound reflections from the floor surface, as studied in [10].

The proposed approach utilizes 19 pairs of microphones,
according to the definitions of Ah and Av in (8), (9): 6
consecutive pairs mh

im
h
i+1 ((1, 2), (2, 3), etc.); 6 pairs over

one microphone mh
im

h
i+2 ((1, 3), (2, 4), etc.); 6 pairs between

two vertical mv
j and three mh

i ; 1 pair mv
im

v
i+1. Thus the

number of pairs is less than for the SRP-PHAT case, which
utilizes

(
8
2

)
= 28 pairs. This difference will be more evident,

if applied to a larger number of microphones. The clustering
parameters are set to ϕmax = 30◦, θmax = 10◦, σ = 0.6.
The result of DOA estimation with the proposed method for
a single frame is presented in Fig. 5. The initial azimuth
estimates strongly resemble the SRP peak distribution pattern
of Fig. 4, indicating a similar reaction to reverberation. The
sought-for DOA is also correctly established.

The DOA estimates of both methods for signal segments
of Experiments I and IV are presented in Fig. 6 and Fig. 7,
respectively. Static position of a highly elevated source seems
to disrupt φ estimation for both methods, which is evident
in the interval of φ = [50◦, 60◦] in Fig. 6. During constant
movement this static effect is not noticed, however, certain
irregularities do arise during rapid movement, e.g. during
the interval of 3–6 s in Fig. 7. Generally, the proposed
method is not inferior to SRP-PHAT in the considered FOV,
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while requiring less processing time. Table I presents the
processing time (mean over 10 runs) and DOA estimate Root
Mean Square Error (RMSE) for the four experiments. As
the processing time is measured in Matlab, running on a
PC, it is by no means an adequate measure of computation
speed on embedded hardware, however, it shows that the
proposed method operates more than 3 times faster than SRP-
PHAT over the reduced functional. The RMSE is calculated
as a difference between the estimates, produced by SRP-
PHAT, and the proposed method: as the testing was performed
manually, the error in speaker placement cannot be adequately
accounted for. The RMSE remains in reasonable bounds for
all experiments, if considering close-range localization.

VI. DISCUSSION AND FUTURE WORK

SRP-PHAT is used in this paper simply for comparison with
the proposed method. The handled reduced functional, how-
ever, may be reduced further by applying, for example, non-
uniform spatial sampling [11], or stochastic search, proposed
in [8]. This way, in a WSN of multiple arrays, different DOA
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Fig. 6. DOA estimates for Experiment I. Red — azimuth estimated by SRP-
PHAT, purple — azimuth estimated by proposed method, blue — elevation
estimated by SRP-PHAT, green — elevation estimated by proposed method.
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Fig. 7. DOA estimates for Experiment IV. Red — azimuth estimated by SRP-
PHAT, purple — azimuth estimated by proposed method, blue — elevation
estimated by SRP-PHAT, green — elevation estimated by proposed method.

methods may be applied for mutual reassurance. The MUSIC
algorithm is also a good candidate for comparison with our
method. In [12], for example, MUSIC is applied to an array
of similar configuration with promising results.

The problem of multiple source localization must be thor-
oughly addressed in the future. Both SRP-PHAT and our
method imply multiple DOA estimation, however, the spatial
limitations and various acoustic effects must be examined,
similarly to [13], [14], in order to make reliable conclusions.

TABLE I
EXPERIMENTAL SIGNAL PROCESSING TIMES AND RMSE OF DOA

Expe- Length t. proc. (s) t. proc. (s) RMSE RMSE
riment (s) SRP-PHAT proposed φ (deg) θ (deg)

I 70.0 283.45 84.25 4.51 2.29
II 62.0 248.77 74.63 5.22 1.86
III 86.0 343.30 103.68 9.43 2.84
IV 52.0 210.97 62.88 13.67 1.99



TABLE II
INFLUENCE OF NEAR FIELD ERROR AT DIFFERENT d AND fs

c = 343 (m/s), r = 0.075 (m), αφ,mh
i

= π
2

d (m) fs (S/s) R− d (cm) ∆nf (cm) ∆knf (S)
0.05 48000 9.51 2.06 3
0.05 32000 9.51 2.06 2
0.05 24000 9.51 2.06 1
0.1 48000 8.97 1.52 2
0.1 32000 8.97 1.52 1
0.1 24000 8.97 1.52 1
0.2 48000 8.44 0.99 1
0.7 48000 7.81 0.36 1

VII. CONCLUSION

The proposed method for 2D DOA estimation is shown
to produce results, similar to the ones of SRP-PHAT, while
requiring less than a third of the processing time. The final
estimates are very similar to the results of SRP-PHAT for
acoustic source localization in the considered FOV. Further
research is required to estimate the effectiveness of the ap-
proach for multiple source DOA estimation and the ability to
operate in real-time on embedded hardware.

APPENDIX
SIGNAL SHIFTING AND INFLUENCE OF NEAR FIELD ERROR

As for elevation estimation the azimuth estimate is fixed, the
signal of the active horizontal microphones in Aact must be
shifted to meet with the φ AOA. Consider Fig. 8. The far field
planar acoustic wave reaches microphone mh

i in the horizontal
plane with a spatial delay h, which is defined as

h = a cosβ = 2r sin

(
αφ,mh

i

2

)
cos

(
π − αφ,mh

i

2

)
. (15)

The signal of microphone mh
i must be thus left-shifted for

∆kf =
⌊
h fsc

⌋
samples.

Let us now review the case, where the far field assumption
is not met. The spatial delay between a far field planar and a
near field spherical acoustic wave is defined in Fig. 8 as ∆nf .
Assuming a near field source, situated at distance d from the
point of φ AOA, the microphone mh

i will receive the wave
from the distance R with a spatial delay of R − d. While
dealing with a spherical wavefront, h + ∆nf = R − d, and
thus ∆nf = R− d− h, where R is defined as

R =
√
d2 + a2 − 2ad cos (π − β). (16)

In turn, the delay error in samples is

∆knf =

⌊
(R− d− h)

fs
c

⌋
= f

(
r, αφ,mh

i
, d, c, fs

)
. (17)

Now let us evaluate the influence of d and fs on the near
field error with the fixed: sound speed, r (by array geometry)
and αφ,mh

i
(by requirement of belonging to Aact). Table II

presents several cases of error at different d and fs. For our
array geometry the error produced by a sound source at a
distance larger than 0.1 m is negligible, even at fs = 48 kS/s.
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Fig. 8. Signal delay estimation for the near and far field assumption.
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Abstract

Gunshot acoustic localization for military and urban security systems has
long been an important topic of research. In recent years the development
of independent Unmanned Ground Sensors (UGS), interconnected through
Wireless Sensor Networks (WSN), performing distributed cooperative local-
ization, has grown in popularity. This paper proposes an asynchronous
method of gunshot localization, performed by UGS, equipped with circu-
lar microphone arrays. Each UGS in the WSN estimates the Direction of
Arrival (DOA) of acoustic events and the time delay between these events.
Fusion nodes perform event identification, accounting for outliers (e.g. tar-
get hit noise), and shooter localization, based on gathered event information
and WSN geometry. The approach is tested on real signals, acquired at a
shooting range, and succeeds in localizing the shooter’s position with a mean
accuracy of 0.87 meters for 30 shots.
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Abstract—Gunshot acoustic localization for military and
urban security systems has long been an important topic
of research. In recent years the development of independent
Unmanned Ground Sensors (UGS), interconnected through
Wireless Sensor Networks (WSN), performing distributed co-
operative localization, has grown in popularity. This paper
proposes an asynchronous method of gunshot localization,
performed by UGS, equipped with circular microphone arrays.
Each UGS in the WSN estimates the Direction of Arrival
(DOA) of acoustic events and the time delay between these
events. Fusion nodes perform event identification, accounting
for outliers (e.g. target hit noise), and shooter localization,
based on gathered event information and WSN geometry. The
approach is tested on real signals, acquired at a shooting range,
and succeeds in localizing the shooter’s position with a mean
accuracy of 0.87 meters for 30 shots.

I. INTRODUCTION

Active development of shooter acoustic localization sys-
tems has continued for more than three decades. Numerous
different gunshot detection and direction estimation systems
are currently available for military applications of sniper and
covert enemy force positioning, and are also used in law
enforcement for gun violence reduction and forensics [1].
The devices currently available are generally standalone
systems, composed of a single microphone array, e.g. the
vehicle-mountable Boomerang system [2]. Individual gun-
shot detectors, developed for military and law enforcement
personnel [3], consist of compact shoulder-carried, helmet or
uniform mounted sensors. Such individual systems increase
local situation awareness, however, for large area coverage
a different approach is required.

Modern Military Intelligence, Surveillance and Re-
connaissance (ISR) systems apply distributed Unmanned
Ground Sensors (UGS) interconnected through a Wireless
Sensor Network (WSN) for large area coverage. UGS
perform local situation assessment, and through data fusion
a global assessment over the whole monitored area is made.
A distributed system configuration expands UGS collective
Field of View (FOV) and thus is well suitable for shooter
localization. The state of the art in this area suggests
either synchronous [4], or asynchronous [5] gunshot acoustic
event detection and subsequent shooter localization based on
UGS collective information. The majority of the proposed
approaches work with single-sensor UGS, computing the
gunshot event parameters (e.g. time delays between gun-
shot events) under different initial assumptions, e.g. the
caliber of the fired projectile [4], or a certain ballistic
shockwave acoustic model [6]. However, initial assumption

inconsistency and the presence of acoustic event outliers
may significantly reduce localization accuracy [7].

Employing multichannel smart sensors for gunshot
localization allows to additionally estimate the Direction
of Arrival (DOA) of gunshot event acoustic waves. In this
paper we propose a method of shooter localization based
on gunshot event DOA and Time Difference of Arrival
(TDOA) information. In our approach each UGS performs
gunshot event detection, computes the DOA and fixates
event occurrence time in its own local time. The fusion node
gathers DOA and time information from all UGS, performs
gunshot event identification, calculates the TDOA between
events of interest and estimates the shooter position, based
on the known UGS positions. The TDOA are calculated
per each UGS and no cross-UGS delays are used, thus
node synchronization is not required (however, node clock
divergence still needs to be roughly estimated for the fusion
node to be able to distinguish between shot instances).

The proposed method is tested on signals, acquired by
four circular microphone array UGS during a live shooting
exercise with a shooter-target distance of 35 m. For DOA
estimation we apply a reduced computational cost approach,
presented by us in [8], and the well-known method of
Steered Response Power (SRP-PHAT) for comparison. The
experimental results indicate the feasibility of the proposed
localization method in terms of gunshot event detection,
outlier elimination and shooter position estimation.

II. GUNSHOT ACOUSTIC COMPONENTS

A gunshot is characterized by the shockwave (SW),
produced by a supersonic projectile, and the muzzle blast
(MB) of the fired weapon. Fig. 1 portrays the acoustic
events, produced by a gunshot at point Z, as observed at
point O. SW produces a conical wavefront at an angle θ to
the bullet’s trajectory. The angle θ depends on the speed of
sound in air c and the bullet velocity v:

θ = sin−1 c

v
. (1)

The initial bullet velocity is equal to the muzzle velocity
v0, which depends on the bullet caliber and cartridge type,
and decreases with distance. The waves of MB, on the
other hand, propagate spherically at c in all directions.
As c depends on the ambient temperature, for an open
environment it is calculated as

c = 331.45
√
1 + t◦/273, (2)

where t◦ is the temperature in Celsius.
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Fig. 1. Gunshot acoustic event geometry.

Fig. 2. Two considered shot scenarios. Bullet passes the UGS cluster (I);
bullet hits the target in the vicinity of the UGS cluster (II).

At line-of-sight, the sensor at O detects MB at the time

tMB = tshot +
dO,Z

c
, (3)

where tshot is the time of shot, and dO,Z = ‖O − Z‖ is
the Euclidean distance between points O and Z. Acoustic
waves of SW originate from the bullet itself and not from
the muzzle. As the bullet has reached point A (see Fig. 1),
the SW wave propagates at c, at an angle θ, and reaches
point O at the time

tSW = tshot +
dZ,A

v
+

dA,O

c
. (4)

The TDOA between SW and MB acoustic events can then
be expressed as

Δt = tMB − tSW =
dO,Z

c
− dZ,A

v
− dA,O

c
. (5)

The DOA of MB and SW are defined in the horizontal plane
as azimuth values φMB , φSW , relative to the sensor’s local
coordinate system (x-axis in Fig. 1).

III. PROBLEM STATEMENT

Knowing tSW and tMB , gunshot acoustic localization
may be performed by estimating the angle θ and the miss
distance (i.e. the distance from the sensor to the bullet’s
trajectory, or dO,B in Fig. 1). Angle θ may be estimated
by applying a shockwave acoustic model to the duration of
SW signal perturbation [6], or calculated under known bullet
caliber assumption [4]. Then, using multiple measurements
from K UGS, the miss distance and point Z are estimated
via an optimization procedure. If UGS clocks are sufficiently
synchronized, a mutual reference moment tshot can be
established for all UGS via (4), and Z — estimated by
multilateration, using time delays tMB from (3).

Unfortunately, if gunshot events include outliers, such
as reflections and target hit (TH) noise, MB cannot be
unambiguously selected from numerous events, following
SW. Consider, for example, Fig. 2. The majority of state
of the art approaches assumes Scenario I, where the bullet
passes the UGS cluster, and no TH is detected. Outliers
can be eliminated by identifying MB and SW by their
acoustic properties [9], however, that does not solve the
masking problem. We assume Scenario II of Fig. 2, where
a target is hit inside the UGS cluster (which is more likely,
if UGS surround the potential target). In this case, firstly,
either SW, or MB may be corrupted or masked by TH, and,
secondly, UGS situated behind the target may not detect SW
at all. Acoustic event detection also poses a problem. At a
sufficient range the TDOA between SW and MB acoustic
pulses makes the events well distinguishable [10]. We rather
study a close range case, where event separation is not
straightforward due to short TDOA.

IV. PROPOSED APPROACH TO GUNSHOT LOCALIZATION

The proposed approach is intended for application in
WSN with a dynamic ad-hoc topology. This implies node
synchronization complications and a varying number of
active nodes at any given time. Thus we focus on an
asynchronous, size-invariant solution. The approach consists
of the following steps:

1) Each UGS detects a shot, separates gunshot events,
marks the time and computes a DOA value per event.

2) Per each detected shot, each UGS sends a packet to the
fusion node, containing its position, steering angle and
acoustic event parameters {x, β, t,Φ}.

3) Fusion node performs event identification and shooter
localization, based on the information of active UGS.

The packet of UGS k = 1, . . . ,K contains: UGS coordinates
xk = (xk, yk); UGS steering angle βk; gunshot event times
tk = [t1, . . . , tEVk

]; event DOA Φk = [φ1, . . . , φEVk
],

where EVk is the number of detected events of k-th UGS.
As each UGS operates in its own coordinate system, the
steering angle βk is used to specify UGS local coordinate
system steering from a global zero-rotation angle (which can
be defined by Earth’s magnetic north).

While receiving packets from UGS, the fusion node
maintains a validity interval, beginning at the moment of
arrival of the first packet. This way the expired packets,
or the ones corresponding to another shot, are dealt with
separately. Data validation is discussed in our previous
works [11] and will not be discussed in this paper along
with routing and other network-related problems.

For sensor configuration we choose Uniform Circular
Arrays (UCA) because they provide full horizontal FOV
with a simple geometry. Each array consists of M = 6
microphones with an angle between two successive micro-
phones α = ∠miOmi+1, relative to the array center O, of

α = ∠miOmi+1 =
2π

M
, (1 ≤ i < M). (6)

As the UGS need to be covert, if hidden in the monitored
environment, the array must also be compact. For the UCA
experimental prototype we use a circular shell with the
radius of r = 7.5 cm.
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Fig. 3. Gunshot acoustic components acquired by UCA at 48 kS/s (top).
Collective envelope and times of detected events (bottom). Red stems —
results of peak detection; green stems — event establishing peaks.

Fig. 4. Spectrogram of the acquired gunshot signal. Acoustic components,
presented in Fig. 3, are located at approximately 30–95 ms.

A. Gunshot Event Detection and Separation

Acoustic event detection at close range poses a problem
due to an extremely short TDOA between SW and MB [12].
Fig. 3 presents an example of a gunshot acquired at 16 m
from the shooter. Here the TDOA between SW (at 4 ms) and
MB (at 11 ms) is 7 ms. Neglecting post-blast events (starting
at the 40th ms) may seriously harm the detection process.
For example, an AK-47 can fire 600 rounds per minute and
an M-4 — at 950 rpm, which constitutes approximately
1 bullet in 100 ms and 63.2 ms, respectively. In this case
consecutive SW and MB may be mistaken for post-blast
events or outliers, and vice versa for a single shot case.

We establish all acoustic events by the following pro-
cedure. First, a collective envelope is computed using
the signals from all microphones. At sampling time n,
the envelope of samples x1[n], . . . , xM [n] is senv[n] =
max (|x1[n]| , . . . , |xM [n]|). For reliable thresholding and
peak detection, the envelope’s low-frequency components
are filtered out, which does not affect gunshot signatures, as
they possess highly uniform spectral densities (see Fig. 4).
Peaks within an interval of tW /2 seconds are grouped
together and one (the first) peak per event is chosen. An
example of separation of four different events is presented
in Fig. 3 (lower). One frame of duration tW is retrieved from
the multichannel signal buffer per each event peak such, that
event beginning is included in the frame and adjacent events
are strictly excluded.

Fig. 5. Azimuth estimation in the far field for consecutive microphones of
the circular array (left). Geometry of a single microphone pair (right).

B. Direction of Arrival Estimation

At the time of shot detection, k-th UGS produces EVk

frames of length N = fstW , where fs is the sampling
frequency. A separate DOA estimate is then computed per
each frame by applying SRP-PHAT (for reference) and our
proposed lightweight method [8].

1) SRP-PHAT: To reduce the number of SRP-PHAT
computations we divide the horizontal plane into nh possible
azimuth angles. A single angle increment is calculated,
similarly to (6), as φh = 2π

nh
. The evaluation points are

chosen in the planar FOV along a circle with a radius rFOV .
The SRP-PHAT evaluation is performed over the entire
circumference [0, 2π) for the points ah,i = (xh,i, yh,i):

xh,i = rFOV cos (iφh) , (0 ≤ i < nh) ,
yh,i = rFOV sin (iφh) , (0 ≤ i < nh) .

(7)

The azimuth is estimated in the direction of elevated SRP
values P (�ah). For a single source case the final azimuth is
equal to φ = i

max(P (�ah))
· φh.

2) Proposed: The method takes a directional DOA es-
timation approach. The pairs of microphones for azimuth
estimation are chosen such, that their inter-sensor angle is
less than π

2 : αij = ∠miOmj <
π
2 . The set of these pairs is

A =
{
(mi,mj) ⊆ SM

2 | αij <
π

2

}
, (8)

where SM
2 is the set of all combinations of microphone

pairs,
∣∣SM

2

∣∣ =
(
M
2

)
. A separate azimuth estimate ϕ̂ij is

made under the far field assumption for every pair of
microphones (mi,mj) ⊆ A. For any pair (mi,mj) of
consecutive microphones (see Fig. 5), the azimuth estimate
can be obtained by

ϕ̂ij = sin−1
(τij · c

l

)
= sin−1

(
Δnij/fs · c

l

)
, (9)

where l is the distance between two consecutive micro-
phones, calculated as

l = 2r sin
(α
2

)
= 2r sin

( π

M

)
, (10)

τij is the TDOA of the wavefront between microphones mi

and mj , and Δnij is the delay in samples at fs. In case of
non-consecutive microphones, l is calculated by substituting
α in (10) with its multiple. To estimate τij , we apply cross-
correlation to the pair of signals:

R (τij) =
N−1∑

n=0

xmi
(n) · xmj

(n− τij), (i < j), (11)

and locate the index of its maximal value.
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Fig. 6. Shot angle and miss distance uncertainty interval estimation by UGS
groups, situated to the left and to the right from the bullet’s trajectory.

Initial estimates ϕ̂ij are adjusted to the array’s coordinate
system: ϕ̂∗ij = ϕ̂ij+((i− 1)α+ (j − 1)α) /2, and coherent
directions are found among these estimates by applying a
clustering procedure, presented in [13]. The clusters are
evaluated to identify the largest cluster that contains the
estimates, which gave the sharpest correlation peaks. The
final azimuth estimate φ is computed as the weighted mean
of estimates belonging to that cluster [8].

C. Information Fusion and Shooter Localization

As a result of shot detection, the fusion node receives K
packets {x, β, t,Φ}k, k = 1, . . . ,K, where K is the number
of active UGS, which have detected at least one gunshot
event. The number of detected events EVk may vary per
UGS. The DOA estimates Φk are first steered to the global
coordinate system, Φk = Φk − βk, and information fusion
is then conducted in the following steps.

1) DOA Coherency: Consensual DOA are established by
analyzing all Φ = {Φk | k = 1, . . . ,K} estimates. Angular
values in Φ are clustered in such a manner, that the coherent
estimates must lie within a sector with a central angle
no more that ϕmax. For example, if we use ϕmax = π

9 ,
then each cluster’s coherent estimates must not lie farther
than

[
− π

18 ,
π
18

]
from the cluster’s centroid. If coherent

estimates exist, we obtain P clusters Φp, p = 1, . . . , P ,
each containing np estimates φi, i = [1, np].

Assuming Scenario II (Fig. 2), Φp will contain SW DOA,
corresponding to the UGS situated to the left and to the right
from the bullet’s trajectory, different MB DOA, and outliers,
like TH DOA and various reflection noise. The DOA of SW
vary only slightly (due to DOA estimation error and natural
variation of angle θ) and do not depend on the distance to
shooter; MB DOA, on the other hand, depend on the distance
to shooter and UGS cluster dimensions. If the distance to
shooter is significantly larger than the width of the UGS
cluster, MB DOA will be roughly parallel for all UGS. At
a closer distance the UGS situated on the opposite sides of
the bullet’s trajectory will have their MB DOA significantly
skewed towards the trajectory in the shooter’s direction.

2) Event Identification and Grouping: To reduce the
error of individual DOA estimates, event identification is
performed on Φp clusters’ mean values: Φ̄p = 1

np

∑
Φp,

p = 1, . . . , P . SW DOA are identified under the assumptions
that SW events are detected first, and at least one SW DOA
was detected to the left and to the right from the trajectory.

Φ̄p is searched for φ̄i, φ̄j , i = [1, P − 1], j = [i+ 1, P ],
that meet the conditions

π
2 − ϕ

(SW )
max <

φ̄i+φ̄j

2 < π
2 + ϕ

(SW )
max ,

∀ind
tk

(tφk
| φk ∈ Φi) = 1,

∀ind
tk

(tφk
| φk ∈ Φj) = 1.

(12)

Here ϕ
(SW )
max is the upper tolerance of SW DOA variation. If

the conditions are met, φ̄i, φ̄j and φk ∈ Φi∪Φj are labeled
φ̄
(SW )
i , φ̄(SW )

j and φ
(SW )
k , respectively. For φ̄

(SW )
i , φ̄(SW )

j

condition (12) also implies that they were measured on the
opposite sides of the bullet’s trajectory. So, the shot angle
φZ is derived as the angular component of the sum of their
corresponding unit vectors ûφ̄i

+ ûφ̄j
(see Fig. 6).

Having estimated φZ , the UGS Sk that have detected SW
are placed either into the “left”, or “right” groups GL, GR:

φ
(SW )
k < φZ ⇒ Sk ∈ GL,

φ
(SW )
k > φZ ⇒ Sk ∈ GR.

(13)

To estimate the miss distance, Sk ∈ GL ∪GR closest to the
bullet’s trajectory are first located. This is done by steering
the Sk coordinates xk by φZ towards the x-axis around the
UGS overall spatial centroid x̄ = 1

K

∑
xk as

(
x′k
y′k

)
=

(
x̄
ȳ

)
+

(
cos (φZ) sin (φZ)
− sin (φZ) cos (φZ)

)(
xk − x̄
yk − ȳ

)
. (14)

Then, as portrayed in Fig. 6, “closest left” and “closest right”
UGS S̆L, S̆R are defined as

S̆L = Si, i = indmin (y′k) , Sk ∈ GL,

S̆R = Si, i = indmax (y′k) , Sk ∈ GR,
(15)

and the distance between them, perpendicular to the shot
angle, φZ− π

2 , is referred to as the miss distance uncertainty
interval. Inside this interval the exact miss distance cannot
yet be estimated at this point. We approximate it at a later
stage of shooter localization.

The DOA, corresponding to MB, are searched for in Φ̄p

for such φ̄i, i = [1, P ], that abide
∣∣φZ − φ̄i

∣∣ < ϕ(MB)
max , φ̄i 
= φ̄

(SW )
i , (16)

where preference is given to Sk ∈ GL ∪ GR, because SW
detection implies that the bullet has passed the UGS and thus
TH DOA will likely not resemble MB. This way TH DOA
will most certainly be avoided. Noise outliers, on the other
hand, are seldom acquired at similar DOA by a significant
number of UGS, and thus their corresponding clusters Φp

are significantly smaller and estimates — more dispersed.
At this stage they are easily separable from the estimates,
considered for the MB label. (Incidental acoustic sources,
arising in the FOV, can be identified and excluded from
analysis by general acoustic monitoring and source tracking
techniques, e.g. [13].) After outlier separation, φk ∈ Φi

meeting condition (16) are labeled φ
(MB)
k .

3) Distance to Shooter and Localization: Having identi-
fied φ

(SW )
k and φ

(MB)
k , k = 1, . . . ,K, where K is now the

number of UGS with both detected events, it is possible to
accurately compute the TDOA Δtk as

Δtk = tk,i − tk,j ,

i = ind
Φk

(
φ
(MB)
k

)
, j = ind

Φk

(
φ
(SW )
k

)
. (17)
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Based on Δtk and the miss distance estimates d̂
(k)
miss, it is

possible to estimate the distance to shooter from the k-th
UGS using a closed form solution, proposed in [4]:

dSk,Z =
1

2 (c4 − v4)

(
A− 2

√
B
)
, (18)

where

A = −2v3d̂
(k)
miss

√
v2 + c2 − 2Δtkc

3v2

+2c2d̂
(k)
missv

√
v2 + c2 − 2Δtkcv

4,

B = −2c4v4
(
d̂
(k)
miss

)2

+ 2 (Δtk)
2
c6v4

+2 (Δtk)
2
c4v6 − 2c7d̂

(k)
missΔtkv

√
v2 + c2 + c8 (Δtk)

2
v2

+2c8
(
d̂
(k)
miss

)2

+ 2v5d̂
(k)
miss

√
v2 + c2Δtkc

3.

Projectile velocity can be empirically estimated by inverting
equation (1) as v̂ = c/sin

(
θ̂
)

and applying it to θ̂, which

is computed as θ̂ = φ̄
(SW )
L − (π − φZ), where φ̄

(SW )
L

is the mean value of cluster of estimates, labeled as SW
and belonging to the left group. For d̂

(k)
miss estimation, a

minimal and maximal miss distance interval
[
d
(k)
min, d

(k)
max

]

is first established. For every Sk, its d
(k)
min spans from its

coordinates xk in the direction towards the bullet’s trajectory
(perpendicularly to φZ) up to the point, where miss distance
ambiguity starts (see Fig. 6 dashed lines); the maximal
distance d

(k)
max spans further, up to the point, where miss

distance ambiguity ends. Equation (18) suggests, that dSk,Z

rises with d̂
(k)
miss, therefore Sk ∈ GL will give larger, and

Sk ∈ GR — smaller estimates if d̂
(k)
miss is at the ambiguity

start of group GR, and vice versa if it is at the ambiguity start
of GL. So, the ambiguity interval is iteratively passed from
d
(k)
min to d

(k)
max with a step of dstep, the miss distances for K

UGS are estimated as d̂
(k)
miss = d

(k)
min+ i · dstep, and distance

estimates to shooter d̂Sk,Z(i) at each step are obtained
using (18). A shooter position estimate Ẑk(i) is computed
per each UGS, using xk, φ(MB)

k and d̂Sk,Z(i) . The fitness of
Ẑk(i) point estimates is measured by the their mean distance
from their centroid Z̄(i):

ffit(i) =
1

K

∑

k

∥∥∥Z̄(i)− Ẑk(i)
∥∥∥ . (19)

The minimum of ffit suggests that d̂(k)miss � d
(k)
miss, and the

final shooter’s position estimate is selected as Z = Z̄(i),
where i = indmin (ffit).

V. EXPERIMENTAL RESULTS

The signals were acquired by 4 UGS during a live exper-
iment at a shooting range. The shooter fired 30 shots from
a standing position at a target 35 m away. The range was
surrounded by scattered trees; a bullet-catching sand mound
was situated approximately 5 m behind the target. The
signals were acquired from four points in direct line-of-sight
to the shooter. Layout coordinates in meters: target at (0, 0);
shooter at (0, 35); UGS 1 at (4, 6); UGS 2 at (−5.5, 7); UGS
3 at (−6, 20); UGS 4 at (14, 7.5). The firearm used was the
Husqvarna 8x57JS rifle with the cartridge muzzle velocity
of 780 m/s, thus the shockwave is expected to spread at
θ � 25.8◦ relative to bullet trajectory.

For the UCA implementation we have used a circular shell
with the radius of r = 7.5 cm and M = 6 Vansonic PVM-
6052 condenser microphones. The signals were acquired
at fs = 48 kS/s per channel and processed offline in
MATLAB with an event window length of tW = 10 ms.
During signal acquisition each UGS recorded the signals
only from its own UCA and no synchronization with other
UGS was performed. DOA estimation with SRP-PHAT was
performed with the following parameters: rFOV = 0.5 m
and nh = 500. Data fusion parameters were the following:
ϕmax = 20◦, ϕ(SW )

max = 5◦, ϕ(MB)
max = 45◦.

An example of gunshot event detection was presented in
Fig. 3. During the experiment all 30 shots were detected by
all UGS, however, UGS 4 failed to detect seven MB events.
Close analysis of signals acquired by UGS 4 has shown,
that the number of detected events was equal to the number
of signal perturbations per shot. This indicates the masking
effect of outliers, such as TH. Other UGS have detected both
SW and MB per every shot; TH was detected in the majority
of cases. There have also been 13 cases of TH detection
before MB by UGS 1 and 2, the reason being their close
disposition to the target. These facts clearly indicate the need
of gunshot event identification prior to shooter localization.

The two considered DOA estimation methods succeed
in establishing a single distinct direction among outliers.
Fig. 7a presents the DOA estimation results for an MB event,
detected by UGS 1. SRP-PHAT values are scaled to the
maximal value of 0.2; the individual pair-vise estimates of
the proposed method are colored by their cross-correlation
peak distinctness from the less to the most sharp as: black,
blue, green, red. It can be seen that both methods produce
one distinct beam and four lesser beams, corresponding
to outliers. Fig. 7b presents the DOA estimates of four
consecutive shots, computed by the proposed method. SW,
MB and TH events are well distinguishable, however, results
for UGS 4 are significantly worse due to its larger miss
distance and the masking effect of TH. A more detailed
comparison of SRP-PHAT and the proposed method is
presented in [14]. In general, the DOA estimation quality
is sufficient for the task of shooter localization.

The intermediate results of localization and the final
shooter location estimate for a single shot are presented in
Fig. 7c. UGS {2, 3} and {1, 4}, as expected, form clusters
of coherent DOA estimates and group into GL and GR,
respectively. Mean estimates of clustered DOA values are
drawn in Fig. 7c from the points of these clusters’ centroids.
The shot angle φZ � 90◦ is estimated with high accuracy;
S̆L = S2, S̆R = S1 are correctly assigned, and thus the miss
distance uncertainty interval is properly computed.

Final shooter position estimates are presented in Fig. 8a.
The mean error of position estimation for 30 shots is equal to
0.87 m. In Fig. 8a a congestion of remote points in the top
left corner results from UGS 4 not detecting several MB.
Bullet velocity estimation by θ̂ resulted in v̂ � 740 m/s,
which is consistent with the cartridge parameters. The values
of the fitness function ffit are presented in Fig. 8b. The
function’s minimum is situated at ±1 m from the actual
miss distance. As one global minimum of ffit exists for
every shot, miss distance estimation can be performed by a
gradient descent method rather than by iterative search.
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Fig. 7. a) φ(MB)
1 estimation for the same event using SRP-PHAT and the proposed method (thick black — final estimate). b) DOA estimates for four

consecutive shots using the proposed method (red diamond — shooter true position; green circle — target; blue dots — UGS positions; blue, green,
purple, red lines — DOA estimates of UGS 1–4, respectively). c) Localization result for single shot (red, blue and green dotted — φ̄(SW ) , φ̄(MB)

and outlier DOA of clusters Φp; purple dotted — φZ and miss distance uncertainty; black circle — final estimated shooter position).
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Fig. 8. a) Estimated shooter position for 30 shots (red diamond — shooter
true position). b) Values of ffit for the miss distance uncertainty interval.

VI. CONCLUSION

The proposed method of shooter localization by dis-
tributed grounded sensors is shown to provide adequate
estimates in real life conditions with presence of outliers.
Further experiments will be conducted to estimate the min-
imal degree of node spatial homogeneity, required for the
method’s robust operation. Also other gunshot scenarios and
the methods of distinction between them need to be studied.
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