

TALLINNA TEHNIKAÜLIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY

School of Engineering
Department of Materials and Environmental Technology

Materials and Processes of Sustainable Energetics

UTILITY OF OPEN SOURCE COMPUTATIONAL TOOLS FOR

AERODYNAMIC AND STRUCTURAL BEHAVIOUR ANALYSIS OF SMALL

WIND TURBINES IN ACCORDANCE TO RELATED STANDARD

Avatud Lähtekoodiga Arvutusvahendite Kasulikkus Väikeste Tuuleturbiinide

Aerodünaamiliseks ja Struktuuriliseks Käitumiseks Vastavalt Valdkonnaga Seotud

Standardile

MASTER’S THESIS

Student: Michael Keumatio Lontsie

Student code: 177347KAYM

Supervisor: Ivo Palu, Professor

Co-Supervisor: Drew Gertz, MASc

Tallinn, 2019

AUTHOR’S DECLARATION

Hereby I declare that this master thesis, my original investigation and achievement, submitted for

the master degree at Tallinn University of Technology has not been submitted for any degree or

examination.

“.......” 2019.

Author:

 /signature /

Thesis is in accordance with terms and requirements

“.......” 2019.

Supervisor: ……….........................
 /signature/

Co-Supervisor: ….........................
 /signature/

Accepted for defence

“.......”....................2019.

Chairman of theses defence commission: ...

 /name and signature/

3

Department of Materials and Environmental Technology

THESIS TASK

Student: Michael Keumatio Lontsie, 177347KAYM

Study programme, KAYM09/09 - Materials and Processes for Sustainable Energetics.

main speciality: Processes for Sustainable Energetics.

Supervisors: Professor Ivo Palu, +3726203752

 Drew Gertz, MASc, CEO NorthWind Engineering OÜ, +37255650147

Thesis Topic:

Utility of Open Source Computational Tools for Aerodynamic and Structural Behaviour Analysis of
Small Wind Turbines in Accordance to Related Standard

Avatud Lähtekoodiga Arvutusvahendite Kasulikkus Väikeste Tuuleturbiinide Aerodünaamiliseks ja
Struktuuriliseks Käitumiseks Vastavalt Valdkonnaga Seotud Standardile

Thesis main objectives:

1. The use of freely available simulation tools for analysis of aerodynamic and structural response of
wind turbines to wind loading for quality assurance and operation safety of the machine assembly in
accordance to the IEC-61400-2 standard for small wind turbines;

2. Demonstration of the importance of standard’s load calculation methodologies for turbine integrity.

3. Importance of integrating open source trending programming languages for optimization of
simulation processes.

Thesis tasks and time schedule:

No Task description Deadline
1. Internship, data collection, simulation analysis and result processing 26.10.2018

2. Compilation of literature review 28.02.2019

3. Compilation of main thesis body and submission 27.05.2019

Language: …………...….…………… Deadline for submission of thesis: “.......”....................2019

Student: ………………………………….. …….............. “.......”....................2019
 /signature/

Supervisor: ……………………………….. ……........... “.......”....................2019
 /signature/

Co-supervisor: ………………………… ……........... “.......”....................2019
 /signature/

Consultant: ……………………………….. ……........... “.......”....................2019
 /signature/

4

Table of Contents

ABBREVIATIONS, SYMBOLS USED AND SUBSCRIPTS ... 6

INTRODUCTION ... 9

1. OVERVIEW OF SMALL WIND TURBINE AERODYNAMICS AND STRUCTURAL BEHAVIOUR TO

WIND LOADING ... 11

1.1. Aerodynamics of Horizontal Axis Wind-Turbines ... 11

1.2. Structural Dynamic ... 12

1.3. IEC-64100-2 Standard for Small Wind Turbines ... 13

1.3.1. Simplified Load Methodology (SLM) for load calculation ... 14

1.3.2. Aeroelastic model for load computation ... 22

2. WIND TURBINE DESIGN AND ANALYSIS SIMULATION TOOLS .. 28

2.1. General Overview of Predominant Wind Turbine Simulation Tools 28

2.2. NREL FAST Simulation Code ... 30

2.2.1. Introduction to FAST ... 30

2.2.2. FAST operating mode ... 32

2.2.3. Description of FAST module input files .. 33

2.3. Simulation Environments ... 37

3. AERODYNAMIC AND STRUCTURAL BEHAVIOUR OF SMALL WIND TURBINES: SIMULATION

MODELLING OF A 25 KW WIND TURBINE .. 39

3.1. Implementation of Simplified Load Methodology .. 39

3.1.1. Computation of loads and equivalent stresses on components 40

3.1.2. Turbine quality assurance – model conclusion ... 41

3.2. Implementation of Aeroelastic Model in Python 2.7 .. 45

3.2.1. Constituents of one simulation process ... 46

3.2.2. Auto-generation process of all required simulation for the DLCs 47

3.2.3. Python scripting for execution of auto-generation process and simulations 51

3.2.4. FAST output files ... 52

3.2.5. FAST output files post-processing .. 53

4. COMPARISON BETWEEN SIMPLE LOAD METHODOLOGY AND AEROELASTIC MODEL 61

5. COMPARISON BETWEEN FAST AND ALTERNATIVE CODE HAWC2 .. 63

6. COMPARISON OF PYTHON TO MATLAB ... 66

SUMMARY ... 67

REFERENCE .. 69

APPENDIX 1 SLM ... 71

A 1.1. Simple Load Model Script .. 71

A 1.2. Loads results calculated using SLM .. 76

5

APPENDIX 2 SLM equivalent stress plotting .. 77

APPENDIX 3 FAST Master Files ... 78

A 3.1 InflowWind input master file .. 78

A 3.2 AeroDyn input master file ... 79

A 3.3 ElastoDyn input master file ... 80

A 3.4 ServoDyn input master file ... 82

A 3.5 TurbSim input master file ... 84

A 3.6 IECWind input master file ... 85

A 3.7 FAST input master file ... 86

APPENDIX 4 Python Auto-generation Script .. 87

APPENDIX 5 Statistical computation Python script ... 91

A 5.1 Statistical computation Python script 1 ... 91

A 5.2 Statistical computation Python script 2 ... 93

A 5.3 Statistical computation Python script 3 ... 95

A 5.4 DLC Aeroelastic model sample page in PDF report File. .. 98

A 5.5 DLC Aeroelastic model results – Extreme Table. .. 99

6

ABBREVIATIONS, SYMBOLS USED AND SUBSCRIPTS

SWT – Small Wind Turbine

HAWT – Horizontal Axis Wind Turbine

VAWT – Vertical Axis Wind Turbine

NREL – National Renewable Energy Laboratory

FAST – Fatigue, Aerodynamics, Structural, Turbulence

HAWC2 – Horizontal Axis Wind turbine simulation Code 2nd generation

DLC – Design Load Case

ECD – Extreme Coherent Gust with Direction Change

ECG – Extreme Coherent Gust

EDC – Extreme Wind Direction Change

EOG – Extreme Operating Gust

EWC – Extreme Wind Conditions

EWM – Extreme Wind Speed Model

F – Fatigue

NTM – Normal Turbulence Model

NWC – Normal Wind Conditions

NWP – Normal Wind Profile Model

U – Ultimate

A – rotor swept area [m2]

Aproj – component area projected on to a plane perpendicular to the wind direction [m2]

B – number of blades [-]

c – blade chord [m]

Cd – drag coefficient [-]

Cf – force coefficient [-]

Cl – lift coefficient [-]

Cp – power coefficient [-]

CT – thrust coefficient [-]

D – rotor diameter [m]

er – distance from the centre of gravity of the rotor to the rotation axis [m]

F – force [N]

FzB – force in z direction on the blade at the blade root [N]

Fx – shaft axial shaft load [N]

G – acceleration due to gravity: 9,81 [m/s2]

7

G – multiplier for generator short circuit [-]

L – Lift force [N]

D – Drag force [N]

IB – blade moment of inertia [kgm2]

Lrt – distance between the rotor centre and the yaw axis [m]

Lrb – distance between rotor centre and first bearing [m]

mB – blade mass [kg]

mr – rotor mass being the mass of the blades plus the mass of the hub [kg]

MxB, MyB – blade root bending moments [Nm]

Mbrake – torque on the low speed shaft caused by the brake [Nm]

Mx-shaft – torsion moment on the rotor shaft at the first bearing [Nm]

Mshaft – shaft bending moment at the first bearing [Nm]

n – rotor speed [r/min]

P – electrical power [W]

Pr – rotor power [W]

Q – rotor torque [Nm]

r – radial coordinate [m]

R – radius of the rotor [m]

Rcog – distance between the centre of gravity of a blade and the rotor centre [m]

V – wind speed [m/s]

Vave – annual average wind speed at hub height [m/s]

Vdesign – design wind speed defined as 1,4 Vave [m/s]

VeN – expected extreme wind speed (averaged over 3 s), with a recurrence time interval of N years.

Ve1 and Ve50 for 1 year and 50 years, respectively [m/s]

Vhub – wind speed at hub height averaged over 10 min [m/s]

Vtip – speed of the blade tip [m/s]

W – relative wind speed [m/s]

Δ – range [-]

η – efficiency of the components between the electric output and the rotor (typically generator,

gearbox and conversion system) [-]

λ – tip speed ratio [-]

λe50 – tip speed ratio at Ve50 [-]

ρ – air density, here assumed 1,225 [kg/m3]

ψ – Azimuth angle of the rotor (0° is blade vertically up) [°]

ωn – rotational speed of the rotor [rad/s]

8

ωyaw – yaw rate [rad/s]

γf – Partial safety factor

Subscripts:

ave – average

B – blade

design – input parameter for the simplified design equations

hub – hub height

max – maximum

min – minimum

proj – projected

r – rotor

shaft – shaft

9

INTRODUCTION

Wind power production is currently one of the most promising electricity generation method among

renewable energy sources for reduction of fossil fuel dependence. Its current capacity is estimated to

be around 539 GW in 2017 following hydropower production leading with a capacity of 1114 GW,

REN21 Report, 2018 [1]. From the first electricity-generating 17 m height wind turbine built in 1888

(Cleveland, United States) with a capacity of 12 kW, the wind industry has noticed a considerable

growth in technology to its current world largest GE Renewable Haliade-X 12 MW wind turbine

standing 260 m high [2]. This evolution in wind industry has been characterized by the strong desire

for optimization of turbine performance through implementation of cutting edge technology to

improve the efficiency of turbine electric drive train, the structural design of the rotor enabling the

harness of more power from the wind as well as the structural design of the rotor-tower-foundation

ensuring turbine stability and integrity.

Wind turbine rotor has faced a tremendous improvement in terms of design and efficiency in the last

two decades. This has been made possible through the development of diverse sophisticated

computational tools that provide a better understanding of the interaction between environmental

conditions and structural design of rotor components. Experience has shown that the understanding

of this interaction leads to proper design of blades and tower, capable of not only effectively capturing

power from wind but also withstanding harshly fluctuating wind loading. Developed computational

tools are therefore actively used in the industry for turbine performance analysis as well as electrical

and dynamic load forecasting through numerical simulation analysis. However, the cost of licenses for

most of these tools generally constitutes a non-negligible additional financial investment in wind

development projects which can appear to be too expensive for small wind turbine manufacturers and

interested parties in wind turbine computational analysis.

Consequently, this work investigates on two main subjects: firstly, the use of freely available simulation

tools for analysis of aerodynamic and structural response of wind turbines to wind loading for quality

assurance and operation safety of the machine assembly in accordance to the IEC-61400-2 standard

for small wind turbines; Secondly, the importance of integrating open source trending programming

languages for optimization of simulation processes. The work will therefore be structured starting with

overview of turbine dynamic and its connection to rotor performance, followed by representation of

the standard requirement for load analysis. The second part will be the illustration of major existing

simulation tools used in the industry, with a focus on main tools considered in this work. In the

following part, will be implemented methods proscribed by the standard for calculation of loads

applied on a small wind turbine using open source tools. The fourth part will provide a comparison

10

between those simulation methods in terms of resulting load from simulations. Lastly will be provided

a comparative analysis of both open source solutions and available license-based computational tools

serving the same purposes. All evidences of conducted investigation, simulation results, generates

graphs and written scripts will be given in appendixes.

11

1. OVERVIEW OF SMALL WIND TURBINE AERODYNAMICS AND

STRUCTURAL BEHAVIOUR TO WIND LOADING

1.1. Aerodynamics of Horizontal Axis Wind-Turbines

An exposed wind turbine rotor is subjected to the power of the wind flowing from different direction

with diverse turbulence intensities. The kinetic energy of the wind, by and interaction with the rotor-

blades, is transferred by the wind turbine drive train to the generator and converted to useful electrical

energy. Practical experience has demonstrated that the mean power output and mean loads

generated during wind-rotor interaction mainly characterize wind turbine performance and are

dependent on the generated aerodynamic forces. Recurrent aerodynamic forces generated by wind

shear, angular winds, and rotor revolution as well as randomly fluctuating forces provoked by

turbulence and dynamic effects are the source of turbine fatigue and ultimate loads [3]. The

conservation of linear momentum theory for an incompressible, one-dimensional, steady flow

presented in [3], defines the thrust, F, as the force of the wind on an ideal rotor inversely proportional

to the change in momentum of air stream and being the key acting element in turbine aerodynamic.

The performance of a wind turbine can be characterized by the way power, torque and thrust vary

with wind speed. The power represents the amount of energy captured by the rotor in a given. The

torque developed determines the size of the gear box. The rotor thrust has great influence on the

structural design of the tower [4]. These performance parameters are highly dependent of blade shape

and airfoil characteristics and are determined by the aerodynamic forces generated by the mean wind

V∞. With wind flow, two resulting forces are created around the blade element airfoil: the lift force L,

perpendicular to the direction of an effective, or relative, wind W, and the drag force D, parallel to the

direction of W. See Figure 1.1 for airfoil velocities and forces (lift and drag).

Figure 1.1 Blade element velocities (a) and forces (b) [4].

12

Where φ - angle between the rotation plane and the relative wind vector, ar and ar’ - are the axial and

angular inductor factors at a radius r defined in [2], α - the angle of attack representing the angle

between the chord line and the relative wind W.

The angle of attack is a major factor in pressure distribution across the both top and bottom blade

surface. It is considered as one of the two mechanism used in lift generation [5]. The aerodynamic lift

and drag forces are then responsible for the rate of change of axial and angular momentum originating

the kinematic of blade motion. The blade element momentum theory (BEM) with the use of the

conservation of linear momentum provides a detailed demonstration of the relation between lift and

drag forces with the blade aerodynamic [3]. The thrust not only influences the rotor aerodynamic but

also the structural dynamic of turbine exposed components.

1.2. Structural Dynamic

The wind turbine structural dynamic generally refers to blade and tower deflections due wind loading.

The rotor thrust has great influence on the structural dynamic of turbine blades and tower [4]. The

figure 1.2 below represents the main turbine top structural dynamic parameters reflecting the degree

of freedom of the assembly.

Figure 1.2 Wind turbine top degree of freedom representing blade aero-elasticity [6].

The pitch, yaw, tilt and roll are the main structural parameters considered when defining turbine

degree of freedom hugely important for turbine multibody analysis. The pitch is defined as blade

rotation about the axis perpendicular to airfoil cross-section. Whereas the yaw is the rotation of the

rotor-nacelle assembly around tower vertical axis. On the other hand, the tilt is the rotation of the

13

rotor-nacelle assembly about axis perpendicular to the tower vertical axis. And the roll is denoted as

the rotation of the rotor-nacelle assembly about rotor axis. These rotations induce moments

considered in turbine design analysis.

The flapwise (flatwise) deflection accounts for the blade flapwise bending moment generated by the

thrust force, that causes the blades to bend upwind or downwind. Flapwise deflection is an important

design parameter carefully studied during blade design as an over-deflection backward can cause the

blades to hit the tower leading to rotor damage [3]. The edgewise (lead-lag) deflection accounts for

the blade edgewise bending moment towards the direction parallel to the rotor plane. It is a non-

negligible turbine design parameter as it increases the power-producing torque [3].

The torsion (twist) is the torsional deflection of blades about the pitch axis. Torsional deflections are

generally not considered for a fixed pitch wind turbine. Whereas for variable pitch wind turbine, they

can cause fluctuating loads in the active pitch control mechanism [3].

The lateral (side-to-side) deflection generally accounts for the tower sideward bending moment. This

deflection is mostly caused by the constant change in wind direction. Whereas the longitudinal (fore-

aft) deflection generally accounts for the tower frontward and backward bending moment mainly

induced by the thrust force.

All the above mentioned forces, rotation moments and bending moments characterizing wind turbine

structural dynamic have been deeply studied by many researchers in the field of wind energy [6, 8 and

9] for load calculation and turbine safety in operation enabling the limitation of component damages.

The safety concern of wind turbines has pushed the International Electrotechnical Commission (IEC)

to developed a general standards regularizing turbine load calculations for quality assurance, the

implementation of which is demonstrated in this work on a SWT using open source computational

tools.

1.3. IEC-64100-2 Standard for Small Wind Turbines

International Electrotechnical Commission (IEC) standard 61400 Part 2 is a version of the IEC-61400

standards that provides engineering design requirements for small wind turbine (SWT) to ensure safety

and reliability of operation throughout projected lifetime, withstanding environmental and electrical

hazards capable of originating component failure. The standard describes external condition in terms

of wind field model to be considered in design depending on the wind farm type. The latest is classified

according to wind speed and turbulence parameters used to determine wind fluctuations and extreme

wind events that can serve as input into Aeroelastic models allowing to engineers the prediction of the

performance and structural loading on turbines for a given site wind condition. The standard describes

14

a SWT as wind machine with a swept rotor area of 200 m2 or less and classifies on SWT classes basis

in terms of wind speed and turbulence parameters [7]. See table 1.1 below for SWT classification.

Table 1.1 Parameters for standard SWT classification [7]

SWT class I II III IV S

Vref, m/s 50 42.5 37.5 30 Values to be
specified by
the designer

Vave, m/s 10 8.5 7.5 0

I15

a

0.18 0.18 0.18 0.18

2 2 2 2

Where I15 is the dimensionless characteristic value of the turbulence intensity at 15 m/s and a is the

dimensionless slope parameter. All presented values apply at hub height.

The turbine class is chosen by the manufacturer based on the wind characteristics of the sites they are

to be installed. The corresponding basic parameters from the table are then used, together with other

secondary parameter which will be presented afterwards, for load calculation.

The standard proposes 3 methods for wind turbine loads assessment for structural integrity and

reliability of SWT:

 Simplified load methodology SLM;

 Aeroelastic model;

 Full scale load measurements.

The thesis focuses exclusively on the two first design methods. As for the third method, it is used when

the design loads are obtained through direct load measurements, which is not considered in this work.

In the following sections will be described the simulation methodology of the first and second methods

followed by their implementation on 25 kW sample wind turbine for load calculation.

1.3.1. Simplified Load Methodology (SLM) for load calculation

Design load representation

The model uses a set of developed conservative equations physically explainable for assessment of

essential load applied on SWT during normal operation, extreme condition and stand-still conditions.

Depending on the external conditions, the standard predefined a set of situations where loads are

generated on machine component throughout operation lifecycles. These situations are named Load

Cases. The latest are subdivided in groups of design situations and into two main categories depending

15

on the type of analysis to be conducted - Fatigue or Ultimate analysis. Table 1.2 from [7] shows

classification of design load cases for SLM according to design situations.

Table1.2. Design Load cases for SLM calculation [7]

Design situation Load cases Wind inflow Type of
analysis

Remarks

Power production A Normal operation F

B Yawing Vhub = Vdesign U

C Yaw error Vhub = Vdesign U

D Maximum thrust Vhub = 2,5 Vave U Rotor spinning but
could be furling or

fluttering

Power production
plus, occurrence of

fault

E Maximum
rotational speed

 U

F Short at load
connection

Vhub = Vdesign U Maximum short-circuit
generator torque

Shutdown G Shutdown
(Braking)

Vhub = Vdesign U

Extreme wind
Loading

H Extreme wind
loading

Vhub = Ve50 U The turbine may be
parked (idling or

standstill) or governing.
No manual intervention

has occurred.

Parked and fault
conditions

I Parked wind
loading,

maximum
exposure

Vhub = Vref U Turbine is loaded with
most unfavourable

exposure

Transport
assembly,

maintenance and
repair

J To be stated by
manufacturer

 U

Where F – Fatigue analysis,

U – Ultimate analysis.

For a better description of each design load cases in connection with our particular case studied, some

specificities related to the turbine on which the model will be implemented on will be given.

Input Data

Exist 6 main parameters so called first order parameters that describe the turbine and constitute the

foundation of the SLM model, all formulas are taken from [7]:

 Design rotational speed or angular velocity

]/[;
3060

2
srad

nn
n

 , (1.1)

where n is the rotor rotational speed [r/min];

16

 Design wind speed

smVV avedesign /;4.1 , (1.2)

 where Vave – is the average wind speed defined by the wind class in Table 9.2 of [7];

 Tip speed ratio

30

n

V

R

V

R

V

V

hubhub

n

hub

tip
 (1.3)

Where Vtip – the speed of the blade tip [m/s],

 Vhub – the wind speed at hub height [m/s],

 R – the radius of the rotor [m].

 Design shaft torque

][,
30

Qdesign Nm
n

PPP

nn

r

 (1.4)

Where Pr – the rotor power [W],

 P – the electrical power [W].

 Maximum yaw rate,
max,yaw

 Maximum rotational speed
max,n .

Description of load cases

 Load Case A- Fatigue loads on blades and shaft

The main consideration here is the assessment of loads as peak-to-peak values around the design

parameters (wind speed, torque and rotor speed). Fatigue analysis are then evaluated at a range of

rotor rpm from 0.5 - 1.5 ndesign for centrifugal force and from 0.5 - 1.5 Qdesign for bending moments. In

our specific case, loads are quantified between the range of 32.5-97.5 rpm and 1901 N - 5703 N. This

enables a sufficient coverage of possible fatigue occurrence situation as the maximum rotational speed

of the turbine set by the manufacturer is equal to rpmn 70max, .

Blade fatigues are generated by both the centrifugal force and the bending moment components.

Centrifugal force at blade root-hub junction is determined using the following equation:

NRmF designncogBzB ,2 2

,
 (1.5)

Where mRcog , - the distance from the blade centre of mass to the rotor axis, kgmB , - blade mass,

Lead-lag or edgewise moment in the direction of rotation and the flapwise moment in the direction of

the wind apply to the part of the blade root having the lowest ultimate material strength and are

determined using the following conservative equation.

17

NmgRm
B

Q
M cogB

design
xB ,2 (1.6)

., Nm
B

Q
M designdesign

yB

 (1.7)

Where B – the number of blades.

Rotor shaft are subjected to thrust and moments which are generated at the first shaft bearing

adjacent to the rotor and are calculated using the following equations:

N
R

Q
F designdesign

shaftx ,
2

3

 (1.8)

NmgemQM rrdesignshaftx ,2
 (1.9)

.,
6

2 NmFRgLmM shaftxrbrshaft (1.10)

Where mr – is rotor mass (blades + hub), kg,

er – rotor eccentricity,

Lrb – distance between rotor centre and first bearing.

 Load Case B- Blade and Rotor Shaft Loads during Yaw

For turbines equipped with an active yaw system enabling automatic positioning the turbine parallel

to wind direction. This mechanism created additional loading due to effect of cyclic gyroscopic forces

and moments at blade’s root and shaft. Blade root bending moment is found by the equitation:

NmFRIRLmM shaftxnByawcogrbyawBshaftx ,
6

2 max,

2

max, (1.11)

where Lrt – the distance between rotor centre and yaw (tower) axis,

IB – blade second moment of inertia.

Paragraph 9.2.2 of [8] defines the physics behind each term in this equation.

Shaft bending moment for a 2 bladed SWT is calculated using the next equation:

NmFRgLmIM shaftxrbrdesignnByawshaftx ,
6

2 ,max, (1.12)

For a 3 or more bladed turbine:

NmFRgLmIBM shaftxrbrdesignnByawshaftx ,
6,max, (1.13)

The logical “if/else” statement shall be used in the model considering whether the tested turbine is a

2 or more bladed type.

In both equations the gyroscopic effect creates more than 2/3 of the moment

18

 Load Case C- Yaw Error Load on Blades

Due to yaw error existing in every operating wind turbine, additional flapwise bending moments are

created at blade root. The standard proposes a general yaw error of 30° for evaluation of moments in

this load case. Flapwise bending moments are determined by the equation:

NmRCAM
designdesign

designnlBprofyB ,
1

2

1

3

4
1

8

1
2

2

,

3

max,,

 (1.14)

Where Cl,max – maximum lift coefficient, value 2 will be used for no data availability as specified in the

standard,

Aproj,B – platform area of blades projected on to a plane perpendicular to wind direction.

 Load Case D- Maximum Thrust on Shaft

During operation, turbines are subjected to thrust loads parallel to rotor shaft with a maximum value

expressed by the equation:

NRVCF aveTshaftx ,)5.2(5,0 22 (1.15)

where CT – the thrust coefficient equal to 0,5 for turbines operating at less than 2,5Vave.

 Load Case E- Maximum Rotational Speed

During turbine operation at maximum rpm, unbalance rotor as well as centrifugal loads generates

additional centrifugal load in blade root and bending moment determined using the following

expressions:

NRmF cognBzB ,2

max,
 (1.16)

NmLemgLmM rbnrrrbrshaft ,2

max,
 (1.17)

 Load Case F- Short at Load Connection

Possibility of occurrence of short circuit event are considered as ultimate loading factors. Significantly

High moments are created at rotor shaft caused by short circuit torque of the alternator during

occurrence of direct electrical short at the output of the turbine or internal short in the generator.

These moments can be calculated using the equations:

NmGQM designshaftx , (1.18)

Where G – short circuit torque factor. Value 2 should be taken in absence of any accurate data as

specified by the standard.

NmgRm
B

M
M cogB

shaftx
xB ,

. (1.19)

 Load Case G- Shutdown Braking

19

Shutdown events occasionally occur during turbine operation, caused by multitude reasons like high

turbulence wind speed above rated, low wind speed below cut-in, system failure and scheduled

maintenance. [10] describes wind turbine shutdown cases and provides a comparative study of

shutdown procedure with the turbine dynamic response.

 Loads created during this event are highly dependent on the brake moment, for turbine equipped

with an electrical or mechanical braking system within the drive-strain. The generated moment on the

shaft depends not only on brake moment but also on whether the braking system is applied on high-

speed or low-speed shaft. If brake is positioned on the high speed side of the gearbox, brake moment

will have to be multiplied by gearbox ratio provided by manufacturer to account for the drive train

dynamic, forming the gearbox efficiency:

NmQMGearM designbrakeshaftx ,
 (1.20)

Where Mbrake – brake moment,

Gear – gearbox ratio, strictly dependent on the existence of gear and the position of the

braking system.

The logical “if/else” statement is used in the script to calculate moment on shaft considering existence

of the gearbox and the location of brake system on the drive train. In case of the turbine that will be

considered as sample for this work, gearbox exist and positioned at the high-speed side of the gearbox,

MBrake will then be multiply gearbox ratio.

The blade loading due to shutdown is determined by the equation:

NmgRm
B

M
M cogB

shaftx
xBt , (1.21)

 Load Case H- Extreme Wind Loads during stand still or idling

A parked wind turbine is generally exposed to severe wind loading especially during extreme wind

conditions though not producing power. Loads applied to exposed machine components in this

situation are calculated with use of Ve50 – the 50-year occurrence extreme wind speed. The following

equations give the main wind loading on a turbine exposed components caused by drag.

For parked wind turbine, the blade root bending moment is expressed by the equation:

NmRAVCM BprojedyB ,
4

1
,

2

50
 (1.22)

Where Cd – drag coefficient, a value of 1,5 to be used according to the standard.

In case of idling, spinning blades without production, the following formula is used:

NmRAVCM BprojelyB ,
6

1
,

2

50max,
 (1.23)

20

Where Cl,max – maximum lift coefficient of blades, if no value is available for the turbine, then 2 should

be taken.

In our specific case, brake is applied prior parking, meaning the rotor is at a stand-still position. The

logical “if/else” statement will be used in the script to refer to the equation defining specificity of our

model. Equation 1.22 will be used in occurrence. The same goes for the maximum thrust on blades

determined by equation 1.24 below.

For a rotor in revolution, the thrust loading on blades is obtained by the equation:

NVBF eeshaftx ,17.0 2

50

2

50 (1.24)

Where λe50 – is the 50-year extreme tip speed ratio at Ve50.

50

max,
e50 30 e

n

V
R

 (1.25)

Whereas for a stationary rotor, thrust loading is fund by:

NAVBCF Bprojedshaftx ,
2

1
,

2

50
 (1.26)

The standard requires as well the calculation of the maximum tower bending moment in this case using

the parked rotor shaft force equation 1.26. The thrust force on tower should be evaluated using the

following equation:

NAVCF projef ,
2

1 2

50 (1.27)

Where Cf – force coefficient which is equal to 1.5. See table 3 of [7],

Aproj,T – Tower projection area on the plane perpendicular to wind direction. The projection

area at component most unfavourable position is considered.

 Load case I – Parked wind loading, maximum exposure

The load considers a possible occurrence of failure in yaw mechanism which will lead to exposure of

turbine to extreme wind speed in turbine coming from all possible directions. Turbine will then

undergo severe loading if it is at its most vulnerable position at maximum Aproj,B. This load case is not

considered in our case due to very low probably of occurrence of such failure. However, paragraph

7.4.10 of [7] describes in details this load case.

 Load case J – Transportation, assembly, maintenance and repair.

Stresses faced by turbine during the operations should be considered by the manufacturer. These

stresses are characterised by gravity loads, loads caused by special installation tools, wind loads during

installation or maintenance as well as load on a tilt up tower during erection and putting to foundation.

These loads being too specific with extremely low effect on general component stress are not

considered in this simulation.

21

The next step consists of evaluating the equivalent stresses according to material strength in order to

be able to later determine the strength limit of each component compare to the fatigue load lifecycle

and ultimate stress faced by the turbine rotating components in normal operation as well as in

described above special load cases.

Determining equivalent stresses on components

For stress calculation, most important load carriers are considered, generally blade roots and main

shaft. Equivalent Stresses on these components are a combination of individual forces and moments

calculated in each load cases. The resulting stress values are compared to with the allowable limit for

material stress. Table 1.3 from [7] gives general formulas for equivalent stress calculation.

Table 1.3 Equivalent stress [7]

 Circular blade
root

Rectangular
blade root

Root shaft

Axial

B

zB
zB

A

F

B

zB
zB

A

F

shaft

shaftx

shaftx
A

F

Bending

B

yBxB

MB
W

MM 22

yB

yB

xB

xB
MB

W

M

W

M

shaft

shaft

shaftM
W

M

Shear Negligible Negligible

shaft

shaftx

shaftM
W

M

2

Combined (axial

+ bending)

MBzBeqB 22
3 shaftMshaftMshaftxshafteq

Stress level calculation takes into consideration several important factors [8]:

 Stress variation within the component

 Stress concentrations

 The direction and size of the resulting load or stress

 Variations in component dimensions and thickness

 Component surface treatment

 The type of loading on the component

 Any manufacturing effects on the components such as welding, machining etc.

Additional input data is required for this equivalent stresses on material components:

 Cross section area of shaft Ashaft and blade root AB in m2. Values obtained from component

physical characteristics.

22

 Second moment of inertia
44

)()(,64/ mdI BshaftxBshaftx (1.28)

Where dshaft(B) – diameter shaft or blade.

 Section modulus of shaft and blades,

3,/2 mdIW shaftshaftxshaft and 3,/ mCIW BBB , (1.29)

where CB – distance from blade centroid to maximum stress point. Its values depending on x

or y- axis are obtained from blade’s CAD model.

The values of above mentioned parameters for fatigue and equivalent stress calculation are displayed

in Appendix 1.1. Using this data and formula from table 1.3, equivalent stresses where computed in

accordance with the load cases.

1.3.2. Aeroelastic model for load computation

The design model implies analysis of turbine loads from aeroelastic simulation modelling at different

operating conditions prescribed by the standard. These operating conditions also called design load

cases (DLC) describe environmental and electrical conditions to which are exposed wind machine

during life cycles. The model proposes a more realistic turbine dynamic analysis method describing in

details all possible real-time scenarios occurring during turbine exposure. It recommends analysis to

be conducted in a wide range of wind speed, generally from cut-in to cut-out with a wind speed step

varying from 1-3 m/s this to ensure all possible loads are located.

Each design situations are subdivided into design load cases as described in table 1.4 below taken from

the standard. Like in the previous model, the type of analysis remains similar depending on load cases

they are applied to, fatigue loads analysis for evaluation of fatigue stresses and ultimate load analysis

for evaluation of loads that can exceed maximum material strength, cause tip deflection or threaten

turbine stability.

Table 1.4. Aero-elastic simulation design load cases (DLC) [7]

Design situation DLC Wind condition Other
conditions

Type of
analysis

Power production 1.1 NTM aveouthubin VorVVV 3 F, U

1.2 ECD
designhub VV U

1.3 EOG50

aveouthubin VorVVV 3

 U

1.4 EDC50

aveouthubin VorVVV 3

 U

1.5 ECG
designhub VV U

23

Power production plus
occurrence of fault

2.1 NWP

aveoutdesignhub VorVorVV 5.2

Control
system fault

U

2.2 NTM
outhubin VVV Control or

protection
system fault

F, U

2.3 EOG1 aveoutin VorVV 5.2 Loss of
electrical

connection

U

Normal shutdown 3.1 NTM
outhubin VVV F

3.2 EOG1
shutdownouthub VorVV max, U

Emergency or manual
shutdown

4.1 NTM to be stated by
manufacturer

 U

Extreme wind loading
(standing still or idling;

or spinning)

5.1 EWM
50ehub VV Possible of

electrical
power

network

U

5.2 NTM
refhub VV 7.0 F

Parked and fault
condition

6.1 EWM
1ehub VV U

Transport, assembly
and repair

7.1 To be stated by manufacturer U

Where F – fatigue load analysis,

U – ultimate load analysis.

Power production: DLC 1.1-1.5

Power production assumes the turbine is in availability status and connected to the electrical grid load.

Aerodynamic and structural loads are then evaluated taken into consideration several factors specified

by the turbine manufacturer like rotor imbalance, yaw misalignment, maximum mass, blade pitch

deviations, blade twist deviations as well as control system tracking errors.

In power production status the probability of occurrence of critical conditions generating severe loads

are non-negligible. They are therefore taking into consideration in load evaluations. Such conditions

are described in chapter 7.5 of [7] as:

 Atmospheric turbulence generating loads in DLC 1.1

Here, loads are evaluated in a wind profile denoted as Normal Turbulence Model – NTM. It

expresses the stochastic variations in wind speed and wind direction in a set average of 10 minutes

according to the characteristic of the value of the standard deviation σ1 and the turbulence scale

parameter Λ1. The latest parameters are obtained using the following equations:

)1/()15(151 aaVI hub (1.33)

Where a – the dimensionless slope parameter for the expression.

24

I15 – is the dimensionless characteristic value of the turbulence intensity at 15 m/s, where 0,18

is the minimum value that shall be used.

mzform

mzforz

hub

hubhub

3021

307.0
1 (1.34)

The design requirement implies that load should be evaluated within the wind speed range as

stated in table 1.4. In the aeroelastic model the range considered in this case is from 3 m/s to 25

m/s.

 Potentially critical transient cases with extreme conditions are considered DLC 1.2-1.5

Extreme conditions are generally related to the variation of wind speed in terms of gusting, drastic

direction change, wind turbulence intensity generating extreme wind loading on SWTs. In this

design situation, these extreme conditions are taken into consideration and briefed below.

ECD – Extreme coherent gust with direction change: A gust is a sudden increase in wind speed.

According to U.S. weather observing practice, gusts are observed when peak in wind speed grows up

to 8.5 m/s and the variation between high peaks and low peak is at least 5 m/s. The duration gust event

is most often lower than 20 seconds.

DLC 1.2 considers the increase in wind speed occurring simultaneously with the change of a direction

cg defined by the relation:

refhub

hub

hub

cg
VVsmfor

V

smVfor

/4
720

/4180

 . (1.35)

This change in direction of the wind or yaw error generates specific load which have to be inserted in

the design increasing the efficiency of the model. Wind turbines are recommended to be tested at Vhub

lower than Vdesign = 10.5 m/s. In the model Vhub of 9 m/s and 11 m/s were considered for more accuracy.

EOG – Extreme operating gust: This wind condition characterises DLC 1.3 accounting the recurrence

period of N for such event. This implies the consideration of a transient extreme event that usually

occur once in N years. Therefore, the gust wind VgustN will depend on the recurrence period N and giving

by the formula:

1

1

1.01
D

VgustN

 (1.36)

Where σ1 – the standard deviation described above,

 Λ1 – the turbulence scale parameter according to equation 2.34,

 D – the diameter of the rotor,

25

 β1 = 4.8 for N=1 year and 14.0 for N=50 years.

The wind speed in this case is defined for the same recurrence of N years by the equation:

TtandtforzV

TtforTtTtVzV
tV

gustN

0

0))/2cos(1)(/3sin(37.0 (1.37)

Where V(z) – defined in equation 1.41,

T = 10.5 for N=1 year and 14.0 for N=50 years.

In the model the Vhub range considered in this case is from 3 m/s to 25 m/s at a gust wind speed of

VgustN with a recurrence period of 50 years.

The term one-year and 50-years extreme wind is described in the Wind Energy Handbook by David

Sharpe [9] as the expected one-time occurrence of the considered severe wind transient in a period of

one year or 50 years. Subsequently, this event has and unknown occurrence time that needs to be

considered during design of wind machine for quality assurance.

ECG – Extreme coherent gust: considered as wind condition in DLC 1.5 implies a change in wind speed

with a magnitude of Vcg = 15 m/s in a rise time T = 10 s as described in the formula below:

TtforVzV

TtforTtVzV

tforzV

ztV

cg

cg

)(

0/cos(15.0)(

0)(

),((1.38)

Such high increase in wind velocity incontestably generates extreme loads on machine component

which therefore needs to be considered in the design, increasing the efficiency and accuracy of the

model. In the model Vhub = 11 m/s was considered for load evaluation at this condition.

EDC – Extreme direction change: This condition considers the change in wind direction with yaw

misalignment considered in DLC 1.4 in terms of magnitude θeN for a recurrence period of N years using

the following relation:

1

1

1.01

arctan)(
D

V

t

hub

eN

 (1.39)

Where θeN – angle of direction change limited to the range of ±180°,

Λ1 – the turbulence scale parameter according to equation 1.34,

D – the diameter of the rotor,

β = 4.8 for N=1 year and 6.4 for N=50 years

26

The direction change is characterized by a transient for a recurrence period of N years, θN(t). The

transient is the angle by which the wing velocity changes direction in a time t. Equation 1.40 from [7]

defines its dependence over time t as:

Ttfor

TtforTt

tfor

t

eN

eNN

 0))/cos(1(5.0

00

)((1.40)

Where T = 6 s is the duration transient at this case condition.

A graphical representation of wind behaviour characterising EOG and ECG are displayed in figure 3.11

and figure 3.13 respectively. Other characteristic graphs describing wind direction change for other

transient events are illustrated in [7].

Power production plus occurrence of fault: DLC 2.1-2.3

During power production, the probability of occurence of fault in the control system and in electrical

system is existant with a frequency depending on turbine quality and wind farm characteristics. The

design load case is subdivided into 3 different cases according to wind conditions:

 DLC 2.1, where loads generated during fault in control system considered as normal event are

analyzed. The wind condition is characterized as Normal Wind Profile – NWP. The turbine

operates at an average wind speed that depends on the height, z, above the ground level. The

wind profile is then defined by the power law:

)/()(hubhub zzVzV (1.41)

Where α – is the power law or the wind shear coeffitient generally assumed to be 0.2.

The turbine here is recommended to be tested at wind speed Vhub = Vdesign = 10.5 m/s or at Vhub =

2.5Vave = 18.7 m/s. In the model Vhub of 18.7 m/s is considered as it gives more probability of

occurrence of such fault compare to Vdesign.

 DLC 2.2, where loads generated due to faults in protection or internal electrical systems not

significant to cause turbine quick shutdown are studied. In the model the load case will be

analysed upon NTM at a wind speed standard range of cut-in to cut-out, 3 m/s to 25 m/s.

 DLC 2.3, where the loads generated during shutdown due to loss of electrical connection

combined with one-year extreme operating gust EOG1 is evaluated. In the model, this load cases

considers the existence of 3 fault control systems for passively controlled turbines, the furling

system where the nacelle of the turbine is turned off the wind direction, blade pitch system and

the tip-brake system to reduce wind loading. The 25 kW burbine’s blades are equiped with tip-

brake system cut-off of rotational motion of the rotor during turbine shutdown. Therefore, the

model considered the existence of such braking system.

27

Normal Shutdown DLC 3.1 and 3.2

Normal generator shutdowns are usually applied during experience of extreme wind loading described

by the transient situations above causing severe component loading. The load case DLC3.1 analysed

generated loads at a NTM wind condition at wind velocity range similar to load case using the same

turbulence model.

 As for DLC 3.1, the shutdown is consdered to occur in combination with one-year extreme operating

gust EOG1. Considering the fact that this case normally occur at high wind speed, it is required by the

standard to evalute loads at a Vhub = Vmax, shutdown = 25 m/s which correspond to the rated wind speed at

which begins the overheating of the generator. Therefore, it is been used as wind speed for laods

evalution in the model.

Emergency or manual shutdown DLC 4.1

During emergency or manual shutdown, brakes are applied to the high speed shaft generally between

the gearbox and the generator generating additional stress to rotating components. This situation is

considered in the model for loads evalution within the NTM wind condition. Here, the standard gives

the choice to manufacturer to choose the wind velocity range at which the turbine should be tested.

In the built model wind speed range of cut-in to cut-out, 3 m/s to 25 m/s is considered.

Extreme wind loading during rotor stand-still or rotation DLC 5.1 and DLC5.2

In this design situation, loads applied to turbine components during stand still or idling or spinning are

evaluted similar to the previous model. It incloses 2 different load cases:

 DLC 5.1 which combines the stantionary or rotational non-power production status with the

existence of Extreme Wind speed Model - EWM described in the standard.

According to EWM wind condition, load calculation in this case should be examined at a wind

speed Vhub equal to the 50 year extreme wind speed Ve50 depending on the reference wind speed

Vref and given by the equation:

11.0

50)/(4.1)(hubrefe zzVzV , (1.42)

Where 1.4 – is the gust factor at hub height zhub

 DLC 5.2, where loads are evaluated according to NTM wind profile described above.

Parked plus fault conditions DLC 6.1

In this situation, the turbine is parked due to some electrical network fault yet exposed to wind loading

that can create fatigue damage considered in the model.

28

The standards requires the wind condition to be an EWM, load calculation in this case are within a

wind speed Vhub equal to the one year extreme wind speed, Ve1, depending on the reference wind

speed, Vref , and given by the equation:

501 75.0 ee VV , (1.43)

Like the SLM, the aeroelastic model also comprises the design load cases which takes into account

loads generated during transportation, assembly, maintenance and repair- DLC 7.1. These loads are to

be considered by the manufacturer during load determination. However, in our specific case, this was

not included into the modelling as it requires datas from these operations.

All the above described design situations characterised by illustrated formulas together with related

wind conditions are intergated into a model simulator that will be presented in the following part.

2. WIND TURBINE DESIGN AND ANALYSIS SIMULATION TOOLS

Nowadays, the use of software and computer based tools for design purposes at research and

development stage of any engineering concepts as well as during their implementation has become

unavoidable. The main aim being to provide to designer with the possibility to model a concept in a

virtual or real environment through prototyping, integrating all possible parameters partly or fully

characterizing the concept so for it to be close enough to reality. Faults, defects, dysfunctions in

concept system and many other undesirable outputs can be foreseen and easily adjusted prior to final

release to end users.

2.1. General Overview of Predominant Wind Turbine Simulation Tools

Design and manufacturing of small wind turbines requires the use of multitude computer integrated

software and tools. They differ from each other depending on the type of analysis to be conducted and

also on turbine components considered.

For structural analysis on robustness and performance of machine components and assemblies,

computer-aided engineering (CAE) tools are generally used. They enable conduction of stress analysis

using Finite Element Analysis (FEA), thermal and fluid flow analysis with Computational Fluid Dynamics

(CFD), Multibody dynamic (MBD) and Optimizations [11]. Furthermore, CAE tools encompass

Computer-Aided Design (CAD) software that enables the geometrical representation of machine

components and assemblies that can be used as object for the analysis mentioned above. Solidworks

by Dassault Systemes known to be one of the best for 3D CAD modelling, AutoCAD, Kompas 3D

(software good for managing project of thousands of sub-assemblies, parts, and standard library

29

products), Fusion 360 (3D CAD/CAM tool from AutoDesk) and CATIA are the most popular CAD

software used in the wind industry [12].

Analysis of wind turbine structural and aerodynamic response to wind loading generally includes CFD,

MBD and FEA analysis. With the increase in necessity of better analysis results with sufficiently high

reliability, many sophisticated and highly performant analysis tools have been developed so far.

Depending on the type of analysis, here are presented and briefly described some of the most popular

simulation software and tools:

 QBlade – an open source HAWT and VAWT wind turbine rotor design and performance simulation

software that gives the possibility to users to design custom airfoils and compute their

performance directly integrating them into a rotor. It is a recommended software for teaching, as

it provides a comprehensive design and simulation capabilities for turbine rotor, exposing all the

fundamental relationships of design concepts and turbine performance in a simplified user

friendly interface [13].

 Ashes – a software that executes integrated analysis of onshore and offshore wind turbines. It is

a suitable tool for students and teachers providing them with an insight on design processes using

a user friendly interface, real-time 3D visualization wind and wave loads and the resulting

response of the wind turbine, wind turbine model templates with customisable commonly used

airfoils data characterizing turbine blades as well as advance integrated analysis for wind loads,

sea waves gravity, buoyancy and generator loads assessment [14].

 HAWC2 - (Horizontal Axis Wind turbine simulation Code 2nd generation) is an aeroelastic code

intended for calculating wind turbine loading response in time domain.

 FAST – NREL's is a primary CAE tool for simulating the coupled dynamic response of wind turbines

that joins aerodynamics models, structural (elastic) dynamics models, control and electrical

system (servo) dynamics models and hydrodynamics models for offshore structures to enable

coupled nonlinear aero-hydro-servo-elastic simulation in the time domain.

Both FAST and HAWC2 were developed by researchers and developers in the wind industry for the

computation of aerodynamic and structural behavour of onshore and offshore wind turbines to wind

loading. As noted from definition, FAST and HAWC2 possess similar objectives though developed by

distinct parties, Oregon State University and Technical University of Denmark DTU respectively. Both

codes were developed to overcome the complexity of the aeroelastic model, incorporating a large

variaty of wind field and turbine parameters to be taken into consideration for design purposes.

However, this work emphasizes on the use of FAST for development of the aeroelastic model for wind

turbine load calculation for quality assurance. A comparative analysis on the choice of FAST over

HAWC2 will be developed subsequently following the model implementation.

30

2.2. NREL FAST Simulation Code

2.2.1. Introduction to FAST

FAST – defined as Fatigue, Aerodynamics, Structures and Turbulence is a comprehensive aeroelastic

simulator built to predict both extreme and fatigue loads generated on a two or three-bladed

horizontal axis wind turbine during operation lifecycle. It is a code developed and funded by U.S.

Department of Energy under the National Renewable Energy Laboratory (NREL). See FAST 7 User’s

Guide [15] for more detailled information about the Code. Developped since from 2003, it has noticed

several improvements to the 3 current versions used nowadays for simulations: FAST Version 7; FAST

Version 8 and OpenFAST (the latest).

The code built-in has the capacity to model the dynamic reponse of horizontal axis conventional wind

turbines taking into consideration different configurations like rotor-furling, tail-furling, tail

aerodynamics and passive/active blade pitch control system, features which are fundamental during

analysis of wind turbines response. It was tested and evaluated by the Germanisher Lloyd WindEnergie

, see Germanisher Lloyd – Guideline for the Certification of Wind Turbines [16] for more information,

who concluded on the code suitability for calculation of onshore wind turbine loads for design and

certification purposes.

The FAST model is a combination of modal and multibody dynamics formulation. It relates for two-

bladed turbines nine rigid bodies (support platform, nacelle, armature, gears, hub...) and four flexible

bodies (tower, two blades, and drive shaft) through 22 degrees of freedom (DOFs). Whereas for three-

bladed HAWT, it relates 24 DOFs from which six DOFs related to the translational (surge, sway, and

heave), rotational (roll, pitch, and yaw) motions of the support platform relative to the inertia frame,

four DOFs accounting for tower motion, one DOF accounting for yawing motion of the nacelle... More

information about turbine DOFs considered in the code can be found in FAST version 7 user guide [15].

A combination of the available DOFs and features are integrated in wind turbine analysis model

depending on the configuration of the machine.

The described DOFs indicates the detail consideration, into the load analysis, of main components of

a machine exposed to the power of the wind. This approach aims to provide a more realistic

representation of the turbine in virtual environment with the combination of created wind events,

close enough to reality predefined by a set of paramerters and factors.

These parameters and factors describing turbine components and environmental conditions are

integrated into FAST in form of modules. Modules are sub-parts of FAST code structure corresponding

31

to different physical domains of coupled aero-hydro-servo-elastic solution, most of which are

separated by spatial boundaries hence interconnected.

The figure 2.4 below shows the main difference between the latest versions of the model in terms of

built-in modules stating the spatial dynamic boundaries related to each modules. These modules refer

to the integration into the code of specific environmental conditions and wind turbine structural

properties as indicated by their denominations.

Figure 2.4. Architecture of FAST 7 and OpenFAST

The designation of these modules reveales that FAST is designed to intergrate analysis of not only

onshore but also offshore wind turbines taking into account substructural configurations and water

conditions with modules like hydrodyn, Subdyn, Icefloe, Moordyn, Icedyn. Each single module is

32

attached to a specific control entity depending on the wind turbine type. Figure 2.5 presents an

example of FAST control entities for floating systems.

Figure 2.5. FAST control entities for floating wind turbine [7].

25 kW Turbine being an onshore machine, hydrodyn, MoorDyn as well as the platform dynamics in

Elastodyn won’t be used in the model. The control entities for such system is as represented in figure

below.

Figure 2.6. FAST control entities for onshore wind turbine [7].

2.2.2. FAST operating mode

FAST operates in a simulation mode defined as the time-matching of non-linear equations of motion.

Aerodynamic and structural response of wind turbine to wind conditions are evaluated in time domain.

The characteristic of this analysis mode is the output of the simulation which is time-series numerical

33

data points representing the aerodynamic loads as well as loads behind the deflections of structural

components of the machine. These outputs are then used for prediction of both fatigue and extreme

loads for HATWs.

FAST simulation analysis are run using the open source distributed executable program file from

Windows operation system command lines. All modules’ paramerters are then introduced into the

simulation through inputs files, with each module input files containing information related to each

control volumes. The following figure represents the schematic setup of FAST simulation analysis

mode of operation.

Figure 2.7. FAST mode of Operation

2.2.3. Description of FAST module input files

At system properties level as presented in figure above, are gathered all data related to turbine

configuration and wind profile. This data is used for setup of simulation environment according to

various modules input files.

34

InflowWind – here are included wind distribution parameters characterising the wind profile. Its main

feature is the wind type or wind condition. FAST proposes through this modules, different wind type,

three of which are communly, the steady wind conditions (where only wind speed and reference height

to horizontal wind speed values are needed for simulations), the uniform wind (used for analysis of

extreme wind conditions requiring the use of a specific wind file generated by IECWind auxilliary to

FAST program) and the full-field turbulence wind flow used for analysis of NTM wind condition with

the use of specific wind file generated by TurbSim.

IECWind is a utility program used to create wind files for AeroDyn-based programs. It creates wind files

that model the extreme conditions (ECD, ECG, EDC, EOG, NWP and EWM) described above, giving the

ability to wind turbine designer to run design code simulations of advanced turbine design with

simulated transient events in wind propagation, intergrating crucial fluid dynamic features known to

unfavorably affect turbine aeroelastic response and loading.

The TurbSim is a stochastic inflow turbulence code developed to provide numarical simulation of a full-

field flow containing burst of coherent turbulence reflecting the proper spatiotemporal turbulent

velocity field. Its aims is to provide the wind turbine designer with the possibility to run design code

simulations of advanced turbine designs with simulated inflow turbulence environments that associate

many of the essential fluid dynamic features known to adversely affect turbine aeroelastic response

and loading. See Overview of the TurbSim Stochastic Inflow Turbulence Simulator in [17].

The Aeroelastic model in this work includes the latest wind type. For each simulation run, InflowWind

modules will require the generation of corresponding wind file from either IECWind or TurbSim. Detail

view on InflowWind input file with assisgned feautures for simulation can be seen in Appendix 3.1.

AeroDyn (Aerodynamics) – it takes in features and parameters defining the machine aerodynimics.

The main features considered here are environmental condtions (air density, kenematic air velocity,

speed of sound, atmospheric pressure values), blade parameters, proberties and airfoils data and

tower influence and dynamic. The modules here requires detailled blade data, mainly pre-generated

by the designer blade airfloil files containing aerodynamic parameters of each airfloil and blade

aerodynamic files containing distributed blade aerodynamic properties. These blade data files are

specific to each wind turbine and therefore used in each simulation run as constant parameters. Detail

view on Aerodyn input file with assigned features for simulation can be seen in Appendix 3.2.

ElastoDyn – takes in general turbine configuration features and simulation output parameters, the

main of which are Turbine DOFs as described in above, turbine configuration (number of blades and

rotor dimensions), Blade structural poperties (number of blade nodes and file containing structural

properties), rotor properties (rotor teeter spring/damper model, damper position, damping constant

35

...), drivetrain parameters (gearbox efficiency, gearbox ratio...), tower structural poperties (number of

tower nodes and file containing structural properties) and output parameters. The latest gives the

possibility to the designer to setup the representation of the simulation output files specifically. Output

parameters are nothing else than turbine evaluated parameters (rotor torque, power...) and the

calculated loads resulting from simulation generally forces and moments.

The Elastodyn files for both blade and tower are pre-generated file providing the module with a

detailled blade structural parameters necesserary for simultion. Detail view on Elastodyn input file

with assigned features for Aeroelastic model can be seen in Appendix 3.3.

ServoDyn – is the simulation control module that encompasses all turbine control systems and

features essential for high simulation accuracy. It therefore includes features related to Pitch control

(blade angle of attack control system, can be unexistant or any user-defined routine), generator and

torque control (where parameters like variable-speed control mode, generator efficiency, generator

model, generator speed and torque control and many orther generator control parameters are set),

simple induction generator features (for control of turbines with simple generator mode type

depending also on wether it is a variable-speed or a constant speed), high-speed shaft brake (HSS-

brake) (for the control of virtual turbine braking system), tuned mass damper (to initate computation

of nacelle and tower mass damping by the device is applicable to the turbine). Detail view on Servodyn

input file with assigned features for Aeroelastic model can be seen in Appendix 3.4.

FAST input File and simulation Run

All the aboved presented module with allocated features are called-in in one single input file

representing the main FAST input file. This file was built with a specific extension (.fst) indicating it

functionality. It contains features related to Simulation control (gives the designer the ability to set-up

parameters like total simulation run time and time step of simulation run), features switches and flags

(to enable or disable the computation of some modules), input files (where the different generated

modules input files are called-in to intergrate the simulation run bringing required parameters values

for FAST code execution), output (for setting parameters related to generation the output file like the

time step for tabular output in second, time to begin printing in text tabular output file in seconds,

format for tabular output file which can be either text file with an exetension of “.out” or a binary file

“.outb” and others. Detail view on FAST input with assigned features for the Aeroelastic model can be

seen in Appendix 3.7. FAST input file contains also features for control of the Linearization operation

mode which is not in our line of concern.

Using available turbine data, the designer sets up the simulation environment by building up the

described aboved inputs files in accordance with the simulation to be ran. After building up the final

36

“FAST.fst” input file, the simulation is ready to be ran from Windows command line through FAST

executable program FAST.exe for FAST 7, FAST_x64.exe for FAST 8 or OpenFAST_x64.exe for OpenFAST

versions.

For a proper simulation ran FAST should be install in such a way that it can be ran from any folder in

the computer. To run the executable, a command prompt window in opened, navigated to the

directory where is saved the executable and the following command-line syntax is inserted:

fast [<input file>]

where fast – can be either FAST.exe, FAST_x64.exe or OpenFAST_x64.exe,

<input file> – the name of the primary input file name with “.exe” extension. The designer has

the choice to decide on the rootname preceding the extension.

At the end of each simulation, FAST prints out some run-time statistics as shown in figure below.

Figure 2.8. Example of simulation run display output

The Simulation Time accounts for the amount of time simulated. The Simulation CPU Time accounts

for time the computer uses for time-marching part of the simulation. The Simulation Time Ratio is the

ratio between the amount of time simulated and the simulation CPU time. The bigger its value, the

faster the computer is. In case this value is greater than 1, then FAST can simulate an event in less time

than it would take in real life. A value smaller than 1 will mean that the computer might need some

performance upgrade.

37

2.3. Simulation Environments

The SLM and Aeroelastic model for Wind turbine load assessment discussed in this work require

specific simulation environment and tools for processing. The SLM, based on simple conservative

equations can be build-up in any arithmetical processing tools. Well-known software like Microsoft

Excel, Libre Office as well as some programming tools like MatLab, C++ and Python can be used to

serve the purpose.

In the wind industry, SLM model is generally built using Spreadsheet for Simple Load Model developed

and described in [8]. The latest provides an Excel format (.xls) spreadsheet designed to be adopted to

all SWTs following the recommendation prescribed by the standard. However, the thesis investigates

on the use of trending programing languages for development of Aeroelastic model for turbine load

assessment, emphasising on Python programming package. Reason of this choice will be given further.

Whereas the setup and execution of the Aeroelastic model require generally the integration of both

developed code-based simulation tools as FAST and HAWC2 and a simulation environment depending

on the voluminous complexity of the model. Both programs are developed to be executable in a

Windows or Linux command lines as standard simulation environment. Each single simulation can

therefore be directly launch in a command line for load assessment. For multiple simulations run, the

need of specific general purposes simulation environment become unavoidable. Developers of both

codes considered the use of existing programming languages as simulation environment as the provide

the possibility to setup complex schemes enabling and efficient loads computation with the

methodology proscribed by the standard.

In the wind industry, MatLab programming language is generally used for its popularity, efficiency,

multi-functionality and handiness though cost expensive. Due to the increasing popularity of Python

together with its availability as open source programming language, its usability as scientific computing

tool for the Aeroelastic model constitutes one of the main objectives in this work.

Python is an open source programming language that provides to users fully supported object-oriented

and structured programming. It offers execution of wide range of operation going from simple

arithmetical and logical algorithm to complex module integrated scripts using pre-existing standard

libraries, logical statements and mathematical expressions. The language was chosen for its simplicity

and its handiness compare to other alternative simulator for SLM analysis like Excel and for DLC model

analysis like MatLab. One of the predominant advantage of this language is the fact that it can be open

in many notebook interface like Jupiter notebook, Sublime IPython notebook, Spyder notebook etc.

These notebooks offer different user-definable programming interfaces and functionalities. Spyder

38

notebook was decided as the most suitable programming notebook for the simplicity it offers

regarding graphical representation of interface, script management, file management, readability of

written codes as well as proper representation of variables and generated coding result.

In addition to the usability study of potential use of Python as scientific computing tool compared to

MatLab, the thesis also focuses of the use of freely available tools to build the models in consideration.

LibreOffice mentioned is therefore highlighted as alternative to Microsoft Excel. LibreOffice is a freely

available office suite that contains programs for word processing, creation and edition of spreadsheets,

diagrams, slideshows and drawing. It makes use of the international ISO/IEC standard OpenDocument

file format (ODF) as its native file format for documents saving.

Next chapter will be exposing the use of the described above software and tools for load calculation

using prerogatives integrating both models as required by the standard together with implementation

on a real SWT, parameters and features given.

39

3. AERODYNAMIC AND STRUCTURAL BEHAVIOUR OF SMALL WIND

TURBINES: SIMULATION MODELLING OF A 25 KW WIND TURBINE

3.1. Implementation of Simplified Load Methodology

The model for implementation of SLM for quality assurance through evaluation of aerodynamic and

operational loads applied on a SWT was built in Python 2.7 programming language. From the step by

step load calculation methodology described in part 1.3.1, a Python script was written to serve the

purpose. As the SLM model takes into consideration all varieties of SWTs, to generalize the application

of model, the code was written in a way to be used for all type of horizontal axis SWTs, more specifically

for two or three-bladed SWTs.

In the specific case of this thesis work, models were built and tested for a 25 kW turbine using available

turbine rotor, tower and drive train data from Manufacturer. The turbine in consideration is a 3 bladed

HAWT with a rated power of 25 kW with a cut-in and cut-out wind speeds of 4,0 m/s and 25,0 m/s

respectively. It possesses a rotor diameter of 13 m making a projected area of 132,66 m2 and a hub

height of 18 m above ground level. The blades are 6.3 m long made of fibres glass and equipped with

a tip brake mechanism. The rotor stainless steel shaft spins at maximum rotor speed of 65,0 rpm,

transmitting its moment through the gearbox to the high speed shaft that turns a douply fed

asynchronous induction generator spinning at a maximum rpm of 1525,0. The tower is made of

galvanized steel tube, which stands on a concrete foundation stabilized by 8 guyed wires. Below is

representative drawing of the actual turbine.

Figure 3.1. Structural representation of the 25 kW wind turbine studied in this work

40

The code integrates several blocks sequentially inserted, representing parts of the methodology. The

first command block comprises of general turbine structural parameters presented above as input

data, values of which are from the machine passport provided by manufacturer or designer. These

input data inserted into the code as variables, are mainly related to moving components of the

machine like rotor and shaft as well as to their inter-connections.

The second block of the script integrates calculated parameters from input data which are generally

related to geometry and functionality of turbine components. SLM simulation parameters are inserted

in Python in terms of variables. Unlike other programming languages, python possesses no command

for variable declaration. They are created the moment a value is assigned to them. These values can

be integers, floats or strings representing an arithmetical expression characterising the variable. Every

command block in the script is headed by comments informing on the action undertaken in the block.

Meanwhile command lines are followed by a comment describing the variable initiated. All these

mentioned visual configuration of code ease its readability for a proper understanding and following

of the algorithm behind the code. Appendix 1.1 represents a copy of the written code for SLM load

evaluation, serving as evidence to the task accomplished.

3.1.1. Computation of loads and equivalent stresses on components

The third block of code represents the computation of fatigue and ultimate loads as required in each

load cases. Loads on machine components are expressed in terms of forces, thrusts and moments.

Using conservative equations presented in part 1.3.1, joined with the available turbine data, the script

here determines the actual value of those loads. The equation being generalised mostly for all types

of two or three-bladed SWTs specifically, the logical “if/else” statement is being used for referral the

sample turbine. The load calculation part of the script for the 25 kW Turbine is illustrated in Appendix

1.1. Whereas the computed values of loads from simulation are presented in Appendix 1.2.

The fourth command block of the script represent the computation of the equivalent stresses for both

analysis types as described in part 1.3.1. Table 3.1 below, displays obtained equivalent stresses on

components during normal operation with power production as well as during occurrence of specific

transient events. Equivalent stress formulas for circular section geometry in table 1.3 were used, as

turbine blade roots and shaft possess a circular cross section geometry.

41

Table 3.1. Computed equivalent stress on The 25 kW Turbine from SLM python.

Load case Equivalent
stress

Results Description

A - Fatigue MPaeqB, 9.04 Stress quantified from the peak-to-peak
variation in the fatigue load as the standard
considers turbine cycling at 0,5 – 1,5 the
design speed

MPashafteq , 48.28

B - load during yaw MPaeqB, 0.022 Straightforward calculations with no
assumption.

MPashafteq , 38.655

C – yaw error load on
blade

MPaeqB,

0.087 Only the bending moment on blades are
considered.

D – maximum thrust
of shaft

MPashafteq ,

1.263 Only the thrust loading on shaft is
considered.

E – maximum rpm MPaeqB,

0.075 The centrifugal force at blade root generates
stress

MPashafteq ,

15.206 Bending moment of shaft creates highest
stress on component at maximum rpm

F – short at load

connection

MPaeqB, 4.431 Single load for both components are
considered with a straightforward
calculation using moments created due to
shorts.

MPashafteq , 38.822

G – shutdown MPaeqB, 8.935 Stress here depends on existence of brake
system. “if/else” statement is used in the
script to express to condition. MPashafteq , 0.006

H – parked wind

loading

MPaeqB, 0.135 Load both components are considered.

MPashafteq , 1.679

Evidence of the displayed results is table can be seen in figure 3.1 below, which is a screenshot of the

all-together quantified parameters in the python SLM model.

3.1.2. Turbine quality assurance – model conclusion

The fifth and last part corresponds to the conclusion on the safety of considered components. In order

to conclude on safety of the machine, the calculated equivalent stresses are compared to the ultimate

material stress limit. The latest is a partial safety factor dependent variable. The partial safety factors

for fatigue and ultimate loads are given in table 3.2 for the SLM and Aeroelastic model and are

presented below.

Table 3.2 Partial safety factors for loads [7].

 Fatigue loads, γf Ultimate loads, γf

Simplified load model 1.0 3.0

Aeroelastic model 1.0 1.35

42

The standard implies that material properties should be estimated at 95% of confidence limits, defining

an amount of factors to be considered during evaluation of material properties. These factors are as

follow:

 full-scale structure material configuration representation;

 test samples manufacturing method representing the full-scale structure;

 fatigue, static and spectrum loading assessment;

 geometry effect on material properties;

 environmental effects on samples like humidity, UV degradation, temperature, corrosion.

Material partial safety factor value to be used depends on material characterization factors mentioned

above. So, if during determination of material properties of a component like generator shaft of the

specific case of 25 kW Turbine, all the above factors where considered, it means the component is fully

characterised. Therefore, partial safety factors for fully and partly characterized materials given in

table 3.3 below and represented below will be used. For a component like blade where the material

properties evaluation is based just on coupon testing, the minimal characterisation material safety

factors are used.

Table 3.3. Partial safety factors for materials [7].

Material characterisation Fatigue strength, γm Ultimate strength, γm

Full characterisation 1.25 1.1

Minimal characterisation 10 3.0

For a generalization of the python script with the aim of it to be used with wind turbines of different

material characterization, the “if/else” statement is used for proper selection of the safety factor.

Fatigue failure are evaluated with the combination of all fatigue load on component. Safety

requirement in this case is stated by equation 47 of [1] below:

i imf

i

sN

n
Damage 0.1

 (3.1)

Where ni – counted number of fatigue cycles in bin i of the characteristic load spectrum, including all

relevant load cases,

si - stress (or strain) level associated with the counted cycles in bin i, including the effects of

both mean and cyclic range,

N(.) is the number of cycles to failure as a function of the stress (or strain) indicated by the

argument (i.e. the characteristic S-N curve) and appropriate safety factor for loads and materials

respectively. The value of N for blades are taken for fatigue analysis S-N at load case A fatigue curves,

NB= 9.15e15. As for shaft, number of cycles of failure is infinite at load case A stress level.

43

The number of fatigue cycles n of turbine is obtained using the following formula:

;
60

ddesign TnB
n

 (3.2)

Where Td – design life time of turbine, s.

In general, the fatigue damage limit of main load carrier is equals to 1. Therefore, if the ratio between

the number of fatigue cycles and the number of cycles to failure of a component will be lower than 1

then it will be considered to be safe.

The ultimate strength for limit state analysis is expressed by the design requirement is given by

Equation 46 in [1]:

fm

k
d

f

 . (3.3)

Where σd – calculated equivalent stress on component,

fk – is the characteristic material strength,

γm – is the partial safety factor for materials,

γf – is the partial safety factor for loads.

The 25 kW turbine blades are made of fibre glass reinforced polyester with a characteristic material

strength of fk-blade = 200 MPa and generator shaft is made of stainless steel with a characteristic material

strength of fk-shaft = 635 MPa. These values are generally provided by component.

Using equations 3.1 and 3.3 together with the partial safety factors and corresponding characteristic

material strength values, the ultimate material strength where computed in the script and results

presented in the table below.

Table 3.4. Calculated result of ultimate material strength for blades and shaft.

Component Ultimate material strength

Blade 22.2 MPa

Shaft 192.4 MPa

For fatigue limit analysis, if the calculated fatigue load is lower than fatigue damage limit, then the

fatigue damage will be set as “infinite life”. This means no matter the load endured by turbine

component at this loading condition, its value won’t be high enough to cause component failure during

the life time of the machine.

As to other load cases for ultimate analysis, the material stress limit of component which is also

identified as ultimate material strength presented in table 3.4, will be compared to component

calculated equivalent stress values displayed in table 3.1. Therefore, for a chosen component at a given

44

loading condition, if the calculated equivalent stress is lower than the calculated ultimate material

strength, it will be considered as safe, otherwise its failure will be expected at certain point of the

turbine lifecycle. The statements “SAFE” and “FAIL” are used in the code to indicate component safety

in accordance to comparison results.

In figure 3.1 below, a screenshot from python variable explorer displaying the model result concluding

on turbine safety of operation under the specified loading conditions proscribed by the standard. The

calculated stress in the figure is nothing else than the equivalent stress presented in table 3.1. It serves

as evidence of the SLM model result.

Figure 3.1. SLM model quality assurance result for the 25 kW Turbine.

45

Appendix 1.1 represents a copy of the full python written script for this model. All used initial input

data, calculation using the described formulas according to the wind turbine specificity as well as

logical and arithmetical expressions are thereby represented. The script was built in a way allowing it

use on multiple type of SWT with configuration falling under the standard’s requirement.

For a better visualization of the equivalent stress computation from different load cases, a plot was

generated in python environment where we have in the x-axis the load cases and on the y-axis

corresponding equivalent stress values as illustrated in figure 3.2 below.

Figure 3.2 Equivalent stresses on main load carriers.

Evidence of written script for equivalent stress plotting can be seen in Appendix 2.

Although the shaft is concluded to be safe in the point of view of design requirement, it is the

component endorsing the highest stress during normal power production operation, yaw, maximum

rotational speed and short at load connection. Meanwhile blades experience most noticeable stress

during normal power production operation, short at load connection and during idling. These

conclusion is assumed to be logical as in reality, these events are the cause of most stresses on turbine

components leading to their failure in case of non-proper choice of component materials.

3.2. Implementation of Aeroelastic Model in Python 2.7

Loads from the Aeroelastic model are computed using FAST aeroelastic code. Both the model and the

code show to be complex entities constituting a huge implementation challenge on a turbine. In this

section will be described the setup process of the model by presenting constituents of each simulation,

46

how all simulations are built-up along with their specificity, how are they ran and where resulting

output files are the stocked.

3.2.1. Constituents of one simulation process

Each simulation, specific to the wind condition under which load analysis of the turbine are calculated,

comprises of parameters specified by both the design load case and the FAST operating mechanism as

shown in the diagram below.

Figure 3.3 Main specificity of each simulation

The design load case describes the simulation conditions which are later used in FAST to run the

simulation for load determination and to generate the final output files.

The wind conditions described by the Aeroelastic model are of 2 main types, the normal turbulence

model and the extreme wind transient conditions. These 2 types enclose together 7 distinct wind

conditions, each of which possesses a wide range of wind velocity going from 3 m/s to 25 m/s with

some extreme wind speed reaching 40 m/s. The model also requires the turbine to be tested in

different yaw error (in terms of angle) as in real life. The following directions are therefore assumed:

 0°, 10°, 350° for the NTM;

 Generally, 0° for most Extreme Conditions;

 0° - 330° with a step of 30° for EWM.

For a better management of files created and those generated during the simulation process, each

result files are saved in a specific allocated folder so to be easily located for use in the future for other

purposes.

47

Therefore, wind loadings are to be evaluated in each of the mentioned above conditions taking into

consideration file management as well. This constitutes the specificity of each simulation and raises

the question of difficulty to manually build the model that shows to be complex and time consuming

making a part of the aim of this thesis.

Let’s consider as example the first simulation set up in this model. The following steps and data were

required:

 File saving location;

 Wind condition (type) – NTM

 Wind speed = 3 m/s

 Wind direction = 0°

 Random seed for TurbSim wind file generation = 13428

 TurbSim output wind file generated using random seed and wind speed

 InflowWind input file generated using TurbSim output file

 AeroDyn file generated accounting blade aerodynamic standard file

 ElastoDyn file generated taking in tower aero-elastic standard file

 Servodyn file generated

 FAST input file generated calling in all available module generated input files

 Time to start simulation = 20 s

 Time to end simulation = 620 s

 Rotor speed = 65 rmp

 Time to deploy HSS-brake = 0

 Brake torque = 250 N/m

 Time to turn generator on = 0 s

 Time to turn generator off = 9999.9 s

All this set-up operation should be processed before running the simulation. Generally, this can require

couple of hour not taking into consideration the time spent for model study and simulator operating

mode understanding. Meanwhile, in accordance to requirements of the standard, a total of 345

distinct simulations are needed so to cover all the spectrum of design load cases for the 25 kW Turbine.

Therefore, manually setting up all these simulations and running them one after the order is a studious

and time consuming task. To ease this process, the auto-generation process was developed.

3.2.2. Auto-generation process of all required simulation for the DLCs

Given the complexity of the setup process of a single simulation, the question of how to develop a

more efficient modelling process enabling a faster setup of the Aeroelastic model for later execution

48

by the simulator is hereby raised. Here comes the need of general-purposes programming languages

reputed of having the ability to manage complex algorithm in order to complete specific tasks in form

of codes, scripts or commands assigned by the user. Python 2.7 was chosen as suitable programming

language for this purpose.

In order to model a repetitive setup process for each simulation sequentially, a so called Auto-

Generation process was developed using python 2.7 in Anaconda Spyder environment. The process

comprises of 4 mains steps described below:

 Creation of main location folders in the computer drive to save input and output files;

 Setup of Master files for all module input files;

 Creation and setup of an auto-generation spreadsheet for simulation parameters or variables;

 Python scripting for execution of auto-generation process and simulations combined.

The first step of the process is creating a directory in the drive where folders necessary for saving the

automatically generated files are located. For the 25 kW Turbine, one directory was created which

contains 3 sub-directories (blades permanent folder, tower permanent folder and Simulation folder).

The diagram below shows the arrangement of folders in directory. The blade folder contains blade

airfoil files, aerodynamic files and aero-elastic file. The tower folder contains tower’s aerodynamic file

and aero-elastic file.

Figure 3.4 Aeroelastic model directory scheme

In the auto-generation folder are located all master files. These files are modules input files in which

the parameter values to be modified according to each simulation are temporally set to a “Place

Holder”. This place holder will later be automatically change to the real value taken from the

spreadsheet and characterizing the parameter. Below are the following master files included in the

model, the rootname before the extension “.dat” of which can be user-defined:

 AeroDyn14_DLC2_Master.dat – to generate all aerodynamic input files for DLC 2 simulations;

49

 AeroDyn15_Master.dat – to generate all aerodynamic input files for all other DLC simulations;

 ElastoDyn_Master.dat – to generate all ElastoDyn input files for all DLC simulations;

 ServoDyn_Master.dat – to generate all ServoDyn input files for all DLC simulations;

 InflowWind_Master.dat – to generate all InflowWind input files for all DLC simulations;

 IEC_Master.dat – to generate all IECWind input files for all DLC simulations;

 DLC2_Turbsim_Master.dat – to generate all TurbSim input files for DLC 2 simulations;

 TurbSim_Master.dat – to generate all TurbSim input files for all other DLC simulations;

 fst_DLC2_Master.fst – to generate all FAST input files for DLC 2 simulations;

 fst_Master.fst – to generate all FAST input files for all other DLC simulations.

Auto-generation folder contains also all python scripts files. It can be called the brain folder of the

whole simulation.

Master files shown in Appendix 3 are simply generated by the modification of sample input files

provided by FAST, TurbSim and IECWind programs in which the values to be modified in accordance to

each specific simulation are replaced by place holders. Those sample files are renamed to Master Files

after modification and saved in the auto-generation folder.

In DLC folders are stocked all automatically generated specific simulation files from master files as

described above as well as all output files after the simulation run. There are 14 different folders

corresponding to all design load cases with their names indicating the wind conditions: DLC11_NTM,

DLC12_ECD, DLC13_EOG50, DLC14_EDC50, DLC15_ECG, DLC21_NWP, DLC22_NTM, DLC23_EOG1,

DLC31_NTM, DLC32_EOG1, DLC41_NTM, DLC51_EWM, DLC52_NTM and DLC61_EWM.

The auto-generation spreadsheet for the Aeroelastic model was created from the LibreOffice package.

The generated spreadsheet for the 25 kW Turbine Aeroelastic model named

“AutogenerationSpreadsheet.ods”, comprises of rows representing each simulation and columns

exhibiting parameters or variables specific to each simulation.

The two first rows are the most important for the python code as they serve as orientation on where

in the spreadsheet the values should be taken to create needed files. The first row carries description

of each simulation parameter and FAST modules whereas the second carries place holders. These place

holders indicate names of the parameters and are written in squared brackets enabling is readability

by Python. Here are the main place holders in the spreadsheet:

 [RandSeed1] – TurbSim random seed,

 [WindSpeed] – wind speed,

 [IEC Condition] – to indicate the extreme condition for IECWind wind file generation,

50

 [RatedWind] – rated wind speed used by IECWind for wind file generation,

 [wdir] – wind direction,

 [WindType] – to indicates if it is a binary TurbSim full-field or a steady extreme wind type,

 [WindFilename] – to call in generated wind files by TurbSim or IECWind into InflowWind input file,

 [InflowWind] – to call in InflowWind input file into FAST input file,

 [AeroDyn] – to call in aerodynamic input file into FAST input file,

 [ServoDyn] – to call-in ServoDyn input file into FAST input file,

 [ElastoDyn] – to call-in ElastoDyn input file into FAST input file,

 [Tstart] – time to start writing simulation output in output file

 [Tmax] – time to stop simulation, maximum simulation time.

Therefore, during auto-generation process, the script will tell python whenever it meets any of these

place holders in master files, it should replace it by the corresponding value from rows in the

spreadsheet. The row represents a single simulation.

On the column side of the spreadsheet, the first column indicates the location in which files should be

saved, the second and third form a unique identification to each file created, the rest of columns

contain values corresponding to each parameters. The figure below shoes representation of the

spreadsheet.

Figure 3.5 The 25 kW Turbine Auto-generation Spreadsheet short representation.

As noticeable in the figure ahead, DLC 2 in which during occurrence of fault, the tip-brakes are

deployed for system protection. This requires a special simulation setup involving the tip-brake feature

contained only in FAST 7 version. Therefore, a flag in the spreadsheet is used in order to tell python

which version of FAST code is to be executed for the simulation.

Other 2 auxiliary programs TurbSim and IECWind described above are run to generate wind files for

simulations with normal turbulence model and extreme transient respectively. Therefore, in the

51

spreadsheet a “Skip” flag is used to tell python not to create files and run simulation whenever its

meets this statement during the looping process.

3.2.3. Python scripting for execution of auto-generation process and simulations

The python script was written to enable a fast and coherent reading of the auto-generation

spreadsheet, to generate input files, save them into assigned location, run all need programs and

generate output files as result of simulations. Appendix 4 presents a copy of python script for

simulation process, meanwhile described below. The script encloses 4 main parts:

 In the first part of the script, python variables calling-in the master files and the auto-generation

spreadsheet are created. Through this action, python locates those files in the Auto-generation

folder and assigns them specific names

 The second part opens the master files, reads the contain and saves them into its memory as

template files. These template files contain the same data as in the master files but on in a python

readable format.

 The third part of the script is specific to reading a ODS file type like the auto-generation file. It

requires the use of ODS library freely available for users that gives the possibility to python to

read ODS file format. By calling the “ReadODS” function, auto-generation spreadsheet saved

previously as a variable is opened, read according to rows and columns and saved into python

memory. It also resizes the spreadsheet to contain only desired data by creating delimitation in

rows and columns and assigning to them specific variable names that will later be used during

looping iteration through the spreadsheet. Rows 3 to 347 represent each simulation, row 1 is the

files ID representing the modules and flags and row 2 the place holders.

 The fourth and fifth parts correspond to the looping. The script tells python for each simulation,

to first locate from the main working directory (Auto-generation Folder) the DLC folder where to

save files that will be generated, next to go to corresponding row, create file name with unique

IDs, check which version of FAST to run depending on the “True” or “False” tip-brake flag, check

TurbSim or IECWind flags (if value in cell exist, it creates input files from master files, saves them

in its memory, runs TurbSim or IECWind executables from command line using created input files

and save the resulted output files in the corresponding folder, while if values in cell is “Skip”, it

skips all operations related to the program and moves forward), it further moves to columns

corresponding to modules, creates and saves input files in respective directories. After all the files

created and save, Python checks if tip-brake flag was set to “True”, runs FAST7_x64 executable

program from command line, generate final output files and save them in the folder assigned to

FAST input and output files. Otherwise, it runs OpenFAST_x64. Operation executed, it jumps to

52

next row and repeats the same action until it goes through all the 345 rows (simulation) printing

out all simulation summary presented in figure 2.8 into a text file. This will later be used to identify

simulation that failed to run in case of a bug during the process.

3.2.4. FAST output files

A FAST output file is a tabular time-matching file containing a description of the simulation ran,

columns representing computed parameters and rows representing obtained results after an interval

of time. This interval of time called time step, is the time after which FAST prints out new computed

result for each single parameter. Time step in the model is generally equals to 0.04 s. Figure 3.6 shows

a representation of the output files.

Figure 3.6 FAST Output file representation.

FAST gives a wide variety of turbine loads and parameters generally called output parameters or

output channels that can be computed from the code and can be user-defined to suite Aeroelastic

model needs. However, the time and wind speed parameters are standard, therefore cannot be

modified. These parameters are all inserted into the FAST via ServoDyn control module.

For the 25 kW Turbine Aeroelastic model, the following output parameters were chosen:

 RotTorq – Rotor torque;

 LSShftFxa, RotThrust – Low-speed shaft thrust force (this is constant along the shaft and is

equivalent to the rotor thrust force). Directed along the xa- and xs-axes (kN);

 RotPwr – Rotor power (this is equivalent to the low-speed shaft power);

 RootFzc1 – Blade 1 axial force at the blade root directed along the zc1- and zb1-axes (kN);

 RootMxb1 – Blade 1 edgewise moment (i.e., the moment caused by edgewise forces) at the blade

root. About the xb1-axis (kN·m);

 LSShftMxa – Low-speed shaft torque (this is constant along the shaft and is equivalent to the rotor

torque). About the xa- and xs-axes (kN·m);

53

 TwrBsMxt – Tower base roll (or side-to-side) moment (i.e., the moment caused by side-to-side

forces). About the xt-axis (kN·m);

 YawBrFzn – Tower-top / yaw bearing axial force. Directed along the zn (kN);

 YawBrMxp – Nonrotating tower-top / yaw bearing roll moment. About the xp-axis (kN·m);

 RootFxb1 – Blade 1 flapwise shear force at the blade root. Directed along the xb1-axis (kN);

 RootMzc1 – Blade 1 pitching moment at the blade root. About the zc1- and zb1-axes (kN·m).

The other output parameters can be seen in ElastoDyn input master file in Appendix 3.3.

Simulation output files as presented in figure 3.6 all-together constitute a massive set of billions of

data points useless to designers without any additional data treatment applied. Therefore, in order to

make use of the obtained data points, the so called Post-Processing needs to be implemented. Post-

processing in this case will be defined as the action taken to transform a bunch of data points to a

graphically readable object characterizing the result of the calculated parameters describing the

turbine.

3.2.5. FAST output files post-processing

Output results from simulations contain extremely large amount of numbers. The post-processing will

be the extraction of maximum, mean and minimum values from all output channels of all simulations

of the corresponding DLC. This statistical computation is a studious and very time consuming task to

process manually as it involves the treatment of more than 25 output parameters in each of the 345

output files located in different folders. The post-processing not only includes finding of peak values

from the output channels but also graphically representing them so to be easily readable by the

designer. This process is of a high complexity to be built manually for each simulation. Therefore, the

need of integrating Python scripting arises again.

For the 25 kW Turbine Aeroelastic model, 3 distinct python scripts were written for the statistical

computation:

 The first script finds maximum, mean and minimum values from all output channels of the same

type in all output files of a particular DLC, plots the result on a graph where on y-axis are the max,

mean, min values of output parameters against the wind speed on x-axis. See figure below.

54

Figure 3.7 Blade flapwise bending moments on y axis for DLC 1.1.

Evidence of the written script can be found in Appendix 5.

 The second script finds max, mean and min values in the combination of all simulations output

channels of the same type from all DLCs and creates plots representing on the y-axis output

channels values against the wind speed. This simply means that python goes into all 345 output

files collects data of same load channel, combines them and finds peak values at each wind

speed. This gives the possibility to identify the maximum generated load with corresponding

wind speed at each output channel and from all DLCs. See figure below.

Figure 3.8 Low speed thrust force on shaft from all DLCs

Evidence of the written script can be found in Appendix 6.

 The third script combines obtained values for each output parameters of the same type finds the

first 10 maximums and minimum values indicating from which DLC they apply and later bar-

plotting them. The bar plot here represents loads from output parameters on the y-axis and on

the x-axis the simulation causing such loading. See figure below.

55

Evidence of the written script can be found in Appendix 7.

Figure 3.9 Low-speed shaft thrust force 10 maximum values from all simulations.

The last script not only bar-plot the 10 maximum values in of one output parameter but also multiply

the values by the safety factor for Aeroelastic model, SF = 1.35. Therefore, the plotted values

correspond to the final simulation output characterising each loads apply to the turbine and can be

compare to results from other parallel simulation tools like HAWC2 as well as to other simulation

methods like SLM in occurrence. In order to make this comparison possible, the overall maximum

values of each loads needs to be identified. The script also fulfils this task by identifying these extreme

values, creating a table and saving them into a generated a pdf files. See figure 3.10 for a screenshot

56

of generated table containing results of the 25 kW turbine Aeroelastic model. The full table is

represented in Appendix 5.5.

Figure 3.10 The 25 kW Turbine Aeroelastic model result.

The data from the table in appendix 5.5 shows that axial force at the blade root (RootFzc1) generates

the highest loads on turbine blades during power production plus occurrence of fault. This result seems

logical as for this case the rotor goes in to over-speed, inducing tip brakes deployment for system

protection generating severe loads at blade roots. The table conclusion can be verified in figure 3.10

Similarly, tower base pitching (or fore-aft) moment (TwrBsMyt), the moment caused by fore-aft forces

generates the highest moment load of turbine tower during manual or emergency shutdown generally

being and instantaneous turbine switch-off while still in operation due to some severe wind condition

or for maintenance.

The table can later be used as reference results for the Aeroelastic model. Nevertheless, it is highly

valuable during turbine check on quality assurance for certification as it presents only the necessary

peak values that can be generated for each considered load on machine components. The model

therefore includes a final script that generates a PDF report file for statistic computation of design load

cases simulation. The report file contains in each page plots generated by the second and third script

for each output parameter as well as the generated extreme table. A page from the PDF report file is

presented in Appendix 5. for reference. This PDF is to be attached to the turbine passport during

Certification check, making it relevant importance.

An additional evidence demonstrating a successful conduction of the model will be the comparison

between graphical representation of some transient extreme condition described in subpart 1.3.2 and

represented in [7] and some graphs plotted from the obtained simulation results. Figure 3.11 below

illustrate wind gusting at EOG event successfully modelled in figure 3.12 by FAST.

57

Figure 3.11 Example of extreme operating gust (EOG) at N=1 and Vhub = 25 m/s [7]

Figure 3.12 Sample 25 kW Turbine DLC 3.2 normal shutdown EOG at N=1 and Vhub = 25 m/s

As noticeable, both graphs are similarly characterizing the EOG at normal shutdown 1-year occurrence

condition. This similarity demonstrates that the model built in python was successfully able to simulate

the extreme condition. This should be sufficient but not enough to conclude on the effectiveness of

the model in load calculation in this case.

Figure 3.13 represent an illustration of wind gusting during an extreme gust (ECG) event represented

in the standard. Meanwhile the following figure 3.14 is a modelled wind behaviour obtained from the

aeroelastic model.

58

Figure 3.13 Example of an ECG at Vhub = 25 m/s [7]

Figure 3.14 Sample 25 kW Turbine DLC 1.5 ECG at Vhub = 10.5 m/s

The figure 3.14 clearly shows a sudden gusting with a magnitude of 15 m/s which similarly characterise

the event as recommended by the standard. This similarity should sufficient to prove a positive result

of the whole model.

59

Figure 3.15 DLC 2.1 NTM at 23 m/s showing sudden drop of rotor power to 0 kW.

The figure 3.15 here clearly illustrates a sudden decrease in power production from around 35 to 0 kW

caused by the deployment of tip-brake due to system fault.

Figure 3.16 DLC 4.1 NTM emergency or manual shutdown at 25 m/s.

60

The figure 3.16 clearly represents a drop in rotor speed from 65 to 0 rpm characterizing a shutdown

case.

The figure 3.17 below is an illustration of the axial force at blade root decrease due to an emergency

shutdown situation. Its value normally leads towards zero.

Figure 3.17 DLC 2.2 NTM emergency or manual shutdown case at 23 m/s, axial force on blade root.

All above presented graphs are plotted from DLC simulation output files. If the model is able to

simulate the conditions as described in the standard, the loads obtain obtained from the model should

reflect turbine response to wind loading and serve as evidence of the proper functionality of the model.

61

4. COMPARISON BETWEEN SIMPLE LOAD METHODOLOGY AND

AEROELASTIC MODEL

In SLM, load calculation is strictly based on conservative equations describing turbine dynamic. The

loads obtained are roughly structural and aerodynamic response of the turbine to the average wind

speed loading with a slight consideration of external conditions. This limits the model efficiency as

machine are generally exposed to relatively high wind speeds of different turbulence intensities, with

different directions and recurrent occurrence of extreme transient events. Subsequently, these loads

are generally high because of the uncertainty in the estimation method. Due to these uncertainties,

the standard requires the loads to be multiplied by a safety factor of 3 as displayed in table 3.2.

However, SLM can serve as baseline in turbine loads calculation, providing the manufacturer with an

understanding of the stress level to expect on machine components with regards to their ultimate

material strength limit. A knowledge of the expected loads on components gives the possibility to

proper choice of material enabling assembly of a safer to operation SWT.

The Aeroelastic model DLC on the other hand is a higher fidelity model that better represents the

machine and leads to more accurate results. It integrates all possible known situations with existing

non-negligible probability of occurrence, for loads identification with more accuracy though very

complex and time consuming to build. Due to its higher level of accuracy and the reduced number of

uncertainty, loads evaluated from the model are generally lower in comparison to the SLM, safety

factor included. The stated reasons explain the lower safety factor 1.35 presented in Table 3.2.

Additionally, the model integrates as well all turbine components alongside with their DOF, attached

parameters and features, building in its body a complete virtual representation of the turbine giving a

push up to its accuracy. It is therefore more realistic.

A comparison of the loads obtained after evaluation of loads on the sample turbine using both models

is represented in the table below. A proper comparison will be between maximum values obtained of

each wind loading of the same type, moments and forces, from both model.

62

Table 4.1. Model results comparison

Model results comparison

Load Type Units SLM

Aeroelastic
Model

Percentage
Difference

SLM /
Aeroelastic

SLM

Aeroelastic
Model

Percentage
Difference

SLM /
Aeroelastic

Safety Factor Included Excluded

Centrifugal
Force at the
Blade Root

kN 54 21.56 -60.07% 18 14.37 -20.17%

Blade Root
Edgewise
Bending
Moment

kN·m 15.33 6.94 -54.73% 5.11 4.62 -9.59%

Blade Root
Flapwise
Bending
Moment

kN·m 61.71 19.57 -68.29% 20.57 13.05 -36.56%

Maximum
Thrust on

Shaft

kN 56.97 19.49 -65.79% 18.99 12.99 -31.60%

Shaft Bending
Moment

kN·m 28.83 14.70 -49.01% 9.61 9.8 1.98%

Yaw bearing
axial force

kN 51.66 19.87 -61.54% 17.22 13.25 -23.05%

Yaw bearing
roll moment

kN·m 56.97 11.98 -78.97% 18.99 7.98 -58%

Tower
Bending
Moment

kN·m 56.97 356.40 299.43% 18.99 237.15 218.16%

Thrust force
on Tower

kN 108.63 19.87 -81.7% 36.21 12.81 -23.40%

As noticed in 4.1, loads from SLM are much higher in most cases including and excluding the applied

safety factor. This is explained by the high level of uncertainty and low accuracy of the model compared

to the Aeroelastic model. Though the quality assurance result (figure 3.1), evaluated using ultimate

material stress limits and calculated equivalent stresses, concluded on component safety with SLM

method. This shows as well that turbine quality assurance is highly dependent of ultimate material

strength. Therefore, in case turbine is revealed to be unsafe using SLM method, a more detail analysis

need to be considered using the Aeroelastic model for load calculation, further concluding on

component safety by calculating equivalent stresses on components using formulas in table 1.3 and

comparing obtained results with ultimate material strength. In conclusion, the Aeroelastic model

should be used for reduction of the load obtained from SLM using the high accuracy it offers alongside

with its design methodology being more realistic.

63

5. COMPARISON BETWEEN FAST AND ALTERNATIVE CODE HAWC2

Upon research, no other time marching aeroelastic wind turbine simulation codes were found other

than HAWC2 (Horizontal Axis Wind turbine simulation Code 2nd generation). Subsequently, it is the

only existing alternative to FAST. It was developed and distributed by the Aeroelastic Design Research

Group at DTU Wind Energy in Technical University of Denmark [18]. It has been utilized in several

research projects as well as industrial applications.

Similar to FAST, HAWC2 is used for design and verification purposes. It integrates the following

properties and features for simulations of wind turbines structural and aerodynamic response in time

domain:

 Onshore 1, 2, 3 or more bladed wind turbines;

 Vertical Axis Wind Turbines;

 Pitch and (active) stall controlled wind turbines;

 Guyed support structures;

 Offshore wind turbines;

 Multiple rotor in one simulation;

 Multibody formulation capable of handling multiple degree of freedom like blade torsion;

 Detail aerodynamic BEM model that includes dynamic stall models, skew inflow model, shear

effect on the induction, dynamic inflow model and near wake model;

 Hydrodynamic model;

 Water kinematic;

 Wind, turbulence and wake models;

 Default controller provided with a pitch-regulated variable speed controller;

 Eigenvalue analysis at standstill.

The HAWC2 software package comprises an executable file along with all necessary files to run the

code. Hence, HAWC2 isn’t an open source package. It is available in 3 form of licenses:

 Commercial multiple user license;

 Research single user license for students;

 Research multiple user license for institution.

Table 5.1 below presents the cost of each licenses and support system attached them.

64

Table 5.1. Cost of HAWC2 licenses [19]

Licenses Price: first year/annual
license fee

E-learning
Accounts

Annual
support hours

Commercial (multiple user) 40000/25000 Euro 15 40

SME 15000/12500 Euro 15 40

Institutions 5000 Euro 10 20

Student 1000 Euro 1 5

Where SME stands for micro, small and medium-sized enterprises according to European standards,

which employ less than 250 individuals with an annual turnover not outpacing 50 million Euro.

Cost wise, HACW2 is an expensive tool not easily affordable neither for small wind turbine

manufacturers nor for student interested in mastering the tool for their future career in the wind

turbine design analysis. Despite its affordability, HAWC2 is an excellent wind turbine simulation tools

that is being used by many companies and institutions and stand-alone researchers around the world

providing them technical support program and access to all updates and sub models.

NREL FAST and DTU HAWC2 possess similar objectives, give the possibility to turbine designer to

evaluate and foresee all possible loads that will endure wind turbines during their availability period.

However, NREL FAST compare to its concurrent, is a completely free availibility tool for download in

NREL webpage, where are posted all updates in the code, new versions, all sub-modules updates and

new features attached to the code. There, can also be downloaded all available users’ guides necessary

for understanding the code and its functionality. Additionally, it provides a support Forum platform

where users can submit their questions, comments, queries and receive in return support not only

from FAST code main developers (Bonnie Jonkman, Jason Jonkman, Katherine Dykes and Matthew

Lackner) but also from other users having better commands of the program. See [20] for NREL FAST

support platform. The code existence as free resource can be explained by the fact that its

development is funded by U.S. Department of Energy.

The above elaborated comparison exhibits the choice of FAST as simulator for studies of structural and

aerodynamic response of 25 kW wind turbine considered serving as object in this work. Its existence

as free resource represents as well a predominant advantage over its opponent. Small wind turbine

manufacturers often face financial difficulties in wind industry, so having to release additional

investment to purchase licenses for programs like HAWC2 for their turbine verification purposes will

unprofitable for their business. Therefore, the use of FAST combine with Python programming

language can reduce expenses on turbine design and manufacturing.

Additionally, the availability of FAST as open source code is also beneficial for student seeking

additional knowledge in simulation of wind turbine dynamic. Personally, as a student with low revenue,

I had the opportunity to use the code for my studies which would not have been possible if I were to

65

use HAWC2 for this purpose. Thanks to the program, I have a better understanding of operation mode

of wind turbine aerodynamic simulators in general and FAST in particular, making me a good fit for a

future career in this field.

66

6. COMPARISON OF PYTHON TO MATLAB

Both NREL FAST and HAWC2 are generally ran in Windows or Linux operating system command lines

or through MatLab computing tool. The latest serving as simulation environment commonly used by

companies and institutions. It is available as downloadable licenses in MathWorks portal. The table

below shows the approximate cost of different available MatLab licenses which can vary according to

regions and countries. See MatLab store for evidence of displayed prices in [21].

Table 6.1. Approximated Cost of MatLab licenses

Licenses Annual / perpetual
cost, Euro

Description

Standard 800 / 2000 For end user individual license and organisations

Academic 250 / 500 For faculties, staffs, or researchers at an
educational institution

Student 35 Restricted to if user falls in previous categories

Student suite 69

Home 119 For personal use

These prices are for the regular software package and will increase with the use of optimization toolbox

and add-on products like Simulink, Curve Fitting Toolbox, Control System Toolbox, Image Processing

Toolbox, DSP System Toolbox, Instrument Control Toolbox, Parallel Computing Toolbox, Optimization

Toolbox, Signal Processing Toolbox, Symbolic Math Toolbox, Statistics and Machine Learning Toolbox

and many others each of which generally cost additional 20 Euro.

In parallel, Python is currently a worldwide competing programming language that has proved to

provide many similar features compared to MatLab but at an absolutely zero-cost price including all

available toolboxes and libraries. It is ranked 1st in PYPL popularity of programming language, see [22],

with a share rate of 26.42% and an increasing trend of +5.2% in the last 5 years of existence.

Meanwhile, according to the same popularity classification MatLab occupies the 10th position with only

1.98% share as programming language. In conclusion, Python availability as free resource represents

the predominant advantage over MatLab. This give reasons to its used as computational tool for the

implementation of both models in this work. However, it should be pointed that the complexity of

building the Aeroelastic model is similar in both Python and MatLab.

I do believe many wind energy companies will switch to Python in the nearest future due to this

revealed popularity as programming environment for simulations of structural and aerodynamic wind

turbines response to wind loading.

67

SUMMARY

In line with addressing the usability of open source computational tools for wind turbine load

calculation following IEC-61400-2 standard requirements, an overview on the aerodynamic and

structural dynamic of HAWT was first presented emphasizing on the interaction between the

environmental conditions and turbine components which is at the essence of the rotation of the rotor

induced by the generated aerodynamic thrust, lift and drag forces. These forces were demonstrated

to create fatigue and ultimate loads on exposed components during turbine lifespan. With the used of

the two load calculation methodologies proscribed by the standard, both the Simplified Load

Methodology and Aeroelastic model were built and implemented for a 25 kW wind turbine using freely

available simulation tools in comparison to license-based tools.

This thesis essentially addressed the use of Python programming language for building simulation

models and optimization of simulation processes alternatively to MatLab package regularly used for

similar purposes. Both SLM and Aeroelastic models were built in Python programming environment

for load calculation. However, the Aeroelastic model exhibited a particularity characterized by the

integration of NREL FAST simulation code making the model more complex to build. Furthermore, the

scripts were generalized so to be implemented on variety of horizontal axis SWTs, this increasing the

suitability of the models.

A comparison of simulation results from both models revealed that values of similar loads types

obtained from the SLM model were up to 62.62% (SF included) and 25.27% (SF excluded) in average

higher than their pairs from the Aeroelastic model. This found explanation on the low accuracy of the

first model as it bases solely on conservative mathematical equations to describe turbine behaviour,

the second being more accurate for its integration of all possible environmental characteristics coupled

with turbine parameters and features.

Python as trending programming language, demonstrated its efficiency not only in the execution of

wind turbine aerodynamic simulations but also in optimization of the whole process. For the

Aeroelastic model, Python revealed to be substantially valuable in the automation processing of the

345 simulations executed alongside with the post-processing statistical computation of obtained

results. It essentially helps in reduction of time required for processing at absolutely zero-cost.

Meanwhile, processing such analysis using MatLab package would have required the purchase of

corresponding licenses bearing in mind additional cost for acquiring additional libraries or modules if

needed.

68

The resulting time series plots, fig. 3.12 and 3.14 of wind behaviour from the Aeroelastic model using

NREL FAST show a clear similarity with the considered transient extreme event described in the

standard, fig. 3.11 and fig. 3.13. This is a relevant proof of the effectiveness of FAST code in properly

representing the model as proscribed by the standard, leading to the conclusion on the correctness of

the loads calculated. However, both FAST and HAWC2 are known to perform coupled aerodynamic

modelling. The choice of the first code over its concurrent was therefore purely cost-wise.

To summarize, the results obtained from both models efficiently demonstrate the possibility of usage

of open source computer-aided tools for conduction of wind project related to analysis of aerodynamic

and structural dynamic response of wind turbines to wind loadings at absolutely zero investment cost.

The work fulfilled can be beneficial to tree main parties:

 Small wind turbine manufacturers desiring to pass their turbine verification and certification

process. They can use both built models for load determination, necessary for the quality

assurance verification as required by the standard, saving substantial amount of money in

comparison to the use of MatLab and HACW2. Considering the use of the latest tools instead,

the manufacturer will have to disburse approximately 15800 Euros annually for both licenses.

 Educational institutions desiring to provide students with detailed knowledge about the

dynamics of wind turbines together with deep insight in Python programming language.

 Students and sole individuals willing to get connected to the software part of the wind industry

without any financing investment. This will particularly be beneficial to students willing to take

a journey in the field of wind energy loads assessment for turbine safety qualification.

This project on its own required considerable amount of time to build till the final point, as it

integrating tonnes of information to process, acknowledge and implement. Its constitutes of several

parts mainly simulation related files and diverse python scripts with diverse executable programs as

presented in appendixes below. All these materials together can be hugely confusing to individuals

desiring to use the models for their turbine certification purposes or perhaps for learning purposes

merely. Therefore, the question of the possibility of development a so called ONE-CLICK operation

arises. Meaning, the development of a computer-based software that integrates all programs used in

these models, in which the user will just be required to insert his turbine’s parameters and wind field

characteristics, with a single click obtains from the software all loads requested. I believe such project

would be very innovative, creative and extremely beneficial for the wind energy industry.

69

REFERENCE

1. Kelly R., Rana A., Hannah E. M., Laura E. W., Adam Br. HIGHLIGHTS of the REN21 Renewables

2018 Global Status Report in perspective.

2. Haliade-X Offshore Wind Turbine Platform. [WWW]

https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine ,

(02.05.2019)

3. Manwell J. F. and McGowan J. G. Wind Energy Explained: Theory, Design and Application -

Edition 2.

4. Vitale A.J. and Rossi A.P. Software Tool for Horizontal-Axis Wind Turbine Simulation.

5. Dr. Meyers J. M., Dr. Fletcher D. G. and Dubief Dr. Y. Lift and Drag on an Airfoil.

6. Chawin C. and Warawut T. Determination of Wind Turbine Blade Flapwise Bending Dynamics.

7. CENELEC European Committee for Electrotechnical Standardization. IEC-61400-2:2014 Standard -

Wind turbines - Part 2: Small wind turbines.

8. David W. Small Wind Turbines Analysis, Design, and Application.

9. David S. Wind Energy Handbook.

10. Zhiyu J., Torgeir M., Zhen G. A Comparative Study of Shutdown Procedures on the Dynamic

Responses of Wind Turbines.

11. What is CAE | Computer-Aided Engineering? [WWW]

https://www.simscale.com/docs/content/simwiki/general/whatiscae.html , (04.05.2019).

12. The Most Popular CAD Software. [WWW] https://tutorial45.com/the-most-popular-cad-

software/ , (04.05.2019).

13. QBlade Wind Turbine Design and Simulation. [Online] http://www.q-blade.org/#second-screen ,

(04.05.2019).

14. What is Ashes? [WWW] https://www.simis.io/#Products_Ashes_Features , (04.05.2019).

15. Jason M. J., Marshall L. B. FAST 7 User’s Guide.

16. Germanisher Lloyd WindEnergie. Guideline for the Certification of Wind Turbines.

17. Kelley N.D. and Jonkman B.J. Overview of the TurbSim Stochastic Inflow Turbulence Simulator

Version 1.21 (Revised February 1, 2007).

18. Welcome to HAWC2. [Online] http://www.hawc2.dk/hawc2-info, (05/05/2019).

19. HACW2 Price information. [Online] http://www.hawc2.dk/hawc2-info/price-information,

(05/05/2019)

20. NWTC NREL's National Wind Technology Centre. [WWW] https://wind.nrel.gov/forum/wind/ ,

(04.05.2019).

https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine
https://www.simscale.com/docs/content/simwiki/general/whatiscae.html
https://tutorial45.com/the-most-popular-cad-software/
https://tutorial45.com/the-most-popular-cad-software/
http://www.q-blade.org/#second-screen
https://www.simis.io/#Products_Ashes_Features
http://www.hawc2.dk/hawc2-info
http://www.hawc2.dk/hawc2-info/price-information
https://wind.nrel.gov/forum/wind/

70

21. MathWorks: Pricing and Licensing. [WWW] https://se.mathworks.com/pricing-

licensing.html?prodcode=ML&intendeduse=comm , (04.05.2019)

22. PYPL Popularity of Programming Language. [WWW] http://pypl.github.io/PYPL.html ,

(04.05.2019).

https://se.mathworks.com/pricing-licensing.html?prodcode=ML&intendeduse=comm
https://se.mathworks.com/pricing-licensing.html?prodcode=ML&intendeduse=comm
http://pypl.github.io/PYPL.html

71

APPENDIX 1 SLM

A 1.1. Simple Load Model Script
#Created on Thu Mar 29 14:18:43 2018
#Michael Keumatio Lontsie
from pylab import *
import matplotlib.pyplot as plt

#Adaptation from Simple Load Model Spreadsheet (SLM)
25kW turbine
#Turbine data
Air_Density = 1.2250
g = 9.8100 #Gravitational acceleration
V_ref = 37.5 # Reference wind speed
V_ave = 7.5 # Average wind speed
B = 3.0 # Number of Blades
A_proj_B = 2.5 # Total Platform Area of the Blades
A_proj_T = 6.8 # Total Tower Projection Area
C_d = 1.5 #Drag Coefficient of the Blades
C_l_max = 2.0 # Maximum Lift Coefficent of the Blades
C_T = 0.5 # Thrust Coefficient
C_f = 1.5# Force Coefficient
n_max = 70.0 # Maximum Rotor Speed
n_design = 65.0 # Design Rotor Speed
m_B = 82.0 # Single Blade Mass
R_cog = 2.37 # Distance from Blade centre of gravity to rotor axis
L_rb = 0.45 # Distance between the rotor centre and Firt Bearing
L_rt = 0.89 # Distance between the rotor centre and the yaw axis
Gear = 23.25 # Gearbox Ratio (enter 1.0 for no gearbox)
High_Speed_Gearbox_Brake = True # Enter "T" if brake is on high speed side of the gearbox, otherwise "F"
M_brake = 250.0 # Brake Torque (enter 0.0 for no brake)
P_design = 22.0 # Design Power
G = 2 # Short Circuit Torque Factor
Blade_Stationary_during_Parking = True # Type "T" if blades are stationary during parking, otherwise "F"
Hub_Radius = 0.3
Hub_Mass = 102.0
Pitch_Bearing_Mass = 54.0

Parameters Calculated from Input Data
R = 6.2 + Hub_Radius # Blade Tip Radius
I_B = R_cog**2*m_B*3 # Second Moment of Inertia for each Blade
m_r = 3*m_B+Hub_Mass # Rotor Mass (All the blades plus Hub)
V_design = 1.4*V_ave # Design Wind Speed
V_e50 = 1.4*V_ref # 50 years Extreme Wind Speed
Lamda_e50 = n_max*pi*R/(30*V_e50) # 50 years Extreme Tip Speed Ratio
Lamda_design = R*pi*n_design/(30*V_design) # Design Tip Ratio
Nu = 0.85 # Drive_Train_Efficiency
Q_design = 30000*P_design/(n_design*pi*Nu) #Design Torgue
A_proj = pi*R**2 # Projected Area (Turbine swept area)
Omega_n_design = n_design*pi/30 # Design Rotational Speed of the Rotor
Omega_n_max = pi*n_max/30 # Max Possible Rotor Speed
Omega_yaw_max = 0.036 # Maximum yaw rate
e_r = 0.124 # Eccentricity of the Rotor Center of Mass
if High_Speed_Gearbox_Brake == True:
 Eff_M_brake = Gear*M_brake
else:
 Eff_M_brake = M_brake

Loads from SLM
Load Cas A- Fatigue Loads onBlades and Rotor Shaft
Blade Loads
DeltaF_zB = 2*m_B*R_cog*Omega_n_design**2 # Centrifugal Force at the Blade Root (z-axis)
DeltaM_xB = Q_design/B+2*m_B*g*R_cog # Lead-lag Root Bending Moment (x-axis)
DeltaM_yB = Lamda_design*Q_design/B #Flapwise Root Bending Moment (y-axis)

Shaft Loads

72

DeltaF_x_shaft = 1.5*(Lamda_design*Q_design)/R # Thrust on shaft (x-axis)
DeltaM_x_shaft = Q_design+2*m_r*g*e_r # Shaft Moment about x-axis
DeltaM_shaft = 2*m_r*g*L_rb+R*DeltaF_x_shaft/6.0 #Shaft Moment
Load Case B- Blade and Rotor Shaft Loads during Yaw
M_yB_CaseB =
m_B*Omega_yaw_max**2*L_rt*R_cog+2*Omega_yaw_max*I_B*Omega_n_design+R*DeltaF_x_shaft/9
Flapwise Root Bending Moment (y-axis)
if B == 2:
 M_shaft_CaseB = 4*Omega_yaw_max*Omega_n_design*I_B+m_r*g*L_rb*+R*DeltaF_x_shaft/6
else:
 M_shaft_CaseB = B*Omega_yaw_max*Omega_n_design*I_B+m_r*g*L_rb+R*DeltaF_x_shaft/6 # Bending
Moment of the shaft
Load Case C- Yaw Error Load on Blades
M_yB_CaseC =
0.125*Air_Density*A_proj_B*C_l_max*R**3*Omega_n_design**2*(1+4/(3*Lamda_design)+1/Lamda_design**2)
Flapwise Root bending moment on the blade
Load Case D- Maximum Thrust on Shaft
F_x_shaft_CaseD = C_T*3.125*Air_Density*V_ave**2*pi*R**2 # Maximum Thrust on Shaft

Load Case E- Maximum Rotational Speed
F_zB = m_B*Omega_n_max**2*R_cog #Centrifugal Force at the Blade Root (z-axis)
M_shaft_CaseE = m_r*g*L_rb+m_r*e_r*Omega_n_max**2*L_rb # Bending Moment on the Shaft

Load Case F- Short at Load Connection
M_x_shaft_CaseF = G*Q_design # Bending Moment on the Shaft
M_xB_CaseF = M_x_shaft_CaseF/B # Lead-lag Root Bending Moment (x-axis)

Load Case G- Shutdown Braking
if M_brake>0:
 M_x_shaft_CaseG = Eff_M_brake+Q_design
else:
 M_x_shaft_CaseG = "n/a" # Bending Moment on Shaft
if M_x_shaft_CaseG == "n/a":
 M_xB_CaseG = "n/a"
else:
 M_xB_CaseG = M_x_shaft_CaseG/B+m_B*g*R_cog # Lead-lag Root Bending Moment (x-axis)

Load Case H- Parked Wind Loads during idling
if Blade_Stationary_during_Parking == True:
 M_yB_CaseH = C_d*0.25*Air_Density*V_e50**2*A_proj_B*R
else:
 M_yB_CaseH = C_l_max*Air_Density*V_e50**2*A_proj_B*R # Flapwise Root Bending Moment (y-axis)
if Blade_Stationary_during_Parking == True:
 F_x_shaft_CaseH = 0.5*B*Air_Density*C_d*V_e50**2*A_proj_B
else:
 F_x_shaft_CaseH = 0.17*B*Lamda_e50**2*Air_Density*V_e50**2 # Maximum Thrust on Shaft
if Blade_Stationary_during_Parking == True:
 M_T = 0.5*B*Air_Density*C_d*V_e50**2*A_proj_B # Maximum Tower Bending Moment
else:
 M_T = 0.17*B*Lamda_e50**2*Air_Density*V_e50**2

F_T = 0.5*Air_Density*C_f*V_e50**2*A_proj_T # Maximum Thrust on Shaft

Additional Data
Diameter_shaft = 0.12
A_shaft = pi*Diameter_shaft**2/4 # cross sectional area of the shaft
I_x_shaft = pi*Diameter_shaft**4/64.0 #The second moment of Inertia of the shaft
W_shaft = 2*I_x_shaft/Diameter_shaft # Section modulus of the shaft
A_B = pi*(0.42/2)**2 # Cross sectionarea of the Blade root
I_xxB = pi*(0.42**4)/64.0 # Ixx for the Blade
c_xB = 2.77-0.1 # x- distance from the blade centroid to the maximuim stress point
I_yyB = I_xxB # Iyy for the Blade
c_yB = 0.01 # Y- distance from Blade centroid to the maximum stress point
W_xB = I_xxB/c_xB # Blade x- section modulus
W_yB = I_yyB/c_yB # Blade y_section modulus
f_kB = 200.0 # Ultimate Material strength for the Blades
f_k_shaft = 635.0 # Ultimate material strength for the Shaft

73

Additional Data for Fatigue calculation
Yrs = 20.0 # Years
T_d = Yrs*365.25*24*60.0*60.0 # Design life of the Turbine
n_i = (n_design*B*T_d)/60.0 # Number of Fatigue Cycles
N_shaft = 1e10 # Number of Cycles of Failure as a Function of Stress (Shaft)
N_blade = 1.23e13 # Number of Cycles of Failure as a Function of Stress (Blade)
W_B = 2*I_xxB/0.42 # Ixx,Iyy assume circular x-sect w/root specs

Calculation of the Equivalent Stresses
#Load Case A- Fatigue Loads on Blades and Rotor Shaft
Eq_Stress_blade_CaseA = ((DeltaF_zB/A_B)+(DeltaM_xB/W_xB)+(DeltaM_yB/W_yB))/1000000
Eq_Stress_shaft_CaseA =
math.sqrt(((DeltaF_x_shaft/A_shaft)+DeltaM_shaft/W_shaft)**2+0.75*(DeltaM_x_shaft/W_shaft)**2)/1000000

Load Case B- Blade ond Rotor Shaft Load during Yaw
Eq_Stress_blade_CaseB = (M_yB_CaseB/W_yB)/1000000.0
Eq_Stress_shaft_CaseB = (M_shaft_CaseB/W_shaft)/1000000.0

#Load Case C- Yaw Error Load on Blades
Eq_Stress_blade_CaseC = (M_yB_CaseC/W_yB)/1000000.0

Load Case D - Maximum Thrust on Shaft
Max_Thrust_Shaft = (F_x_shaft_CaseD/A_shaft)/1000000.0

Load Case E- Maximum Rotational Speed
Max_Rotational_Speed_Blade = (F_zB/A_B)/1000000.0
Max_Rotational_Speed_Shaft = (M_shaft_CaseE/W_shaft)/1000000.0

Load Case F- Short at Load Connection
Eq_Stress_Short_Load_Connect_blade = (M_xB_CaseF/W_xB)/1000000.0
Eq_Stress_Short_Load_Connect_shaft = (0.5*math.sqrt(3)*M_x_shaft_CaseF/W_shaft)/1000000.0

Load Case G- Shutdown Braking
if M_x_shaft_CaseG == "n/a":
 Eq_Stress_Shortdown_Braking_blade = "n/a"
else: Eq_Stress_Shortdown_Braking_blade = (M_xB_CaseG/W_xB)/1000000.0
if M_xB_CaseG == "n/a":
 Eq_Stress_Shortdown_Braking_shaft = "n/a"
else: Eq_Stress_Shortdown_Braking_shaft = math.sqrt(0.75*M_x_shaft_CaseG/W_shaft)/1000000.0

Load Case H- Parked Wind Load during Idling
Eq_Stress_Parked_blade = (M_yB_CaseH/W_yB)/1000000.0
Eq_Stress_Parked_shaft = (F_x_shaft_CaseH/A_shaft)/1000000.0

Load Case A- Fatique Loads on Blades and Rotor Shaft
Eq_Stress_blade = ((DeltaF_zB/A_B)+math.sqrt(DeltaM_xB**2+DeltaM_yB**2)/W_B)/1000000.0

Partial Safety Factors (PSF) for SLM
g_ff = 1.0 # Partial Safety Factor for Fatigue Loads
g_fu = 3.0 # Partial Safety Factor for Ultimate Loading

Calculation of the material PSF
Full_charact_blade_Material = False # Otherwise type True
gamma_mB_f = 10.0 # Blade Fatigue Strength Partial Safety Factor
gamma_muB_u = 3.0 # Blade Ultimate Strength Partial Safety Factor
Full_charact_shaft_Material = 1.0 # Otherwise type 0
if Full_charact_shaft_Material == 0:
 gamma_mShaft_f = 10.0
else: gamma_mShaft_f = 1.25 # Shaft Fatigue Strength Partial Safety Factor
if Full_charact_shaft_Material == 0:
 gamma_mShaft_u = 3.0
else: gamma_mShaft_u = 1.1 # Shaft Ultimate Strength Partial Safety Factor

Material Strengths (with Factors of Safety)
Ultimate_Strength_Blade_Material = f_kB/gamma_muB_u/g_fu
Ultimate_Strength_Shaft_Material = f_k_shaft/gamma_mShaft_u/g_fu

74

Calculation of Fatigue
s_iB = Eq_Stress_blade_CaseA # Blade Stress Level
Associated_s_iB = s_iB*gamma_mB_f # Associated Blade Stress Level
N_B = 9.81e15 # Number of Cycles for Failure at this Stress
s_i_shaft = Eq_Stress_shaft_CaseA # Shaft Stress Level
Associated_s_i_shaft = s_i_shaft*gamma_mShaft_f # Associated Shaft Stress Level
N_shaft = "inf" # Number of Cycles to Failure at this Stress

SIMPLE LOAD MODEL RESULTS
#Load Case A- Fatigue Loads on Blades and Rotor Shaft
Fatigue_damage_limit_blade = 1.0
if Ultimate_Strength_Blade_Material == "inf":
 Fatigue_damage_blade = "infinite life"
else: Fatigue_damage_blade = n_i/N_B
if logical_or(Fatigue_damage_blade < 1, Fatigue_damage_blade == "infinite life"):
 Conclusion_blade_CaseA = "SAFE"
else: Conclusion_blade_CaseA = "FAIL"
Fatigue_damage_limit_shaft = 1.0
if N_shaft == "inf":
 Fatigue_damage_shaft = "infinite life"
else: Fatigue_damage_shaft = n_i/N_shaft
if logical_or(Fatigue_damage_shaft < 1, Fatigue_damage_shaft == "infinite life"):
 Conclusion_shaft_CaseA = "SAFE"
else: Conclusion_shaft_CaseA = "FAIL"

Load Case B- Blade ond Rotor Shaft Load during Yaw
Material_stress_limit_blade = Ultimate_Strength_Blade_Material
Calculated_Stress_blade_CaseB = Eq_Stress_blade_CaseB
if Material_stress_limit_blade > Calculated_Stress_blade_CaseB:
 Conclusion_blade_CaseB = "SAFE"
else: Conclusion_blade_CaseB = "FAIL"
Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material
Calculated_Stress_shaft_CaseB = Eq_Stress_shaft_CaseB
if Material_stress_limit_shaft > Calculated_Stress_shaft_CaseB:
 Conclusion_shaft_CaseB = "SAFE"
else: Conclusion_shaft_CaseB = "FAIL"

#Load Case C- Yaw Error Load on Blades
Material_stress_limit_blade = Ultimate_Strength_Blade_Material
Calculated_Stress_blade_CaseC = Eq_Stress_blade_CaseC
if Material_stress_limit_blade > Calculated_Stress_blade_CaseC:
 Conclusion_CaseC = "SAFE"
else: Conclusion_CaseC = "FAIL"

Load Case D - Maximum Thrust on Shaft
Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material
Calculated_Stress_shaft_CaseD = Max_Thrust_Shaft
if Material_stress_limit_shaft > Calculated_Stress_shaft_CaseD:
 Conclusion_CaseD = "SAFE"
else: Conclusion_CaseD = "FAIL"

Load Case E- Maximum Rotational Speed
Material_stress_limit_blade = Ultimate_Strength_Blade_Material
Calculated_Stress_blade_CaseE = Max_Rotational_Speed_Blade
if Material_stress_limit_blade > Calculated_Stress_blade_CaseE:
 Conclusion_blade_CaseE = "SAFE"
else: Conclusion_blade_CaseB = "FAIL"
Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material
Calculated_Stress_shaft_CaseE = Max_Rotational_Speed_Shaft
if Material_stress_limit_shaft > Calculated_Stress_shaft_CaseE:
 Conclusion_shaft_CaseE = "SAFE"
else: Conclusion_shaft_CaseE = "FAIL"

Load Case F- Short at Load Connection
Material_stress_limit_blade = Ultimate_Strength_Blade_Material
Calculated_Stress_blade_CaseF = Eq_Stress_Short_Load_Connect_blade

75

if Material_stress_limit_blade > Calculated_Stress_blade_CaseF:
 Conclusion_blade_CaseF = "SAFE"
else: Conclusion_blade_CaseF = "FAIL"
Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material
Calculated_Stress_shaft_CaseF = Eq_Stress_Short_Load_Connect_shaft
if Material_stress_limit_shaft > Calculated_Stress_shaft_CaseF:
 Conclusion_shaft_CaseF = "SAFE"
else: Conclusion_shaft_CaseF = "FAIL"

Load Case G- Shortdown Braking
Material_stress_limit_blade = Ultimate_Strength_Blade_Material
Calculated_Stress_blade_CaseG = Eq_Stress_Shortdown_Braking_blade
if Material_stress_limit_blade > Calculated_Stress_blade_CaseG:
 Conclusion_blade_CaseG = "SAFE"
else: Conclusion_blade_CaseG = "FAIL"
Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material
Calculated_Stress_shaft_CaseG = Eq_Stress_Short_Load_Connect_shaft
if Material_stress_limit_shaft > Calculated_Stress_shaft_CaseG:
 Conclusion_shaft_CaseG = "SAFE"
else: Conclusion_shaft_CaseG = "FAIL"

Load Case H- Parked Wind Load during Idling
Material_stress_limit_blade = Ultimate_Strength_Blade_Material
Calculated_Stress_blade_CaseH = Eq_Stress_Parked_blade
if Material_stress_limit_blade > Calculated_Stress_blade_CaseH:
 Conclusion_blade_CaseG = "SAFE"
else: Conclusion_blade_CaseG = "FAIL"
Material_stress_limit_shaft = Ultimate_Strength_Shaft_Material
Calculated_Stress_shaft_CaseH = Eq_Stress_Parked_shaft
if Material_stress_limit_shaft > Calculated_Stress_shaft_CaseH:
 Conclusion_shaft_CaseG = "SAFE"
else: Conclusion_shaft_CaseG = "FAIL"

Calculated_Stress_blade_CaseA = Eq_Stress_blade_CaseA
Calculated_Stress_shaft_CaseA = Eq_Stress_shaft_CaseA

Factor = Calculated_Stress_shaft_CaseB/Material_stress_limit_shaft
shaft_factor = Factor**(1/3)

def y1(Eq_Stress_blade_CaseA, Eq_Stress_blade_CaseB, Eq_Stress_blade_CaseC,
Max_Rotational_Speed_Blade, Eq_Stress_Short_Load_Connect_blade, Eq_Stress_Parked_blade,
Eq_Stress_Shortdown_Braking_blade):
 print y1
 return;
def ys1(Eq_Stress_shaft_CaseA, Eq_Stress_shaft_CaseB, Max_Thrust_Shaft, Max_Rotational_Speed_Shaft,
Eq_Stress_Short_Load_Connect_shaft, Eq_Stress_Parked_shaft, Eq_Stress_Shortdown_Braking_shaft):
 print ys1
 return;

76

A 1.2. Loads results calculated using SLM

Table 1. Obtained loads evaluation results from SLM model

Load cases Parts Variables Results Description

Fatigue

Load case A

Blade

NFzB ,
18008.44 Centrifugal Force at the Blade Root (z-axis)

NmM xB ,

5080.43 Edgewise Root Bending Moment (x-axis)

NmM yB ,

5340.80 Flapwise Root Bending Moment (y-axis)

Shaft

NF shaftx ,

3697.48 Thrust on shaft (x-axis)

NmM shaftx ,

174649.08 Shaft Moment about x-axis

NmM shaft ,

7078.09 Shaft Moment

Ultimate

Load case B
Yawing

Blade NmM yB ,

3347.81 Flapwise Root Bending Moment (y-axis)

Shaft NmM shaft ,
6557.62 Bending Moment of the shaft

Load Case C
Yaw Error

Blade NmM yB ,

13373.06 Flapwise Root bending moment on the
blade

Load Case D
Maximum
Thrust

Shaft NF shaftx ,
14290.76 Maximum Thrust on Shaft

Load Case E
Maximum
Rotational
Speed

Blade NFzB ,
10442.77 Centrifugal Force at the Blade Root (z-axis)

Shaft NmM shaft ,
2579.68 Bending Moment on the Shaft

Load Case F
Short at Load
Connection

Shaft NmM shaftx ,
7604.87 Bending Moment on the Shaft

Blade NmM xB ,

2534.96 Edgewise Root Bending Moment (x-axis)

Load Case G
Shutdown
Braking

Shaft NmM shaftx ,
9614.93 Bending Moment on Shaft

Blade NmM xB ,

5111.45 Edgewise Root Bending Moment (x-axis)

Load Case H
Parked Wind
Loads during
idling

Blade NmM yB ,

20574.98 Flapwise Root Bending Moment (y-axis)

Shaft NF shaftx ,
18992.29 Maximum Thrust on Shaft

Tower NmMT , 18992.29 Maximum Tower Bending Moment

NFT , 36211.46 Thrust Force on Tower

77

APPENDIX 2 SLM equivalent stress plotting
#from pylab import *
import numpy as np
import matplotlib.pyplot as plt

import them
import Python_SLM_VW25kW
import Python_SLM_VW25kW_BlackWind
from Python_SLM_VW25kW import y1
from Python_SLM_VW25kW import ys1

y1 = (Eq_Stress_blade_CaseA, Eq_Stress_blade_CaseB, Eq_Stress_blade_CaseC,
Max_Rotational_Speed_Blade, Eq_Stress_Short_Load_Connect_blade, Eq_Stress_Parked_blade,
Eq_Stress_Shortdown_Braking_blade)
#from Python_SLM_VW25kW_BlackWind import y2
#y2 = (Eq_Stress_blade_CaseA2, Eq_Stress_blade_CaseB2, Eq_Stress_blade_CaseC2,
Max_Rotational_Speed_Blade2, Eq_Stress_Short_Load_Connect_blade2, Eq_Stress_Parked_blade2,
Eq_Stress_Shortdown_Braking_blade2)

ys1 = (Eq_Stress_shaft_CaseA, Eq_Stress_shaft_CaseB, Max_Thrust_Shaft, Max_Rotational_Speed_Shaft,
Eq_Stress_Short_Load_Connect_shaft, Eq_Stress_Parked_shaft, Eq_Stress_Shortdown_Braking_shaft)
n_groups = 7

create plot
fig, ax = plt.subplots()
index = np.arange(n_groups)
bar_width = 0.4
opacity = 0.8

rects1 = plt.bar(index, y1, bar_width, alpha=opacity, color='b', label=’25kWTurbine_blade')
rects2 = plt.bar(index + bar_width, ys1, bar_width, alpha=opacity, color='g', label='25kWTurbine_shaft')
#rects2 = plt.bar(index + bar_width, y2, bar_width, alpha=opacity, color='g', label='25kWTurbine+BlackWind')

plt.xlabel('Simple Load Cases')
plt.ylabel('Stress[MPa]')
plt.title('Calculated Equivalent Stresses on Blades and Shaft')
plt.xticks(index + bar_width, ('LoadA', 'LoadB', 'LoadC/D', 'LoadE', 'LoadF', 'LoadG', 'LoadH'))
plt.legend()

plt.tight_layout()
plt.show()

78

APPENDIX 3 FAST Master Files

A 3.1 InflowWind input master file

79

A 3.2 AeroDyn input master file

80

A 3.3 ElastoDyn input master file

81

82

A 3.4 ServoDyn input master file

83

84

A 3.5 TurbSim input master file

85

A 3.6 IECWind input master file

86

A 3.7 FAST input master file

87

APPENDIX 4 Python Auto-generation Script
#Created on Thu May 15 12:30:29 2018
#Michael Keumatio Lontsie

from pylab import *
from ReadODS import *
from execute import *
import sys
import subprocess
import os
import ECD_ECG

#Set the masterfiles as variables
#The python script needs to be set to the directory where the files are saved

TurbSimMasterFile = "VW25_00_TurbSim_Master.dat"
InflowWindMasterFile = "VW25_00_InflowWind_Master.dat"
fstMasterFile = "VW25_00_fst_Master.fst"
fstMasterFile_DLC2 = "VW25_00_fst_DLC2_Master.fst"
ServoDyn = "VW25_00_ServoDyn_Master.dat"
ElastoDyn = "VW25_00_ElastoDyn_Master.dat"
AeroDyn14 = "VW25_00_AeroDyn14_Master.dat"
AeroDyn14_DLC2 ="VW25_00_AeroDyn14_DLC2_Master.dat"
AeroDyn15 = "VW25_00_AeroDyn15_Master.dat"
IECWind = "VW25_00_IEC_Master.dat"

VW25_00_AutoGSpeadsheet = "VW25_00_Inputs_AutogenerationSpreadsheet_Test04.ods"

runTurbSim = True
runOpenFAST = True
runIEC = True

Open the masterfiles
f = open(TurbSimMasterFile,'r')
TurbSimTemplate = f.read()
f.close()

f = open(InflowWindMasterFile,'r')
InflowWindTemplate = f.read()
f.close()

f = open(fstMasterFile,'r')
fstTemplate = f.read()
f.close()

f = open(fstMasterFile_DLC2,'r')
fstTemplate_DLC2 = f.read()
f.close()

f = open(ServoDyn,'r')
ServoDynTemplate = f.read()
f.close()

f = open(ElastoDyn,'r')
ElastoDynTemplate = f.read()
f.close()

f = open(AeroDyn14,'r')
AeroDyn14Template = f.read()
f.close()

f = open(AeroDyn14_DLC2,'r')
AeroDyn14Template_DLC2 = f.read()
f.close()

f = open(AeroDyn15,'r')

88

AeroDyn15Template = f.read()
f.close()

f = open(IECWind,'r')
IECWindTemplate = f.read()
f.close()

This commands open and read odf files
"conda install -c conda-forge odfpy"- to install the odfpy package in anaconda
This script also requires the ODSReader.py and ReadODS.py files

a = np.array(ReadODS(VW25_00_AutoGSpeadsheet, "Sheet1", cutEmpty=True), dtype='str')
elems = a.nonzero()
noRows= max(elems[0])
noColumns= max(elems[1])
ExchangeSheetData = a[:noRows+1, :noColumns+1]

noSims = noRows-2
FileID = ExchangeSheetData[0,:]
PlaceHolder = ExchangeSheetData[1,:]

To generate each input files and looping
for i in range(0,noSims+1) :

 dlcFolder=ExchangeSheetData[i+2,0]
 filenameBase=ExchangeSheetData[i+2,1]
 uniqueId=ExchangeSheetData[i+2,2]
 tipBrakeFlag=ExchangeSheetData[i+2,3]

 TurbSimTemplatetemp = TurbSimTemplate
 InflowWindTemplatetemp = InflowWindTemplate
 if tipBrakeFlag=="True":
 fstTemplatetemp = fstTemplate_DLC2
 AeroDyn14Templatetemp = AeroDyn14Template_DLC2
 else:
 fstTemplatetemp = fstTemplate
 AeroDyn14Templatetemp = AeroDyn14Template
 ServoDynTemplatetemp = ServoDynTemplate
 ElastoDynTemplatetemp = ElastoDynTemplate
 AeroDyn15Templatetemp = AeroDyn15Template
 IECWindTemplatetemp = IECWindTemplate

 Skip_TurbSim = False
 Skip_IECWind = False
 ecgCase=False

 for j in range(0, noColumns+1):
 if FileID[j] == "TS":
 if ExchangeSheetData[i+2,j] == "Skip":
 Skip_TurbSim = True
 else:
 TurbSimTemplatetemp = TurbSimTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
 elif FileID[j] == "IW":
 InflowWindTemplatetemp = InflowWindTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
 elif FileID[j] == "FST":
 fstTemplatetemp = fstTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
 elif FileID[j] == "SD":
 ServoDynTemplatetemp = ServoDynTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
 elif FileID[j] == "ED":
 ElastoDynTemplatetemp = ElastoDynTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
elif FileID[j] == "AD14":
AeroDyn14Templatetemp = AeroDyn14Templatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
elif FileID[j] == "AD15":
AeroDyn15Templatetemp = AeroDyn15Templatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
 elif FileID[j] == "IECWind":
 if ExchangeSheetData[i+2,j] == "Skip":
 Skip_IECWind = True

89

 else:
 # check if uniqueId contains ECG, if so run IECWind for ECD case
 # then alter resulting .wnd file for ECG conditions
 if "ECG" in ExchangeSheetData[i+2,j]:
 ecgCase=True
 ExchangeSheetData[i+2,j]=ExchangeSheetData[i+2,j].replace("ECG","ECD")
 IECWindTemplatetemp = IECWindTemplatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])
 elif FileID[j] == "AD14F7":
 if logical_not(ExchangeSheetData[i+2,j] =="Skip"):
 AeroDyn14Templatetemp =
AeroDyn14Templatetemp.replace(PlaceHolder[j],ExchangeSheetData[i+2,j])

############To generate each input file with specific name and save in attached directories##############

 if Skip_TurbSim == False:
 TurbSimfilename = ''.join(np.array([filenameBase,'TurbSim_',uniqueId,'.dat']))
 TurbSimfilepath = ''.join(np.array([dlcFolder,'/Wind/', TurbSimfilename]))
 with open(TurbSimfilepath, "w") as f:
 f.write(TurbSimTemplatetemp)
 f.close()
 if runTurbSim == True:
 # To run TurbSim64.exe and generate TurbSim.bts files
 args = ['TurbSim64', TurbSimfilepath]
 subprocess.call(args, shell=True)

 if Skip_IECWind == False:
 IecWindInputFileName = "IEC.ipt"
 IECWindInputFilepath = ''.join(np.array([dlcFolder,'/Wind/', IecWindInputFileName]))
 with open(IECWindInputFilepath, "w") as f:
 f.write(IECWindTemplatetemp)
 f.close()
 if runIEC == True:
 windDir=''.join(np.array([dlcFolder,'/Wind']))
 wd = os.getcwd()
 os.chdir(windDir)
 p=subprocess.Popen("IECWind", shell=True)
 p_status = p.wait()
 with open(IecWindInputFileName, 'r') as f:
 read_data = f.readlines()
 f.close()
 IECWindfilename_std = ''.join(np.array([read_data[-1],".wnd"]))
 if ecgCase:
 # convert from ECD to ECG
 ECD_ECG.ECD_ECG(IECWindfilename_std) # do whatever is in ECD_ECG.py
 IECWindfilename = ''.join(np.array([filenameBase,'IecWind_',uniqueId,'.wnd']))
 args= ["ren", IECWindfilename_std, IECWindfilename]
 p=subprocess.Popen(args, shell=True)
 os.chdir(wd)

 AeroDyn14filename = ''.join(np.array(['VW25_00_AeroDyn14.dat']))
 AeroDyn14filepath = ''.join(np.array([dlcFolder,'/AeroDyn/', AeroDyn14filename]))
 with open(AeroDyn14filepath, "w") as f:
 f.write(AeroDyn14Templatetemp)
 f.close()

 if tipBrakeFlag!="True":
 Inflowfilename = ''.join(np.array([filenameBase,'InflowWind_',uniqueId,'.dat']))
 Inflowfilepath = ''.join(np.array([dlcFolder,'/InflowWind/', Inflowfilename]))
 with open(Inflowfilepath, "w") as f:
 f.write(InflowWindTemplatetemp)
 f.close()

 ElastoDynfilename = ''.join(np.array([filenameBase,'ElastoDyn_',uniqueId,'.dat']))
 ElastoDynfilepath = ''.join(np.array([dlcFolder,'/ElastoDyn/', ElastoDynfilename]))
 with open(ElastoDynfilepath, "w") as f:
 f.write(ElastoDynTemplatetemp)
 f.close()

90

 ServoDynfilename = ''.join(np.array([filenameBase,'ServoDyn_',uniqueId,'.dat']))
 ServoDynfilepath = ''.join(np.array([dlcFolder,'/ServoDyn/', ServoDynfilename]))
 with open(ServoDynfilepath, "w") as f:
 f.write(ServoDynTemplatetemp)
 f.close()
 AeroDyn15filename = ''.join(np.array(['VW25_00_AeroDyn15.dat']))
 AeroDyn15filepath = ''.join(np.array([dlcFolder,'/AeroDyn/', AeroDyn15filename]))
 with open(AeroDyn15filepath, "w") as f:
 f.write(AeroDyn15Templatetemp)
 f.close()

 fstfilename = ''.join(np.array([filenameBase,'fstInput_',uniqueId,'.fst']))
 FASTfilepath = ''.join(np.array([dlcFolder,'/fst/', fstfilename]))
 with open(FASTfilepath, "w") as f:
 f.write(fstTemplatetemp)
 f.close()

sys.stdout=open("25kWTurbine_FAST_ConsoleOut.txt","w")
 if runOpenFAST == True:
 # sys.stdout=open("../25kWTurbine_FAST_ConsoleOut.txt","a")
 if tipBrakeFlag=="True":
 args = ['FAST7_x64', FASTfilepath]
 else:
 args = ['OpenFAST_x64', FASTfilepath]
 #subprocess.call(args, shell=True)
 execute(args)

#sys.stdout.close()

91

APPENDIX 5 Statistical computation Python script

A 5.1 Statistical computation Python script 1

-*- coding: utf-8 -*-
"""
Created on Mon Aug 4 16:25:08 2018

@author: Michael Keumatio Lontsie
"""
import glob, os
import numpy as np
import matplotlib.pyplot as plt
from wetb.dlc import high_level
from wetb.fast.fast_io import load_output
from wetb.fatigue_tools.fatigue import eq_load, rainflow_astm, rainflow_windap, cycle_matrix

Specific of DLCs
my_path = os.getcwd()

for dir in os.listdir(my_path):
 #print(dir)
 if dir.startswith('DLC') and os.path.isdir(os.path.join(my_path, dir)):
 if dir.startswith('DLC31_NTM'):
 continue
 elif dir.startswith('DLC52'):
 continue
 for f in os.listdir(my_path +'/'+ dir):
 #print(dir + ':' + f)
 if f.startswith('f'):
 os.chdir(my_path+'/'+ dir +'/'+ f)

 #os.chdir('../fst')
 turbineModel=25kWTurbine'
 statName= dir
initialization of variables
 vec = np.zeros([600001,1])
 vec_max = np.zeros([600001,31])
 vec_min = np.zeros([600001,31])
 vec_mean = np.zeros([600001,31])
 vec_abs = np.zeros([600001,31])
 windspeed = np.zeros([600001,1])
 windspeed1 = np.zeros([600001,1])
 i = 0
 for file in glob.glob('*.out'):
 data, info = load_output(file)
 #short_Eq = eq_load(data[:,info['attribute_names'].index('RootMyb1')], m=12,
 # neq=1e7, rainflow_func=rainflow_astm)
 #vec[i] = short_Eq[0]
Statistics computation (including mean, max, min values)
 vec_max1 = [np.max(data[:,[k]]) for k in range(0,len(data[1,:]))]
 vec_min1 = [np.min(data[:,[k]]) for k in range(0,len(data[1,:]))]
 vec_mean1 = [np.mean(data[:,[k]]) for k in range(0,len(data[1,:]))]
 vec_abs1 = [np.max(np.abs([vec_max1[k],vec_min1[k]])) for k in range(0,len(data[1,:]))]
 windspeed[i] = np.mean(np.sqrt(data[:,[1]]**2 + data[:,[2]]**2 + data[:,[3]]**2))
 vec_max[i] = vec_max1[:]
 vec_min[i] = vec_min1[:]
 vec_mean[i] = vec_mean1[:]
 vec_abs[i] = vec_abs1[:]
 # windspeed1[i] = np.sqrt(vec_mean1[1]**2 + vec_mean1[2]**2 + vec_mean1[3]**2)
 # windspeed1[i] = vec_mean1[1]
 i += 1
 # print("\nEquivalent load for the Blade Root Flapwise Moment of the DTU 10MW (FAST):\n")
 # print(short_Eq)
 # print("\n")

92

plot figures:
 plt.close("all")
 plt.rcParams['font.size'] = 23
 idxFig=[4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27]
 axisName=['RotTorq [kNm]','LSShftFxa [kN]','RotPwr [kW]','RootFzc1 [kN]','RootMxb1 [kNm]','RootMyb1
[kNm]','LSShftMxa [kNm]','LSSGagMya [kNm]','LSSGagMza [kNm]','TwrBsMxt [kNm]','TwrBsMyt
[kNm]','YawBrFzn [kN]','YawBrFxp [kN]','YawBrFyp [kN]','YawBrMzn [kNm]','YawBrMxp [kNm]','YawBrMyp
[kNm]','RootFxb1 [kN]','RootFyb1 [kN]','RootMzc1 [kNm]','LSShftFys [kN]','LSShftFzs [kN]','Q_DrTr
[rad]','QD_DrTr [rad/s]']
 for i in range(0,len(idxFig)):
 fig = plt.figure(figsize=(25,15))
 plt.plot(windspeed,vec_max[:,idxFig[i]],'rs')
 plt.plot(windspeed,vec_min[:,idxFig[i]],'bs')
 plt.plot(windspeed,vec_mean[:,idxFig[i]],'ks')
 if dir.startswith('DLC6'):
 plt.axis([40, 50, np.min(vec_min[:,idxFig[i]]), 1.1*np.max(vec_max[:,idxFig[i]])])
 elif dir.startswith('DLC51'):
 plt.axis([40, 60, np.min(vec_min[:,idxFig[i]]), 1.1*np.max(vec_max[:,idxFig[i]])])
 else:
 plt.axis([2, 27, np.min(vec_min[:,idxFig[i]]), 1.1*np.max(vec_max[:,idxFig[i]])])
 # plt.grid(True)
 plt.ylabel(axisName[i])
 plt.xlabel('Wind Speed, [m/s]')
 plt.title(turbineModel)
 plt.legend(('vec_max', 'vec_min', 'vec_mean'),
 loc='best', shadow=None)
 plt.show()
 fig.savefig(my_path + '/'+ dir + '/'+ axisName[i]+ '.png', dpi=fig.dpi)
 # save variables
 #os.chdir(my_path)
 os.chdir('../../Load_Comparison')
 vec_abs_s = [np.max(vec_abs[:,[k]]) for k in range(0,len(vec_abs[1,:]))]
 np.savetxt(statName + '_max.txt', vec_abs_s, delimiter=',')

93

A 5.2 Statistical computation Python script 2
"""
Created on Wed Aug 01 10:32:53 2018

@author: Michael Keumatio Lontsie
"""

import glob, os
import numpy as np
import matplotlib.pyplot as plt
import heapq
import pandas as pd
from wetb.dlc import high_level
from wetb.fast.fast_io import load_output
from wetb.fatigue_tools.fatigue import eq_load, rainflow_astm, rainflow_windap, cycle_matrix

my_path = os.getcwd()
#Defining max, min, mean vectors variables
vec_max=np.zeros([1,31])
vec_min=np.zeros([1,31])
vec_mean=np.zeros([1,31])
windspeed=np.zeros([1,1])
unicID=np.array('-', dtype=str)

Specific of DLCs
#Looping through the DLCs, the fst folders and the output files in them
for dir in os.listdir(my_path):
 if dir.startswith('DLC') and os.path.isdir(os.path.join(my_path, dir)):
 if dir.startswith('DLC31_NTM'):
 continue
 elif dir.startswith('DLC52'):
 continue
 for f in os.listdir(my_path +'/'+ dir):
 #print(dir + ':' + f)

 if f.startswith('f'):
 os.chdir(my_path+'/'+ dir +'/'+ f)
 turbineModel='25kWTurbine'
 statName= dir
 # initialization of variables
 vec = np.zeros([600001,1])
vec_max = np.zeros([351,19])
vec_min = np.zeros([351,19])
vec_mean = np.zeros([351,19])
 vec_abs = np.zeros([600001,31])
 #windspeed = np.zeros([351,1])
 windspeed1 = np.zeros([600001,1])

 i = 0
 for file in glob.glob('*.outb'):
 data, info = load_output(file)
 # Statistics computation (including mean, max, min values)
 vec_max1 = [np.max(data[:,[k]]) for k in range(0,len(data[1,:]))]
 vec_min1 = [np.min(data[:,[k]]) for k in range(0,len(data[1,:]))]
 vec_mean1 = [np.mean(data[:,[k]]) for k in range(0,len(data[1,:]))]
 vec_abs1 = [np.max(np.abs([vec_max1[k],vec_min1[k]])) for k in range(0,len(data[1,:]))]
 windspeed = np.vstack([windspeed,np.mean(np.sqrt(data[:,[1]]**2 + data[:,[2]]**2 + data[:,[3]]**2))])
 #concatenating (stacking) max, min, mean saved values from each i files after each loop
 vec_max = np.vstack([vec_max,vec_max1[:]])
 vec_min = np.vstack([vec_min,vec_min1[:]])
 vec_mean = np.vstack([vec_mean,vec_mean1[:]])
 Vvec_max = 1.35*vec_max
 Vvec_min = 1.35*vec_min
 Vvec_mean = 1.35*vec_mean

94

 unicID = np.vstack([unicID, file[:-4]])
 vec_abs[i] = vec_abs1[:]
 # save variables
 os.chdir('../../Load_Comparison')
 vec_abs_s = [np.max(vec_abs[:,[k]]) for k in range(0,len(vec_abs[1,:]))]
 np.savetxt(statName + '_max.txt', vec_abs_s, delimiter=',')
plot figures:
plt.close("all")
plt.rcParams['font.size'] = 28
idxFig=[4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27]
axisName=['RotTorq [kNm]','LSShftFxa [kN]','RotPwr [kW]','RootFzc1 [kN]','RootMxb1 [kNm]','RootMyb1
[kNm]','LSShftMxa [kNm]','LSSGagMya [kNm]','LSSGagMza [kNm]','TwrBsMxt [kNm]','TwrBsMyt
[kNm]','YawBrFzn [kN]','YawBrFxp [kN]','YawBrFyp [kN]','YawBrMzn [kNm]','YawBrMxp [kNm]','YawBrMyp
[kNm]','RootFxb1 [kN]','RootFyb1 [kN]','RootMzc1 [kNm]','LSShftFys [kN]','LSShftFzs [kN]','Q_DrTr
[rad]','QD_DrTr [rad/s]']
for i in range(0,len(idxFig)):
 fig = plt.figure(figsize=(25,15))
 plt.plot(windspeed,vec_max[:,idxFig[i]],'rs')
 plt.plot(windspeed,vec_min[:,idxFig[i]],'bs')
 plt.plot(windspeed,vec_mean[:,idxFig[i]],'ks')
 plt.axis([2, 60, np.min(vec_min[:,idxFig[i]]), 1.1*np.max(vec_max[:,idxFig[i]])])
 plt.grid(True)
 plt.ylabel(axisName[i]+' incl. SF')
 plt.xlabel('Wind Speed, [m/s]')
 plt.title(turbineModel)
 plt.legend(('vec_max', 'vec_min', 'vec_mean'),
 loc='best', shadow=None)
 plt.show()
 fig.savefig(my_path + '/Load_Comparison/'+ axisName[i]+ '.png', dpi=fig.dpi)

95

A 5.3 Statistical computation Python script 3
"""
Created on Thu Aug 02 11:04:41 2018

@author: Michael Keumatio Lontsie
"""
import glob, os
import numpy as np
import matplotlib.pyplot as plt
from wetb.dlc import high_level
from wetb.fast.fast_io import load_output
from wetb.fatigue_tools.fatigue import eq_load, rainflow_astm, rainflow_windap, cycle_matrix
import heapq
import pandas as pd
import numpy as np
from fpdf import FPDF
import bottleneck as bn

my_path = os.getcwd()
#Defining max, min, mean vectors variables
vec_max=np.zeros([1,31])
vec_min=np.zeros([1,31])
vec_mean=np.zeros([1,31])
windspeed=np.zeros([1,1])
unicID=np.array('-', dtype=str)
Vec_10min=np.zeros([1,10])
Vec_10max=np.zeros([1,10])
Specific of DLCs
#Looping through the DLCs, the fst folders and the output files in them
for dir in os.listdir(my_path):
 if dir.startswith('DLC') and os.path.isdir(os.path.join(my_path, dir)):
 if dir.startswith('DLC31_NTM'):
 continue
 elif dir.startswith('DLC52'):
 continue
 for f in os.listdir(my_path +'/'+ dir):
 #print(dir + ':' + f)
 if f.startswith('f'):
 os.chdir(my_path+'/'+ dir +'/'+ f)
 turbineModel='25kWTurbine'
 statName= dir
 # initialization of variables
 vec = np.zeros([600001,1])
 vec_abs = np.zeros([600001,31])
 #windspeed = np.zeros([351,1])
 windspeed1 = np.zeros([600001,1])

 i = 0
 for file in glob.glob('*.out'):
 data, info = load_output(file)
Statistics computation (including mean, max, min values)
 vec_max1 = [np.max(data[:,[k]]) for k in range(0,len(data[1,:]))]
 vec_min1 = [np.min(data[:,[k]]) for k in range(0,len(data[1,:]))]
 vec_mean1 = [np.mean(data[:,[k]]) for k in range(0,len(data[1,:]))]
 vec_abs1 = [np.max(np.abs([vec_max1[k],vec_min1[k]])) for k in range(0,len(data[1,:]))]
 unicID = np.vstack([unicID, file[:-4]])
 windspeed = np.vstack([windspeed,np.mean(np.sqrt(data[:,[1]]**2 + data[:,[2]]**2 + data[:,[3]]**2))])
#concatenating (stacking) max, min, mean saved values from each i files after each loop
 vec_max = np.vstack([vec_max[:],vec_max1[:]])
 vec_min = np.vstack([vec_min[:],vec_min1[:]])
 vec_mean = np.vstack([vec_mean[:],vec_mean1[:]])
 vec_abs[i] = vec_abs1[:]
to remove the first "0" row
Vec_max = 1.35*vec_max[1:]
Vec_min = 1.35*vec_min[1:]
Vec_mean = 1.35*vec_mean[1:]

96

plot figures:
#plt.close("all")
plt.rcParams['font.size'] = 16
#idxFig=[4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25,26,27]
#axisName=['RotTorq [kNm]','LSShftFxa [kN]','RotPwr [kW]','RootFzc1 [kN]','RootMxb1 [kNm]','RootMyb1
[kNm]','LSShftMxa [kNm]','LSSGagMya [kNm]','LSSGagMza [kNm]','TwrBsMxt [kNm]','TwrBsMyt
[kNm]','YawBrFzn [kN]','YawBrFxp [kN]','YawBrFyp [kN]','YawBrMzn [kNm]','YawBrMxp [kNm]','YawBrMyp
[kNm]','RootFxb1 [kN]','RootFyb1 [kN]','RootMzc1 [kNm]','LSShftFys [kN]','LSShftFzs [kN]','Q_DrTr
[rad]','QD_DrTr [rad/s]']
idxFig=[6,4,5,26,27,10,11,12,23,24,7,8,9,25,18,19,17,20,21,22,13,14]
axisName=['RotPwr [kW]','RotTorq [kNm]','LSShftFxa [kN]','LSShftFys [kN]','LSShftFzs [kN]','LSShftMxa
[kNm]','LSSGagMya [kNm]','LSSGagMza [kNm]','RootFxb1 [kN]','RootFyb1 [kN]','RootFzc1 [kN]','RootMxb1
[kNm]','RootMyb1 [kNm]','RootMzc1 [kNm]','YawBrFxp [kN]','YawBrFyp [kN]','YawBrFzn [kN]','YawBrMzn
[kNm]','YawBrMxp [kNm]','YawBrMyp [kNm]','TwrBsMxt [kNm]','TwrBsMyt [kNm]','Q_DrTr [rad]','QD_DrTr [rad/s]']
for i in range(0,len(idxFig)):
 #plots 10max
 vec_max_i = Vec_max[:,idxFig[i]]
 vec_10max_ind = heapq.nlargest(10, range(len(vec_max_i)), vec_max_i.take)
 vec_10max = Vec_max[vec_10max_ind,idxFig[i]]

 fig = plt.figure(figsize=(15,25))
 N = len(vec_10max)
 x = range(N)
 width = 0.5

 plt.bar(x,vec_10max, width, color="blue")
 plt.ylabel(axisName[i]+'incl. SF')
 plt.xlabel('Maximum values')
 # Create the bars names
 plt.xticks(x, unicID[vec_10max_ind,0], color='black', rotation=90)
 # Custom the subplot layout
 plt.subplots_adjust(bottom=0.4, top=0.99)
 plt.title(turbineModel)
 fig.savefig(my_path + '/Load_Comparison/'+ axisName[i]+ 'Max.png', dpi=fig.dpi)

 #plots 10min
 vec_min_i = Vec_min[:,idxFig[i]]
 vec_10min_ind = bn.argpartition(vec_min_i, 10)[:10]
 vec_10min = bn.partition(vec_min_i, 10)[:10]
 vvec_10min = np.sort(vec_10min)
k = 10
vec_10min_ind = np.argpartition(vec_min_i, -k)
vec_10min = vec_min_i[vec_10min_ind[:k]]
 fig = plt.figure(figsize=(15,25))
 M = len(vec_10min)
 y = range(M)
 width = 0.5
 plt.bar(y,vvec_10min, width, color="blue")
 plt.ylim(plt.ylim()[::1])
 plt.xlim(plt.xlim()[::1])
 plt.ylabel(axisName[i]+' incl. SF')
 plt.xlabel('Minimum values')
 # Create the bars names
 plt.xticks(y, unicID[vec_10min_ind,0], color='black', rotation=90)
 plt.title(turbineModel)
 # Custom the subplot layout
 plt.subplots_adjust(bottom=0.4, top=0.99)
 fig.savefig(my_path + '/Load_Comparison/'+ axisName[i]+ 'Min.png', dpi=fig.dpi)

#PDF file for the extreme table
##
Vec_10min = np.hstack([Vec_10min[1:],vec_10min[:]])
Vec_10max = np.hstack([Vec_10max[1:],vec_10max[:]])
VVec_max= Vec_max[:,idxFig]
VVec_min= Vec_min[:,idxFig]

97

#VVec_max = Vec_max[0:,4:]
#VVec_min = Vec_min[0:,4:]
Bmax = np.max(VVec_max, axis=0)
Bmax_ind = np.argmax(VVec_max, axis=0)
BBmax = Bmax.tolist()
unicIDMax = unicID[Bmax_ind,0]
UnicIDMax = unicIDMax.tolist()

Bmin = np.min(VVec_min, axis=0)
Bmin_ind = np.argmax(VVec_min, axis=0)
BBmin = Bmin.tolist()
unicIDMin = unicID[Bmin_ind,0]
UnicIDMin = unicIDMin.tolist()
#axisName1=['RotTorq [kNm]','LSShftFxa [kN]','RotPwr [kW]','RootFzc1 [kN]','RootMxb1 [kNm]','RootMyb1
[kNm]','LSShftMxa [kNm]','LSSGagMya [kNm]','LSSGagMza [kNm]','TwrBsMxt [kNm]','TwrBsMyt
[kNm]','YawBrFzn [kN]','YawBrFxp [kN]','YawBrFyp [kN]','YawBrMzn [kNm]','YawBrMxp [kNm]','YawBrMyp
[kNm]','RootFxb1 [kN]','RootFyb1 [kN]','RootMzc1 [kNm]','LSShftFys [kN]','LSShftFzs [kN]']
axisName1=['RotPwr [kW]','RotTorq [kNm]','LSShftFxa [kN]','LSShftFys [kN]','LSShftFzs [kN]','LSShftMxa
[kNm]','LSSGagMya [kNm]','LSSGagMza [kNm]','RootFxb1 [kN]','RootFyb1 [kN]','RootFzc1 [kN]','RootMxb1
[kNm]','RootMyb1 [kNm]','RootMzc1 [kNm]','YawBrFxp [kN]','YawBrFyp [kN]','YawBrFzn [kN]','YawBrMzn
[kNm]','YawBrMxp [kNm]','YawBrMyp [kNm]','TwrBsMxt [kNm]','TwrBsMyt [kNm]']

dataset =
pd.DataFrame({'Channels':axisName1,'Max':BBmax,'SimsMax':UnicIDMax,'Min':BBmin,'SimsMin':UnicIDMin})
print(dataset)
dataset.to_csv(r'../../Load_Comparison/ExtremeTable.txt', header=True, index=None, mode='a', sep='\t')
Creating a dataframe and saving as output.xlsx in current directory
#writer = pd.ExcelWriter('../../Load_Comparison/ExtremeTable.xlsx')
#dataset.to_excel(writer,'Sheet1')
#writer.save()

#read in the .xlsx file just created
#df_2 = pd.read_excel('../../Load_Comparison/ExtremeTable.xlsx')

#creating a pdf in called test.pdf in the current directory
pdf = FPDF()
pdf.add_page()
pdf.set_xy(0, 0)
pdf.set_font('arial', 'B', 12)
#pdf.set_text_color(0,0,255)
pdf.cell(60)
pdf.cell(70, 30, 'Extreme Table', 0, 2, 'C')
pdf.cell(-50)
pdf.cell(30, 10, 'Channels', 1, 0, 'C')
pdf.set_fill_color(0,0,255) #to color the cells in Red,Green,Blue (RGB) order
pdf.cell(20, 10, 'Max', 1, 0, 'C', fill=True)
pdf.cell(60, 10, 'simsMax', 1, 0, 'C')
pdf.set_fill_color(255,0,0)
pdf.cell(20, 10, 'Min', 1, 0, 'C', fill=True)
pdf.cell(60, 10, 'simsMin', 1, 2, 'C')
pdf.cell(-130)
pdf.set_font('arial', '', 8)
for i in range(0, len(dataset)):
 col_channels = str(dataset.Channels.loc[i])
 col_Max = str(dataset.Max.loc[i])
 col_simsMax = str(dataset.SimsMax.loc[i])
 col_Min = str(dataset.Min.loc[i])
 col_simsMin = str(dataset.SimsMin.loc[i])
 pdf.cell(30,10, '%s' % (col_channels), 1, 0, 'C')
 pdf.set_fill_color(0,0,255)
 pdf.cell(20,10, '%s' % (col_Max), 1, 0, 'C', fill=True)
 pdf.cell(60,10, '%s' % (col_simsMax), 1, 0, 'C')
 pdf.set_fill_color(255,0,0)
 pdf.cell(20,10, '%s' % (col_Min), 1, 0, 'C', fill=True)
 pdf.cell(60,10, '%s' % (col_simsMin), 1, 2, 'C')
 pdf.cell(-130)
pdf.output('../../Load_Comparison/ExtremeTable.pdf', 'F')

98

A 5.4 DLC Aeroelastic model sample page in PDF report File.

99

A 5.5 DLC Aeroelastic model results – Extreme Table.

