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INTRODUCTION

As a second known member of the neurotrophin family, brain derived
neurotrophic factor (BDNF) was initially purified from pig brain as a factor
capable of supporting survival of sensory neurons. Regulation of BDNF
signalling is complex with highly regulated transcription, translation, processing
and controlled vesicular sorting, and secretion of the neurotrophin. Errors or
inefficiencies at any of these steps leading to lower BDNF levels have been
associated with several neurodevelopmental and -degenerative disorders.

Due to BDNEF’s involvement in nervous system functioning and disease,
development of model systems for studying BDNF gene regulation is of
interest. Previously generated transgenic mice using BDNF promoters have
shown that including larger genomic areas of BDNF genomic locus in transgene
helps to better mirror the endogenous BDNF expression patterns and makes
models more useful for BDNF regulation studies. However, reporter genes in
these transgenic mice still did not fully mimic the endogenous BDNF
expression. Bacterial artificial chromosomes (BACs) are large capacity DNA
vectors, able to contain entire genes together with their upstream and
downstream genomic areas. Due to existence of genomic BAC libraries for
human and rodents, and convenient methods for their modification, they have
been increasingly used for generating transgenic models for studies of gene
regulation and protein function.

In the following text I will give a brief overview of BDNF expression,
processing, signalling and function. I will also review the use of BACs in
studying the regulation of genes in transgenic systems.



ABBREVIATIONS

ARNT?2 aryl hydrocarbon receptor nuclear translocator 2
BAC bacterial artificial chromosome

BDNF brain-derived neurotrophic factor

CaMKII calmodulin-dependent protein kinase II

CAPS2 Ca”"-dependent activator protein for secretion 2
CaRE1/2/3 calcium response element 1/2/3

CaRF calcium response factor

CPB CREB binding protein

CPE carboxypeptidase e

CPEB-1 cytoplasmic polyadenylation element binding protein-1
CRE cAMP response element

CREB cAMP response element binding protein
DGK-B diacylglycerol kinase 8
eEF2K eukaryotic elongation factor 2

EGFP enhanced green fluorescent protein
ERK extracellular signal regulated kinase
FISH fluorescent in situ hybridisation
HAT histone acetyltransferases

HDAC histone deacetylases

HDM histone demethylases

HMT histone methyltransferases

hRluc humanised Renilla luciferase

LTD long-term depression

LTP long-term potentiation

MAPK mitogen activated protein kinase
MeCP2 methyl CpG binding protein 2

MEF2 myocyte enhancer factor 2

NAD nicotinaminde adenine dinucleotide
ncRNA non-coding RNA

NFkB nuclear factor kappa beta

NGF nerve growth factor

NPAS4 neuronal PAS domain protein 4
NRSF neuron-restrictive silencing element
NT3 neurotrophin 3

NT4 neurotrophin 4

PI3K phosphatidylinositol-3-kinase

PLC phospholipase C

REST repressor element 1 silencing transcription factor



RISC
SNARE
tPA
TrkA/B/C
TSTA
USF
UTR
YAC

RNA induced silencing complex

soluble NSF attachment protein receptor
tissue plasminogen activator
tropomyosin-related kinase A/B/C
two-step transcriptional activation
upstream stimulatory factor
untranslated region

yeast artificial chromosome
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1. REVIEW OF THE LITERATURE

1.1. Neurotrophin family

Neurotrophin growth factor family member brain-derived neurotrophic factor
(BDNF) was initially purified from pig brain as a factor capable of supporting
survival of sensory neurons (Barde et al., 1982). Altogether, neurotrophin
family of proteins includes BDNF, nerve growth factor (NGF), neurotrophin 3
(NT3) and neurotrophin 4 (NT4) — all of which have diverse functions in
neuronal survival and synaptic plasticity related processes in developing and
adult nervous system (Bibel and Barde, 2000; Park and Poo, 2013).
Neurotrophin family members are synthesised as pro-neurotrophins and are
processed intra- or extracellularly to produce mature neurotrophins. These two
forms of neurotrophins bind to different receptors with pro forms of all
neurotrophins binding with high affinity to common pro-neurotrophin receptor
p75"™® and mature forms of neurotrophins binding to their specific
tropomyosin-related kinase receptors (Trk-s) — NGF to TrkA, BDNF and NT4
to TrkB, NT3 to TrkC (Huang and Reichardt, 2001). Binding to these receptors
activates distinct signalling pathways in cells, with p75N™® activating signalling
pathways associated with apoptosis and reduction of synaptic complexity (Teng
et al., 2010), and TrkB signalling activating intracellular signalling pathways
that support cellular survival, neurite outgrowth and increase of synaptic
plasticity (Huang and Reichardt, 2001).

1.2. BDNF expression and regulating stimuli

Importance of BDNF in development and functioning of mammalian nervous
system is shown by its wide expression in central and peripheral nervous
system. BDNF levels in the brain increase during the embryonic development
reaching peak during first postnatal weeks (Maisonpierre et al., 1990; Timmusk
et al.,, 1994a) with the expression appearing mainly in neurons (Ernfors et al.,
1990; Maisonpierre et al., 1990; Wetmore et al., 1990; Timmusk et al., 1994a;
Conner et al., 1997; Katoh-Semba et al., 1997). In addition to nervous system,
BDNF is also expressed in several non-neural tissues with highest levels
detected in heart and lung, but also in skeletal muscle, liver, kidney, thymus and
spleen (Maisonpierre et al., 1990; Yamamoto et al., 1996; Katoh-Semba et al.,
1997; Aid et al., 2007; Pruunsild et al., 2007).

BDNF expression is changed in nervous system in response to wide array of
stimuli, most of which are associated with neuronal activity but also with
processes like injury, stress and disorders. Direct stimulation of neural activity
by kainic acid (Zafra et al., 1990; Metsis et al., 1993), electrical stimulation
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(Ernfors et al., 1991; Patterson et al., 1992; Castrén et al., 1993), lesion-induced
seizures (Isackson et al., 1991) or cortical application of potassium chloride
(Kokaia et al., 1993) have been shown to increase BDNF expression in nervous
system. BDNF regulation is also associated with sensory and memory related
processes that increase neural activity. It is increased in response to whisker
stimulation in rodents (Rocamora et al., 1996; Nanda and Mack, 2000). BDNF
levels are increased in visual cortex in response to light (Castrén et al., 1992)
and decreased in case of monocular inhibition (Bozzi et al., 1995; Rossi et al.,
1999). Its levels are also increased in response to hippocampus and amygdala-
dependent learning (Hall et al., 2000; Rattiner et al., 2004) and enriched
environment (Falkenberg et al., 1992; Young et al., 1999). BDNF levels have
also been shown to be regulated during diurnal cycle with the levels increasing
during the beginning of animals activity period (Bova et al., 1998; Berchtold et
al., 1999). Inhibition of neural activity by GABA reduces BDNF levels
(Berninger et al., 1995).

In addition to BDNF regulation in response to neuronal activity, other
stimuli also affect BDNF expression levels. BDNF has been shown to be
induced in response to injuries to nervous system like ischemic and
hypoglycaemic insults (Lindvall et al., 1992), and peripheral nerve axotomy
(Meyer et al., 1992; Funakoshi et al., 1993). BDNF is also is involved in
responses to stress with decreased levels in dentate gyrus and hippocampus due
to immobilisation stress (Smith et al., 1995a, 1995b), and downregulation of its
mRNAs in response to acute or chronic social defeat stress (Pizarro et al., 2004;
Tsankova et al., 2006). BDNF expression is also altered in depression (Smith et
al., 1995b; Berton et al., 2006; Tsankova et al., 2006; Larsen et al., 2010) with
antidepressant treatments withholding its stress caused reduction (Tsankova et
al., 2006) and also inducing BDNF levels (Nibuya et al., 1995; Dias et al., 2003;
Berton et al., 2006; Tsankova et al., 2006; Larsen et al., 2010). Additionally,
BDNF is involved in addiction related processes with its levels increased in
mesolimbic system following cocaine withdrawal (Grimm et al., 2003) and in
nucleus accumbens in response to cocaine self-administration (Graham et al.,
2007).

1.3. BDNF synthesis, processing and secretion

BDNF is first synthesised as a precursor protein preproBDNF, that is cleaved in
endoplasmic reticulum to yield 32kDa proBDNF, which can then be cleaved
further at several places along its trafficking route to yield 13kDa mature BDNF
(Mowla et al., 2001). This processing is performed intracellularly in trans-Golgi
network by furin, or in immature secretory vesicles by proprotein convertases
(Seidah et al., 1996), and extracellularly by tissue plasminogen activator
(tPA)/plasmin system (Pang et al., 2004) or matrix metalloproteinases (Lee et
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al., 2001b). The proBDNF is sorted in trans-Golgi network to constitutive or
regulated secretory pathway with most of the secretion going by regulated
pathway in neurons (Goodman et al., 1996; Heymach et al., 1996; Mowla et al.,
1999; Wu et al., 2004). Sorting of BDNF protein to dense core vesicles of
regulated secretory pathway is reliant on its pro sequence (Brigadski et al.,
2005; Lou et al., 2005). This process has been shown to be dependent on
carboxypeptidase E (CPE) (Lou et al., 2005) and sortilin (Chen et al., 2005),
both of which interact with pro region of proBDNF in trans-Golgi network and
regulate its sorting. In addition to sorting BDNF to regulated secretory pathway,
sortilin takes part in directing BDNF containing vesicles to lysosome (Evans et
al., 2011).

Vesicular transport to axons or dendrites

BDNF-containing vesicles have been shown to be localised and bi-directionally
(antero- and retrogradely) transported in axons and dendrites (Haubensak et al.,
1998; Adachi et al., 2005; Park et al., 2008; Kwinter et al., 2009; Dieni et al.,
2012). Anterograde BDNF vesicle transport takes place along microtubules and
is dependent on assembly of huntingtin/huntingtin associated protein 1/dynactin
complex (Gauthier et al 2004, Kwinter et al 2009). Phosphorylation of
huntingtin enables the assembly of complex and its anterograde transport while
non-phosphorylated huntingtin leads to its disassembly and retrograde transport
of vesicles (Colin et al., 2008). CPE has also been shown to be necessary for
assembly of motor protein complex and bi-directional transport of vesicles,
possibly by recruiting kinesins and dyneins (Park et al., 2008).

Mechanisms responsible for selective axonal or dendritic localisation of
BDNF are still being studied. Ca**-Dependent Activator Protein for Secretion
(CAPS2) has been found to associate with BDNF-containing vesicles and be
responsible for their axonal localisation (Sadakata et al., 2014). In addition to
BDNF transported from soma to dendrites, overexpressed tagged BDNF has
been shown to be localised to local dendritic Golgi, indicating local translation,
processing, and secretion (Horton and Ehlers, 2003; Horton et al., 2005).

BDNF secretion

Regulated secretion of BDNF from cultured neurons has been shown in
response to several stimuli — treatment with glutamate (Canossa et al., 2001),
depolarisation (Goodman et al., 1996; Kojima et al., 2001), spontaneous
synaptic activity (Kuczewski et al., 2008), and electrical stimulation (Balkowiec
and Katz, 2000; Hartmann et al., 2001). Ca*" necessary for secretion can be
sourced extracellularly by activation of ionotropic glutamate receptors
(Hartmann et al., 2001), L-type voltage-gated cation channels (VGCC)
(Hartmann et al., 2001; Kolarow et al., 2007), or N-type calcium channels
(Balkowiec and Katz, 2002). In addition, activation of metabotropic GABAp
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receptors by GABA increases intracellular Ca®* leading to BDNF secretion
(Fiorentino et al., 2009). Initial Ca** increase is enhanced through Ca®" release
from endoplasmic reticulum via activation of ryanodine receptors (Kolarow et
al., 2007). Additionally, activation of calmodulin-dependent protein kinase II
(CaMKII) and cAMP/protein kinase A is necessary for depolarisation-induced
BDNF secretion, and activation of phospholipase C-y (PLC-y) pathway is
necessary for glutamate or Trk receptor activation-induced BDNF release
(Canossa et al., 2001; Kolarow et al., 2007). BDNF secretion has been shown to
be negatively regulated by synaptotagmin IV, SNARE complex binding protein
localised to BDNF-containing vesicles (Dean et al., 2009).

As previously mentioned, proBDNF can be processed at trans-Golgi
network, dense-core vesicles, or extracellularly to yield mature BDNF, so there
has been some controversy whether the major form of secreted BDNF is pro- or
mature BDNF (Barker, 2009). Work of Matsumoto et al., showed that
proBDNF is rapidly converted to mature BDNF in neurons (Matsumoto et al.,
2008), and secretory vesicles have been shown to contain mostly mature BDNF
and its cleaved pro-peptide together with small amount of proBDNF (Dieni et
al., 2012). In alternate experimental setting, however, mostly proBDNF is
secreted from neurons and subsequently cleaved extracellularly by plasmin
(Yang et al., 2009b). Since tPA/plasmin is released from presynaptic terminals
together with proBDNF in response to high-frequency neural activity (Pang et
al., 2004) and tPA has been associated with synaptic plasticity and memory
related processes (Calabresi et al., 2000), this represents one possible
mechanism how opposing effects of pro- or mature BDNF could be controlled
by neural activity at synaptic sites. Internalisation and recycling of proBDNF
for later release has also been described in astrocytes (Bergami et al., 2008).

1.4. BDNF signalling and function

Mature BDNF dimers bind with high affinity to the tropomyosin-related kinase
receptor TrkB, resulting in activation of intracellular signalling cascades —
mitogen activated protein kinase/extracellular signal regulated kinase
(MAPK/ERK) pathway, phosphatidylinositol-3-kinase/Akt kinase (PI3K/Akt)
pathway, and activation of phospholipase Cyl (PLCy1). MAPK/ERK signalling
pathway promotes neuronal differentiation, PI3K/Akt leads to neuronal
survival, and PLCyl activation leads to release of intracellular Ca** stores
(Patapoutian and Reichardt, 2001). Tumor necrosis factor receptor superfamily
member p75~™® together with its co-receptor sortilin acts as high affinity
receptor for proBDNF (Teng et al., 2005, 2010). Activation of p75"™ leads to
activation of Jun N-terminal kinase, p53, and caspases, leading to neuronal
apoptosis (Dechant and Barde, 2002).
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BDNF was discovered due to its survival effects on cultured spinal sensory
neurons of chick embryos (Barde et al., 1982) and was soon shown to promote
survival of several neural populations in central and peripheral nervous
system — sensory neurons (Davies et al., 1986; Ernfors et al., 1994; Jones et al.,
1994), motoneurons (Sendtner et al., 1992), retinal ganglion cells (Johnson et
al., 1986; Rodriguez-Tébar et al., 1989; Frade et al., 1997), dorsal root ganglion
cells (Kalcheim et al., 1987), dopaminergic neurons (Hyman et al., 1991),
cerebellar granule neurons (Segal et al., 1992; Kubo et al., 1995) and septal
cholinergic neurons (Alderson et al., 1990). These pro-survival effects are
mostly via TrkB receptor signalling while proBDNF signalling via p75N'™"*
receptor has been shown to lead to apoptosis of several neuron populations (Lee
et al., 2001b), including cultured superior cervical neurons (Teng et al., 2005)
and natural sympathetic neurons (Bamji et al., 1998).

BDNEF signalling also affects neurite growth and synaptic development, with
mature BDNF signalling leading to initiation and stimulation of axon growth
(Cheng et al., 2011), increased branching of ganglion axon terminals (Cohen-
Cory and Fraser, 1995), increased dendritic growth, arborisation (McAllister et
al., 1995) and spine maturation (Tanaka et al., 2008; Kaneko et al., 2012).
Again signalling through p75"™ seem to have diametrically opposite effects
causing developmental axon pruning (Singh et al., 2008), retraction of
presynaptic terminals (Yang et al., 2009a), decreasing dendritic complexity and
spine density (Zagrebelsky et al., 2005; Yang et al., 2014). Mature BDNF has
been shown to increase synaptic efficiency and neurotransmitter release
(Nagappan and Lu, 2005; Lu et al., 2009), and also enhance hippocampal late
long-term potentiation (LTP) (Pang et al., 2004). proBDNF acting through
p75N™ enhances long-term depression (LTD) (Woo et al., 2005), decreases
synaptic efficacy (Yang et al., 2009a), and inhibits GABAergic
neurotransmission (Riffault et al., 2014).

1.5. BDNF in development and disease

Importance of BDNF in nervous system development can be seen in BDNF
knock-out mice — homozygous knockout mice die during the second postnatal
week in development with deficiencies in coordination of movements and
balance (Ernfors et al., 1994, 1995; Liu et al., 1995). Heterozygous BDNF
knock-out mice are obese and aggressive (Lyons et al., 1999), have impaired
LTP (Korte et al., 1995), and display learning difficulties (Linnarsson et al.,
1997) - phenotypes that are also observed in case of BDNF haploinsufficiency
in humans (Gray et al., 2006). Obesity and hyperphagia phenotypes have also
been described in some cases of WAGR syndrome, where genomic deletions
cause BDNF haploinsufficiency in humans (Han et al., 2008). Abnormal levels
of BDNF have been described in some neurodevelopmental disorders with
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Figure 1. Structure of human (A) and rodent (B) BDNF gene structure. White boxes
show exons, gray boxes protein coding regions, arrows known promoters, ATG —
in-frame start codons, pA — polyadenylations sites, dashed lines — possible splice
boundaries. Human BDNF gene structure adapted from Pruunsild et al., 2007, rodent
gene structure adapted from Aid et al., 2007.
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BDNF levels being altered in mental retardation, autism and Rett syndrome
(Miyazaki et al., 2004; Kasarpalkar et al., 2014; Katz, 2014). Altered BDNF
expression has also been shown in several neurodegenerative disorders with
mRNA and protein levels being altered in patients of Alzheimer’s Disease
(Phillips et al., 1991; Narisawa-Saito et al., 1996; Ferrer et al., 1999), reduced in
substansia nigra of Parkinson’s Disease patients (Mogi et al., 1999; Howells et
al., 2000), and in cortices of Huntington’s Disease patients (Ferrer et al., 2000;
Zuccato et al., 2008). BDNF has also been associated with sensitisation and
development of neuropathic pain (Coull et al., 2005).

Due to its involvement in nervous system development and functioning, with
its altered levels being associated with serious dysfunctions, it is of great
interest to study BDNF gene structure and regulation to understand its
involvement in these pathologies and possibly develop treatments.

1.6. BDNF gene structure

To this date, BDNF gene has been described in human (Pruunsild et al., 2007),
mouse and rat (Aid et al., 2007), chicken (Yu et al., 2009), pond turtle
(Ambigapathy et al., 2013, 2014), sea bass (Tognoli et al., 2010) and zebrafish
(Heinrich and Pagtakhan, 2004). In most of the organisms where BDNF gene
structure has been described, it has a characteristic structural conservation with
several 5’ untranslated exons, under the control of different promoters, spliced
to single protein coding 3’ exon.

The human BDNF gene (Figure 1A) consists of 11 different exons, with two
of the exons (Vh and VIIIh) being human specific. Promoters preceding exons I,
1L, IIL, IV, V, Vh, VI, VII and IX direct tissue specific expression of different
transcripts containing these exons as 5’ exons. Exons II, V and VI contain
alternative splice sites that can lead to transcripts with different 5 UTR lengths.
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The exon IX consists of four different regions “a”, “b”, “c” and “d” with
transcripts containing 5’ exons I to VIIIh preferentially including protein coding
region “d” only. Exon VI-containing transcripts rarely include also region “b”.
Occasionally transcription starts from the beginning of region “a” of exon IX. In
those cases there is usually no splicing and all parts of exon IX are included in
the final transcript. Sometimes region “c” is spliced out of transcripts that start
from the beginning of exon IX. Exon IX also contains two different
polyadenylation sites that lead to mature transcripts with different 3> UTR
lengths. Translation from all the transcripts starts from start codon in the “d”
region of exon IX. Exons I, VII and VIII contain an additional in-frame ATG
that could be used to synthesize BDNF protein with a longer N-terminus.
However, usage of these start-codons has not been shown in vivo. Altogether
this leads to transcription of 17 transcripts with different 5’ and 3> UTR-s from
human BDNF gene (Pruunsild et al., 2007).

The mouse and rat BDNF gene (Figure 1B) has eight untranslated 5’ exons
and one protein coding 3° exon. Each 5’ exon has a separate promoter and can
be alternatively spliced to the 3’ protein coding exon (Timmusk et al., 1993;
Aid et al., 2007). As human BDNF exon II, rat BDNF exon II undergoes cryptic
splicing producing three splice variants of different lengths. Alternative usage
of BDNF promoters leads to transcription of eleven different rodent BDNF
transcripts with different 5’ exons and a common 3’ protein coding exon (Aid et
al., 2007). In addition, tripartite transcript containing exons VII and VIII has
also been described (Liu et al., 2006). Rodent exon IX also contains two
different polyadenylation signals leading to transcripts with different 3> UTR
lengths (Timmusk et al., 1993). Exon I also contains in-frame ATG, leading to
translation of BDNF protein with longer N-terminus (Koppel et al., 2015).

BDNF gene in chicken (Yu et al., 2009), pond turtle (Ambigapathy et al.,
2013, 2014), sea bass (Tognoli et al., 2010) and zebrafish (Heinrich and
Pagtakhan, 2004) is structurally similar to that of human and rodent genes with
5’ untranslated exons being spliced to single 3’ protein coding exon. It is
interesting to note that in pond turtle there have been described existence of
transcript with truncated 3’ end leading to truncated BDNF protein expression
(Ambigapathy et al., 2014). This is only the second described splicing event
known to take place in BDNF protein coding region with the first one being rare
in-frame deletion in rat BDNF possibly also leading to expression of truncated
protein (Liu et al., 20006).

1.7. BDNF gene regulation

Complex structure of the BDNF gene also allows its complex regulation at
epigenetic, transcriptional, mRNA trafficking and translational level. Many
regulatory mechanisms at these steps are responsive to neural activity, starting
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from neural activity activated transcription, chromatin modifying complexes,
and culminating with increased mRNA transport, stability and translation.

Regulatory elements and binding factors at BDNF promoters

Multitude of regulatory elements have been mapped to different BDNF
promoters (recently reviewed in West et al., 2014), some of them act by local
chromatin modification, some by directly recruiting core transcription
machinery. Out of different characterised BDNF promoters, expression from
promoters I and IV is highly induced in response to neural activity, and
regulation of both have been extensively studied. Promoter I has been shown to
contain cis-regulatory elements PasRE, binding basic helix-loop-helix (bHLH)-
PAS transcription factor neuronal PAS domain protein 4 (NPAS4) and aryl
hydrocarbon receptor nuclear translocator 2 (ARNT2) heterodimer (NPAS4-
ARNT2) (Pruunsild et al., 2011); CRE, binding cAMP response element
binding protein (CREB) (Tabuchi et al.,, 2002); E-box elements binding
upstream stimulatory factors (USFs) (Tabuchi et al., 2002); and NFkB
regulatory elements, binding nuclear factor kappa beta (NFkB) (Lubin et al.,
2007). Transcription from promoter I is also influenced by neuron-restrictive
silencing element (NRSE) in promoter II that binds repressor element 1
silencing transcription factor (REST) and represses transcription from
promoters I and II (Timmusk et al., 1999; Zuccato et al., 2003). Promoter IV
contains regulatory elements CaREI, binding calcium response factor (CaRF)
(Tao et al., 2002); CaRE2, binding upstream stimulatory factors 1/2 (USFs 1/2)
(Chen et al., 2003b; Pruunsild et al., 2011); CaRE3/CRE, binding CREB (Shiech
et al., 1998; Tao et al., 1998); hHLHB2-RE binding basic helix-loop-helix
transcription factor bHLHB2 (Jiang et al., 2008); PasRE, binding NPAS4-
ARNT?2 heterodimer (Lin et al., 2008; Pruunsild et al., 2011) and NFkB-RE,
bound by NFkB (Lipsky et al., 2001). Promoter IV also binds transcription
factors myocyte enhancer factor 2 (MEF2) (Lyons et al., 2012) and methyl CpG
binding protein 2 (MeCP2) (Martinowich et al., 2003). All these elements and
transcription factors are to lesser or greater extent involved in calcium-
dependent induction of transcription from promoters I and IV with
PasRE/NPAS4-ARNT2 control at promoter I (Pruunsild et al., 2011) and
CaRE3/CREB control at promoter IV (Hong et al., 2008) having critical role in
transcriptional regulation of these promoters. In addition to these experimentally
shown transcription factors, Aid-Pavlidis et al. have predicted in silico a number
of transcription factor binding sites in BDNF promoters that are conserved in
genes co-expressed with BDNF in different tissues/conditions/organisms using
publicly available microarray data (Aid-Pavlidis et al., 2009).

Transcriptional control from gene promoters is also affected by distal
regulatory elements like enhancers and insulators (Smallwood and Ren, 2013).
Work with transgenic animals using genomic regions from BDNF gene locus
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have shown that BDNF gene has regulatory regions outside of areas covered by
these transgenes (Timmusk et al., 1995; Guillemot et al., 2007). Enhancer
element 6.5 kb upstream of promoter I, binding transcription factor MEF2D,
has been shown to control activity dependent transcription from this promoter
(Flavell et al., 2008). A distal regulatory locus controlling BDNF expression has
been mapped 850 kb upstream of human and mouse gene. Disruption of this
locus leads to BDNF haploinsufficiency phenotype in human and mouse (Gray
et al., 2006; Sha et al., 2007).

Regulation of BDNF expression by chromatin modifications

Transcription from genomic locus is influenced by chromatin structure
surrounding the gene and its promoters. Acetylation of lysine residues at
histones H3 and H4 is mostly associated with transcriptional activation and
open chromatin. Histone methylation effect is more dependent on the target
lysine residue and nucleosome positioning on genome, with H3 lysine 4 and 14
methylation associated with transcriptional activation and H3 lysine 9
associated with repression. The histone modification-dependent effect to gene
expression is modulated by chromatin modifying proteins — histone
acetyltranferases (HATS) and  deacetylases (HDACS); histone
methyltransferases (HMTs) and demethylases (HDMs) (Kouzarides, 2007). In
addition, DNA methylation of cytosine residues in CpG islands at promoters is
associated with transcriptional repression (Moore et al., 2013).

Several stimuli that influence BDNF transcription are associated with change
in acetylation status at corresponding BDNF promoters. Seizure (Huang et al.,
2002; Tsankova et al., 2004), membrane depolarisation (Chen et al., 2003a;
Martinowich et al., 2003), treatment with antidepressants (Tsankova et al.,
2006; Yasuda et al., 2007), cocaine administration (Kumar et al., 2005) and its
forced abstinence (Sadri-Vakili et al., 2010), extinction of conditioned fear
(Bredy et al., 2007), light deprivation (Karpova et al., 2010), and exercise
(Tsankova et al., 2006) have been shown to increase histone acetylation at
BDNF promoters together with increased BDNF expression.

Neural activity-induced changes in histone methylation have also been
described at BDNF promoters. Membrane depolarisation increases
transcription-activating histone methylation and reduces repressive methylation
at promoter IV (Chen et al., 2003a; Martinowich et al., 2003). Similarly,
environmental enrichment increases activating histone methylation at promoters
I and IV and decreases repressive ones at promoters Il and IV (Kuzumaki et
al., 2011). Chronic social defeat stress (Tsankova et al., 2006), light deprivation
(Karpova et al., 2010) and increasing NAD levels (Chang et al., 2010) increase
repressive histone methylations at BDNF promoter IV. Activity-dependent
changes in DNA methylation at BDNF promoters have been shown in response
to membrane depolarisation (Martinowich et al., 2003), exercise (Tsankova et
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al., 2006), light-deprivation (Karpova et al., 2010), early-life abusive behaviour
(Roth et al., 2009), contextual fear learning (Lubin et al., 2008) and change in
NAD levels (Chang et al., 2010).

Several mechanisms responsible for regulating histone and DNA
modifications at BDNF promoters have been described. Quite often these
modifications are interdependent on each other and are associated with neural
activity-induced upregulation of BDNF expression. Neural activity-induced
phosphorylation of CREB recruits histone acetyltransferase CBP (CREB
binding protein) to BDNF promoter IV (Hong et al., 2008). MeCP2, binding to
methylated CpGs, recruits mSin3A/HDACI repressor complex at promoters I,
IV (Chen et al., 2003a; Martinowich et al., 2003; Tian et al., 2010) and VI
(Rousseaud et al., 2015) thereby facilitating repression of these promoters at
resting conditions. Upon calcium/neural activity-dependent phosphorylation of
MeCP2, it is released from promoters, allowing binding of activating factors to
these sites, for example CREB to promoters I and IV (Chen et al., 2003a;
Martinowich et al., 2003; Tian et al., 2010). Loss of CTCF/cohesin binding to
promoter IV also leads to increased DNA methylation, MeCP2 binding and
increased repressive histone methylation at the promoter (Chang et al., 2010).
HDAC2, HDAC4 and HDACS5 have also been shown to regulate BDNF
expression with HDAC2 being associated with promoters I, II and IV (Guan et
al., 2009; Graff et al., 2012) and HDAC4 as well as HDACS5 being responsible
for repression of promoter IV (Koppel and Timmusk, 2013). Neural activity-
dependent DNA demethylation at promoter IX has been shown to be mediated
by Gadd45b and TET1 (Ma et al.,, 2009; Guo et al., 2011). Changes in
chromatin modifications at BDNF locus have also been associated with age and
Alzheimer’s Disease, with lower levels of histone acetylation and increased
repressive methylation leading to lower BDNF expression in both cases
(Walker et al., 2012).

BDNF mRNA localisation, stability and translational control

BDNF gene expression is also regulated post-transcriptionally by regulation of
mRNA localisation, stability and translatability. This is made possible in part by
combination of alternating 3’ and 5’ untranslated regions in BDNF mRNAs that
have been shown to contain sequences responsible for localisation, stability or
translation of BDNF mRNAs in response to various stimuli.

Different BDNF transcripts have been demonstrated to have markedly
different localisation within cell compartments. This subcellular localisation of
BDNF transcripts is in part based on 5’ noncoding exons with transcripts
containing exons II and VI localised in soma and proximal dendrites and
transcripts containing exons I and IV restricted to soma (Pattabiraman et al.,
2005; Aliaga et al., 2008; Chiaruttini et al., 2008). BDNF 3” UTR has been
shown to be partly responsible for localisation of mRNAs containing short 3’
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UTR to soma and transcripts with long 3’ UTRs to dendrites (An et al., 2008).
Targeting of BDNF mRNAs to dendrites is also controlled by neural activity
(Tongiorgi et al., 1997, 2004; An et al., 2008). Exercise and antidepressant
treatment have been shown to increase BDNF exon VI-containing mRNA
trafficking to dendrites (Baj et al., 2012). Some mechanisms responsible for
targeting of BDNF mRNAs to distinct cellular compartments have been
characterised. Protein coding region in BDNF mRNAs contains constitutively
active dendritic targeting signal bound by RNA trafficking protein translin that
regulates trafficking of BDNF mRNAs at resting and depolarised conditions
(Chiaruttini et al., 2009; Wu et al., 2011). BDNF short 3' UTR also contains two
cytoplasmic polyadenylation element like elements that interact with CPEB-1
and are responsible for constitutive and activity dependent targeting of BDNF
mRNAs (Oe and Yoneda, 2010). There is however some doubt whether the 3’
UTR is responsible for the dendritic localisation of BDNF mRNAs because
recently both were seen to be expressed at low levels, localised to soma and to
be induced the same amount in rat hippocampal neurons (Will et al., 2013).

Two elements have been found in BDNF transcripts that have effect on their
stability. A conserved AU-rich element in BDNF long 3’ UTR interacts with
HuD protein, leading to stabilisation of these transcripts (Lim and Alkon, 2012;
Allen et al., 2013) and a stem-loop secondary structure in BDNF short 3 UTR
have been shown to be responsible for activity-dependent control of BDNF
mRNA stability (Fukuchi and Tsuda, 2010).

The different BDNF UTRs also have effect on activity-dependent translation
of BDNF mRNAs. This was first seen in increased association of short 3° UTR
containing mRNAs with polysomes (Timmusk et al., 1994b). Long BDNF 3’
UTR represses translation of BDNF protein at rest, while short 3° UTR
containing BDNF transcripts are translated to keep basal BDNF levels. Upon
neuronal activity, long 3> UTR-containing BDNF transcripts are localised to
polysomes and translation is induced (Lau et al., 2010). Different 5’ and 3’
UTRs also affect the translatability of BDNF mRNAs in response to treatment
with different stimulators of BDNF expression suggesting the existence of
quantitative code for regulated protein expression (Vaghi et al., 2014).
Transcripts containing exon I have an additional in-frame AUG that functions
as a more efficient translation initiation codon than the conventional start-codon
at exon IX (Koppel et al., 2015). Activity-dependent dendritic BDNF synthesis
has also been shown to be regulated by eukaryotic elongation factor 2 (eEF2K)
(Verpelli et al., 2010). In addition to increasing transcript stability, neural
activity-dependent HuD binding to BDNF 3* UTR relieves basal repression of
BDNF mRNA translation in dendrites, leading to increased BDNF synthesis
(Vanevski and Xu, 2015).
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Non-coding RNA regulation of BDNF

Non-coding RNA species (ncRNAs) exert influential control over gene
expression by having effect on chromatin structure and transcript stability.
miRNAs mediate their effects through degradation of target mRNAs by RISC
complex or also through their effects on chromatin, while many long ncRNAs
transcribed from antisense strand of mammalian protein coding genes (natural
antisense transcripts) have been shown to repress expression of gene by
remodelling chromatin or associating with gene transcripts as dSRNA (Tushir
and Akbarian, 2014).

Importance of miRNA-based regulation for neural differentiation have been
demonstrated with conditional Dicer knockout mice, where forebrain specific
knockdown of Dicer led to loss of brain specific miRNAs and also increased
BDNF expression (Konopka et al., 2010). Several miRNAs have been shown to
regulate BDNF mRNAs — miR-30a-5p (Mellios et al., 2008; Miiller, 2014),
miR-15a (Friedman et al., 2009), miR-22 (Muifios-Gimeno et al., 2011),
miR-206 (Lee et al., 2012; Miura et al., 2012), miR-10b-5p (Miiller, 2014),
miR-1, miR-10b, miR-155 and miR-191 (Varendi et al., 2014). BDNF locus in
human (Liu et al., 2005; Pruunsild et al., 2007) and mouse (Modarresi et al.,
2012) has been shown to transcribe natural antisense ncRNA gene (BDNFOS)
starting from promoter on opposite DNA strand downstream from exon IX.
Transcripts from the antisense BDNF gene form dsRNA duplexes with BDNF
transcripts (Pruunsild et al., 2007) and regulate BDNF levels in vivo through
polycomb repressive complex 2 mediated repressive chromatin remodelling
(Modarresi et al., 2012).

1.8. Transgenic mice used for studying BDNF regulation

Several transgenic mice have been developed for studies of BDNF gene
regulation, providing insight into genomic regions responsible for its tissue and
activity-specific expression. Plasmid based mini-gene constructs using 9kb rat
BDNF gene regions containing exons I-III or exons IV-VI together with CAT
reporter gene were used to study tissue-specific, axotomy and neuronal-activity
induced BDNF regulation in transgenic mice (Timmusk et al., 1995). While
transgene expression in these mice recapitulated endogenous BDNF expression
in several brain regions and peripheral tissues, there were shortcomings in
expression patterns across tissues, possibly due to the lack of distal regulatory
elements and transgene positional effects from random insertion into the mouse
genome. These effects could be avoided using larger genomic fragments for
generation of transgenic mice as was done by Guillemot et al., who used yeast
artificial chromosome (YAC) containing 145 kb of human BDNF locus
modified to encode EGFP reporter gene. The obtained mice still did not fully
recapitulate endogenous BDNF expression patterns, indicating that more distal
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elements regulating the gene were still missing from the transgene (Guillemot et
al., 2007).

1.9. Bacterial Artificial Chromosomes

Ideal transgenic model for use in studying gene regulation would contain all the
endogenous regulatory elements of the gene under study and also should be
isolated from transgene positional effects in the genome. Transgenic animals
and cell lines using plasmid or mini-gene constructs containing limited
regulatory regions of gene under study have shown that these vectors are
usually restricted by their capacity, positional effects and only partially
recapitulate endogenous expression of the transgene. Increasing the size of the
included genomic area surrounding the transgene increases faithfulness of
reporter gene expression and avoids positional effects in transgenic animals and
cell lines. This has been done using large capacity vectors systems like yeast
artificial chromosomes, P1 artificial chromosomes, and bacterial artificial
chromosomes (BACs) (Giraldo and Montoliu, 2001). Out of these, BAC vector
system was developed as a high-capacity cloning system based on E. coli F
plasmid for genomic library construction in Human Genome Project (Shizuya
and Kouros-Mehr, 2001).

BAC is capable of stably containing genomic fragments up to 300 kb in size
(Shizuya et al., 1992), meaning it is capable of containing most mammalian
genes together with possible upstream and downstream regulatory regions. In
addition, compared to YACs that need careful handling and sometimes display
chimaerism and instability, working with BACs is similar to working with
traditional plasmid constructs and BACs are highly stable in E. coli. Use of
traditional molecular cloning methods to introduce modifications to BAC DNA
is, however, challenging due to their large size. Therefore, alternative methods
have been developed to facilitate introduction of deletions, insertions or
mutations. Most common of these is homologous recombination in E. coli using
either RecE and RecT proteins from prophage (Zhang et al., 1998) or
functionally analogous system based on Reda, Redp and Redy proteins from A
phage Red operon (Muyrers et al., 1999; Poteete, 2001). Homologous
recombination allows site-directed modification of BAC using selection cassette
with homologous arms to target region. Additionally, it can be used for
seamless BAC modification by using counter-selection targeting cassette (Bird
et al., 2012). Commercial kits (from Genebridges GmbH) and non-commercial
plasmid-based systems (Hartwich and Nothwang, 2012) for recombineering are
available and well established protocols for the use of the method for generating
transgenic constructs have been developed (Hollenback et al., 2011). In addition
to introducing changes to BACs, recombination system have been used for
subcloning of BAC regions to smaller plasmids using gap repair (Lee et al.,
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2001a; Hartwich and Nothwang, 2012), combine regions from overlapping
BACs to assemble a larger gene locus (Zhang and Huang, 2003; Kotzamanis
and Huxley, 2004) and rapid addition of multiple mutations to BACs using
oligonucleotides (Swaminathan et al., 2001). Recombination has also been
optimised for high-throughput BAC modification (Poser et al., 2008; Gong et
al., 2010). In addition to homologous recombination, Cre/loxP and Flpe/FRT
recombinase systems have been used for BAC modifications, for example
removal of selection cassettes (Parrish et al.,, 2011), introduction of
resistance/episomal maintenance cassette (Magin-Lachmann et al., 2003), and
truncation of BAC ends (Shakes et al., 2005).

Due to the use of BACs in genome sequencing projects, large BAC libraries
covering entire genomes for human, rat, mouse and other organisms are
available (https://bacpac.chori.org/). This, in addition to size -capacity,
convenient modification and handling methods, have made BACs popular in
generation of transgenic mice using pronuclear injection (Yang et al., 1997) or
embryonic stem cell transgenesis (Kaufman et al., 1999). One of the best
examples of using BACs to study gene expression in central nervous system is
GENESAT project, which used BACs of nervous system expressed genes to
generate over 10000 transgenic mouse lines expressing EGFP reporter gene
under the control of various gene regulatory regions (Gong et al., 2010; Schmidt
et al., 2013). This annotated repository of BAC transgenic mouse lines has been
subsequently used for purification and functional analysis of specific cell types
in nervous system (Gong et al., 2003; Zhang et al., 2014) and generation of Cre
driver lines for targeting specific CNS cell types (Gong et al., 2007). Use of
multiple BAC transgenesis into single mouse locus has also been demonstrated,
significantly speeding up generation of transgenic mice with multiple marked
cell populations and making it possible to better study functional interactions
between different cell types (Dougherty et al., 2012).

In addition to generation of transgenic mice, BACs have also been used in
cell culture systems for gene regulation and protein function studies, quite often
for the same reasons that made them useful in mice. Delivery and expression of
transgenes from BACs in mammalian cells have been demonstrated using lipid
or polyamine-based transfection (Montigny et al., 2003; White et al., 2003;
Magin-Lachmann et al., 2004; Schwank et al., 2013), electroporation
(Abranches et al., 2013), nucleofection (Placantonakis et al., 2009), gene gun
(Smith-Hicks et al., 2010), viral delivery (Wade-Martins et al., 2003; Inoue et
al., 2004) or bacterial transfer (Narayanan and Warburton, 2003; Laner et al.,
2005). Also, BAC vectors have been retrofitted with oriP/EBNA-1 sequences
allowing episomal maintenance in mammalian cells (Wade-Martins et al., 1999;
Magin-Lachmann et al., 2003; Eeds et al., 2007). Compared to small plasmid
expression vectors, expression from BAC transgenes seems to take longer time
to develop (3-5 days) but is more persistent (Montigny et al., 2003). This has

24



led to use of BACs in development of expression vectors based on genomic
regions with known open chromatin context (for example housekeeping genes)
for recombinant protein production in mammalian cells. These vectors provide
higher protein yields and transgene stability than most traditional plasmid based
protein expression systems (Blaas et al., 2009; Bian and Belmont, 2010; Mader
etal., 2013; Zboray et al., 2015).

Using BACs as transgenic vectors, several elegant models for gene
regulation and functional studies in mammalian cells have been developed.
Large scale BAC modification and transgenesis has allowed their use in protein
function studies in tissue culture and mouse embryonic stem cells (Poser et al.,
2008). In addition, it has been used in gene function studies for
complementation of genetic deficiency in mammalian cells (Wade-Martins et
al., 2000, 2003; Inoue et al., 2004), studies of Cdc6 protein function during cell-
cycle (Illenye and Heintz, 2004), effect of single nucleotide polymorphisms on
RNA splicing and processing in whole gene context (Eeds et al., 2007), and to
elucidate the necessity of a specific transcription factor binding site in Arc gene
locus for its functioning in establishing late phase of LTD in cerebellar Purkinje
cells (Smith-Hicks et al., 2010). Furthermore, BAC transgenesis has been used
in human and mouse embryonic stem cell cultures to mark cell pluripotent state
(Abranches et al., 2013) and study cell fate and signalling during differentiation
(Placantonakis et al., 2009) as well as in intestinal epithelial organoid cultures
to mark cell lineage (Schwank et al., 2013). In addition to these works, cell lines
using BAC transgenes have been established for disease related genes which
allow high-throughput screening of drug candidates for therapeutic purposes (Li
et al., 2013). All these experimental systems have benefitted from inclusion of
entire genomic locus in inserted BAC transgene, which provides close to
endogenous gene environment aimed at native functioning of chromatin,
transcriptional and RNA processing mechanisms for faithful reporter gene
expression.
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2. AIMS OF THE STUDY

The purpose of this study was to develop and study transgenic model systems
for elucidating the regulation of BDNF gene. For this the following aims were
set:

1) Generation and characterisation of BAC transgenic mouse and cell lines
carrying human or rat BDNF gene locus.

2) Studying BDNF gene regulation using the generated BAC transgenic
mouse and cell lines.
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3. MATERIALS AND METHODS

3.1. Semiquantitative RT-PCR analysis

Publications I and II

3.2. PCR genotyping

Publications I and II

3.3. Quantitative RT-PCR analysis

Publications I and II

3.4. Cell culture, transfection and stable cell line generation
Publication III

3.5. Luciferase reporter assay
Publication III

3.6. FACS analysis of reporter expression
Publication III

3.7. Quantitative qPCR analysis of transgene copy number

Publication III

3.8. Fluorescent in situ hybridisation (FISH) analysis
Publication 11T

3.9. rBDNF-lacZ copy number analysis by slot-blot hybridisation

Transgene copy number was analysed in rBDNF-lacZ mouse line by slot-blot
hybridisation of genomic DNA with a [a-*P]dCTP-labelled probe generated
with Decalabel DNA labelling kit (Fermentas, Lithuania) using rBDNF-lacZ
BAC  specific  probe  generated with  primers 3p Il s  (5°-
CCGGGGAGATGTGTTTCTAA-3") and 3p 11 as (5°-
CACTCAGAAGCCTTGGGAAG-3") as a template.
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3.10. Genome walking

Genome walking was used to map transgene integration sites in rBDNF-lacZ
transgenic mouse line using protocol described in GenomeWalker Universal Kit
(Clontech Laboratories Inc., Cat. No. 638904) with primers and adaptor oligos
ordered from Microsynth (Switzerland). Transgene and adaptor-specific primers
used for genomic fragment isolation are shown in Table 1. Fragments were
amplified using HotFire DNA polymerase (Solis Biodyne, Estonia). Fragments
amplified by genome walking were sequenced and resulting sequences were
searched against mouse genome using NCBI Blast
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). After mapping the integration site to
DGK-B locus, it was confirmed with locus specific primers mDGKB_ctrl s and
mDGKB ctrl_as. Tandem integration of several transgenes was also confirmed
by PCR with primers ch230 3p gw 2 together with ch230 5p gw 1. PCR
products were confirmed by sequencing.

Table 1. Primers used for integration site mapping by genome walking, integration site

confirmation.

Primer name Primer sequence (5°-37) Description
Adpl GTAATACGACTCACTATAGGGC Adaptor primer 1
Adp2 ACTATAGGGCACGCGTGGT Adaptor primer 2

ch230 3p wl7 nl

ATGTTACTGGTGATGGACTTAGTTAGC

ch230 3p w17 n2

CTTAGTTAGCAGGGAGTATCTGAGTTG

ch230 3p w27 nl

CTGATTTGATACAAAGAGGAGACAGAC

ch230 3p w27 n2

TACAAAGAGGAGACAGACTGAACTAAG

ch230 3p w31 nl

AAGGCAGGGTGCTGTAAATCTCAG

ch230 3p w49 nl

CTATACACATAGGAAGCCTAACATGG

ch230 3p w49 n2

GAGAGGTTGTAGAAACAAATCTCCAC

ch230 5p wll nl

GAGTATTCATATGCACCCCTAAAGAG

ch230 5p wll n2

GAATACCTTTCACCAAGTACAGTCAC

ch230 5p w5 nl

ATCGTGACTACTAAGTATTGAGCACTG

ch230 5p w5 n2

GGTTAGCAACTGATAGGATGAGAACTA

Rat BAC specific
primers for
Genome Walking

mDGKB CTR F

CAGAGATGTGTGAGATGATTCCA

mDGKB_CTR R

CCATGCTGCCAAAAGAAAAGTAGCATA

ch230 3p w31 nl

AAGGCAGGGTGCTGTAAATCTCAG

ch230 5p wll n2

GAATACCTTTCACCAAGTACAGTCAC

Integration site
control primers

ch230 3p gw 2

TATGAAGAAGGCAGTTCCACAGAGTGAT

ch230 5p gw 1

AGCTGAGAATTCCCTATGAAGATCCTTC

Tandem site
control primers

3.11.DGK-p RT-PCR analysis

To probe DGK-B expression in rBDNF-lacZ transgenic mouse line tissues, RT-
PCR was performed on cortex cDNAs using primers
mDGKb ex20s/mDGKb_ex22as for transcripts containing DGK-f exons 20-22
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and mDGKDb_ex18s/mDGKb_ex20as for transcripts containing DGK-B exons
18-20.

Table 2. Primers used for RT-PCR analysis of DGK-f transcripts.

Primer name Primer sequence (5°-3”)
mDGKb ex18s GACTGGCAATGACTTAGCAAGG
mDGKb_ex20as GTGCTTTTCTCTCATGATGTGG
mDGKb ex20s ATTCCACATCATGAGAGAAAAGC
mDGKb ex22as AAACTTCAGCTCTTTTGCATCTG
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4. RESULTS AND DISCUSSION

4.1. BDNF BAC transgenic mice display reporter mRNA expression
similar to endogenous gene (publications I and II)

To study BDNF regulation, BAC transgenic mice were generated using BAC
constructs containing human and rat BDNF gene that were modified to contain
reporter proteins. The hBDNF-EGFP BAC contained 168 kb of the human
BDNF gene together with regions 84 kb upstream and 17 kb downstream of the
gene and the protein coding region was modified to encode for hBDNF-EGFP
fusion reporter gene (publication I). The rBDNF-lacZ BAC contained 207 kb of
rat BDNF gene together with genomic regions 13 kb upstream and 144 kb
downstream with BDNF coding sequence replaced with B-galactosidase (lacZ)
reporter gene (publication II). Using BACs as vectors for generation of
transgenic mice was expected to negate positional effects of genomic insertion
site and also provide sufficient native context for the endogenous like
expression of the reporter gene. Altogether, pronuclear injection yielded four
transgenic founder lines — hBDNF-EGFP BAC transgenic lines C3, E1 and E4
and one rBDNF-lacZ BAC transgenic mouse line.

Out of three transgenic cell lines established with hBDNF-EGFP BAC, C3
transgenic mouse line expressed reporter mRNA most similarly to endogenous
mouse BDNF in different parts of the brain and in thymus, lung, skeletal muscle
and testis. In two founder lines E4 and E1 transgene mRNA expression pattern
deviated more from endogenous mouse BDNF mRNA with El1 showing
expression only in midbrain, medulla, cerebellum and in thymus, lung and
kidney, and E4 showing reporter expression only in thymus and testis
(publication I). In C3 line, all transgenic transcripts with different human 5’
exons were transcribed in the hippocampus of transgenic mice (publication I).

In rBDNF-lacZ BAC transgenic mice lacZ reporter mRNA expression
resembled endogenous BDNF expression in the brain, heart and lung. However,
there were also differences from endogenous BDNF expression including no
detectable transgene expression in thymus, liver, kidney, skeletal muscle, and
dentate granule cells of the hippocampus. Transgene was also expressed in
striatum, olfactory bulb granular layer, caudate putamen, nucleus accumbens,
and testis — regions where endogenous mouse BDNF mRNA was not detected
(publication II).

In both hBDNF-EGFP-C3 and rBDNF-lacZ mouse lines, treatment with
kainic acid induced transgene mRNA levels correspondingly to respective
endogenous BDNF mRNAs in hippocampus and cortex (publication I and II),
indicating that regulatory elements for activity-dependent BDNF expression
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Figure 2. rBDNF-lacZ transgene integration into DGK-f gene intron in rBDNF-lacZ
mouse line disrupting endogenous DGK-f expression. (A) Genome walking placed
transgene insertion into intron of DGK-f} gene between exons 20 and 21. Primers used
for confirming integration site are marked with arrows. Dashed line shows integrated
BAC sequences. (B) Slot-blot hybridisation analysis of transgene copy number in
rBDNF-lacZ mouse line. BAC standard contains rBDNF-lacZ BAC DNA in 1-6 copies
in the blotted genomic DNA. (+/+) homozygous rBDNF-lacZ mouse DNA, wt — wild-
type mouse DNA. (C) RT-PCR analysis of DGK- transcripts containing exons 18-20
in cortex of homozygous (+/+), heterozygous (+/-) rBDNF-lacZ transgenic and
wild-type (wt) mice.

were included in the genomic regions covered by the BACs. Induction of
reporter mRNA in the hBDNF-EGFP-C3 mouse line is the first demonstration
of neural-activity dependent activation of transcription from the human BDNF
gene. This mouse line has been used in further studies, that are not part of this
thesis, showing that this line is useful for studies of human BDNF gene
regulation (Pruunsild et al., 2011).

The varying expression patterns of reporter mRNA in different
hBDNF-EGFP BAC transgenic mice lines with similar transgene copy numbers
(publication I) suggests that the genomic region in the BAC is not sufficient to
overcome the positional effects of transgene insertion. Positional effects
influencing reporter expression were also seen in the rBDNF-lacZ transgenic
mouse line. In rBDNF-lacZ mouse line, 2-3 copies of BAC construct had
integrated into the mouse genome between exons 20 and 21 of diacylglycerol
kinase § (DGK-P) gene (Figure 2A and B). Integration of the transgene into this
locus disrupted the expression of the endogenous DGK-P transcripts (Figure
2C). It is possible that high expression of reporter mRNA in caudate putamen
and nucleus accumbens (and maybe also granular layer of olfactory bulb), areas
where endogenous mouse BDNF mRNA is not expressed or is expressed at low
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levels, is due to the integration site-specific effects because DGK-B has been
shown to be strongly expressed in these brain regions (Goto and Kondo, 1993).
Altogether, this suggests that while BAC constructs used in this work contain
many of the regulatory elements necessary for reproducing the tissue-specific
expression of the BDNF transgene, these are not sufficient to fully protect
transgenes from position effects.

Neither hBDNF-EGFP fusion protein nor B-galactosidase reporter protein
was detected in hBDNF-EGFP-C3 or rBDNF-lacZ mouse brain, respectively, in
basal or kainic acid induced conditions, while mRNAs encoding for the
transgenic transcripts were readily detected. When compared to endogenous
BDNF mRNA levels, transgene expression was about ten-fold lower in
hBDNF-EGFP-C3 transgenic line (publication I). Copy numbers of integrated
BAC transgenes were low in both transgenic mouse lines and it has been shown
in GENSAT project that integration of fewer than five BAC transgene copies
into genome may lead to very low expression levels that can cause problems
detecting reporter expression (Gong et al., 2003). It is possible that low
transgene copy numbers together with missing regulatory elements lead to very
low reporter protein levels that were below the detection limit in both
hBDNF-EGFP-C3 and rBDNF-lacZ transgenic lines.

Several transgenic mouse lines have been developed for studies of BDNF
gene regulation. Transgenic mice containing different rat BDNF promoter
regions fused to the CAT reporter gene, while recapitulating BDNF expression
in some tissues, also showed minimal or lack of transgene expression in dentate
granule cells of hippocampus and heart (Timmusk et al., 1995). Five transgenic
mouse lines were generated by Guillemot et al. using YAC containing 145 kb of
human BDNF gene with regions 45 kb upstream and 33 kb downstream
sequences, where BDNF protein coding region was replaced with EGFP
reporter gene (Guillemot et al., 2007). Some indications of tissue-specific
regulatory regions can be made based on the expression patterns of these
previously developed mice and transgenic lines characterised by us. Similarly to
previously generated rat promoter CAT transgenic mice, where reporter was not
expressed (or was expressed at low levels) in dentate gyrus granule cells
(Timmusk et al., 1995), rBDNF-lacZ mouse line did not replicate the BDNF
expression in hippocampal dentate gyrus granule cells, while in
hBDNF-EGFP-C3 mouse line reporter expression in these cells was detectable
after kainate treatment (publication I). However, expression of the reporter gene
in some dentate granule cells in human YAC transgenic mice lines (Guillemot
et al., 2007) suggests that at least some of the regulatory regions responsible for
BDNF expression are located in the hBDNF YAC transgene used. It is possible
that hABDNF-EGFP BAC used here and hBDNF YAC transgene contained some
of the regulatory regions needed for BDNF expression in dentate gyrus cells
while in rBDNF-lacZ BAC these elements were missing or masked due to
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position effects. While endogenous BDNF is expressed at extremely low levels
in rat striatum and at slightly higher levels in mouse striatum (Timmusk et al.,
1994b, 1995), rat BDNF-CAT, hBDNF-EGFP-C3 and rBDNF-lacZ BAC
transgenic mouse lines all showed strong reporter expression in striatum
(Timmusk et al., 1995, publication I and II). The hBDNF-EGFP-C3 mouse line
did not express reporter gene mRNA in the heart where endogenous BDNF is
expressed, while rBDNF-lacZ line did. This suggests that elements responsible
for heart-specific BDNF expression are located 17-144 kb downstream of
BDNF gene. One human YAC transgenic mouse line also displayed reporter
gene expression in the heart (Guillemot et al., 2007) suggesting that heart-
specific regulatory region lies somewhere between 17-33 kb downstream of
human BDNF gene.

Previous indications of distal BDNF regulatory areas have come from
studies associating disruption of genomic region about 850 kb upstream of
BDNF gene with phenotype similar to BDNF haploinsufficiency in human
(Gray et al., 2006) and mice (Sha et al., 2007). High-resolution genome
interaction data shows two increased association peaks near this genomic
region, one 811 kb (chr11:28,550,000-28,555,000, GRCh37/hg19) and another
976 kb (chr11:28,710,000-28,720,000, GRCh37/hg19) upstream of BDNF exon
I, both interacting with region comprised of second cluster of BDNF
promoters/exons (IV-VI, chrl1:27,720,000-27,725,000, GRCh37/hgl9) in
GM12878 lymphoblastoid cell line (Rao et al., 2014). These peaks reflect the
presence of chromatin loops that are often associated with enhancer-promoter
interactions. Additional regulatory elements between these distal enhancers and
BDNF promoters may exist as evidenced by disruption of genomic region 80 kb
upstream of BDNF in some of obese patients of WAGR syndrome (Han et al.,
2008) and existence of MEF2D interacting region 6.5 kb upstream of promoter
I, which possibly acts as a proximal enhancer taking part in activity-induced
BDNF transcription from promoter I (Flavell et al., 2008).

The high level of similarity between transgene and endogenous BDNF
expression in basal and neural activity-induced conditions in both
hBDNF-EGFP-C3 and rBDNF-lacZ BAC transgenic lines developed here
shows that they are useful models for in vivo studies of BDNF gene regulation.

4.2. BAC transgenic cell lines for screening of modulators of BDNF
expression (publication III)

Transgenic cell lines are often used for studies of gene expression regulation.
Transgenic mice generated using rat BDNF BAC showed that it contains
regulatory elements for mostly faithful reporter gene mRNA expression under
basal and induced Ca®' signalling conditions (publication II). For more
convenient screening of factors regulating BDNF expression, we developed
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Figure 3. S/MAR elements predicted with SMARTest tool mapped to rat BDNF gene.
Coordinates of the displayed rat genomic locus are chr3:107368728-107426727 (RGSC
5.0/m5).

BAC transgenic cell lines in HeLa cell background using rat BDNF BAC,
where the BDNF protein coding region was replaced by hRluc-EGFP reporter
gene using homologous recombination (publication III). Previously, use of
BACs as transgene vectors for generating cell lines for drug screening have
shown that these cell lines faithfully express reporter genes and can be used for
large scale screening of possible modulators of gene under study (Li et al.,
2013).

In all HeLa hBDNF-hRluc-EGFP BAC cell lines we generated, detection of
EGFP fluorescence and hRluc luminescence showed that hRluc-EGFP reporter
gene was expressed (publication III). Expression of most of the transgenic
transcripts also showed that entire rat BDNF gene was maintained in transgenic
cell lines (publication III). High copy numbers of transgenes in all established
cell lines led to suggest that transgenic construct was maintained episomally in
transgenic cell lines, which was confirmed by FISH analysis (publication III). In
all established cell lines, the reporter gene under the control of rat BDNF
promoter regions was induced in response to ionomycin-mediated Ca*"
signalling (publication III), treatment with histone deacetylase inhibitors
(publication III) and by overexpression of VP16-CREB and NPAS4+ARNT?2
heterodimer transcription factors (publication III), all known to induce BDNF
expression (Pruunsild et al., 2011).

Given the previous reports that plasmids containing matrix attachment
regions (MARs) are maintained episomally as double minute chromosomes in
HeLa cells (Shimizu et al., 2001), episomal maintenance of transgene in our
reporter cell lines suggests presence of possible scaffold/matrix attachment
regions (S/MARs) in the genomic locus contained in rat BDNF BAC. S/MARs
are regions on DNA that have been associated with multitude of functions such
as anchoring of DNA and maintenance of the nuclear architecture, but also
regulation of replication and transcription. The six in silico predicted S/MAR
elements were all positioned inside the BDNF gene with SMARI1 and 2
positioned in the intron between exons I and II, SMAR 3 and 4 in the intron
between exons VII and VIII, SMAR 5 in the intron between exons VIII and IX
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and SMARG in the 3° UTR of exon IX overlapping the polyA site (Figure 3).
Interestingly, SMAR1, SMAR2 and SMARG are all located at or near sites of
high conservation between different species.

In established transgenic cell lines, BAC transgene was maintained
episomally in high copy numbers and therefore both luminescence and
fluorescence of hRluc-EGFP reporter protein was readily detected. This is in
contrast to our BDNF-BAC transgenic mice where we could not detect reporter
protein expression. It is possible that high copy numbers of transgene in reporter
cell lines led to readily detectable levels of hRluc-EGFP reporter expression.
However low reporter induction in response to different known activators of
BDNF expression (~1.5-2 fold) shows that while high transgene copy number
provides sufficient levels of reporter protein expression, it may have effect on
induction of the reporter. This is best seen with ionomycin treatment on high
and low copy number cell lines, with lower copy number cell lines showing
higher reporter induction (publication III). This may be due to depletion of
transcription factors by their response elements in BDNF regulatory regions in
high copy number cell lines. The lack of copy number effect on reporter
induction by HDAC inhibitor treatments is probably due to the already open
chromatin context of double minute chromosomes and more general effect of
increased histone acetylation leading to opening of chromatin at transgenic
DNA regions.

The choice of using hRluc-EGFP fusion protein as the reporter enabled to
use both fluorescence and luminescence methods for reporter detection. EGFP
fluorescence makes it possible to monitor the expression and regulation of
transgene at single cell levels using flow cytometry or fluorescent microscopy,
while Renilla luciferase (hRluc) luminescence allows sensitive detection of
reporter using either conventional luminescence detection kits for end point
signal detection, or live cell luciferase substrates for continuous monitoring of
reporter expression. One drawback of the used hRluc-EGFP protein may be its
increased stability due to the EGFP. The half-life of the EGFP has been shown
to be 26 hours in mammalian cells (Corish and Tyler-Smith, 1999) and the
half-life of hRluc is about 3-4 hours (Promega, personal communication). While
the half-life of the hRIuc-EGFP fusion protein is not known, it is possible that
part of the low induction in response to the tested treatments is due to the high
stability of the reporter protein. This effect could be alleviated by the inclusion
of a protein destabilising sequence in the reporter gene in future studies.

Another approach to increase the induction fold of the transgene reporter
protein in future cell lines would be to control the copy numbers of the BDNF
BAC transgene. However, this may lead to a trade-off — low (or single) copy
numbers of the transgene may not be enough for the detection of the reporter
protein while increasing the transgene copy number may lead to decreased
induction fold in response to a modulator. This problem might be solved by
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using two-step transcriptional activation (TSTA) system where BDNF locus in
BAC vector would encode a strong artificial transcriptional activator, for
example Gal4-VP16 or VP16-E2, that would activate the reporter expression
from a second promoter controlling the expression of suitable reporter gene.
TSTA system have been used for such reporter induction systems and have
shown to greatly enhance reporter (or therapeutic) gene expression under the
control of weak promoter (Iyer et al., 2001; Arendt et al., 2009). This approach
could allow expression from low copy numbers of weakly expressing BAC
transgene that would reliably reflect the endogenous BDNF gene and at the
same time increase the reporter expression to detectable levels. The exponential
effect of reporter induction in TSTA system might even be beneficial for
detection of lower effect modulators, when the effects of included noise are
accounted for in subsequent analysis.

The robust nature of the HeLa background, readily detectable hRluc-EGFP
reporter expression and its induction by ionomycin, HDAC inhibitors and
transcription factors known to induce BDNF, make these cell lines well suited
for initial screening of factors regulating BDNF gene.
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CONCLUSIONS

1) Generation and characterisation of BAC transgenic mouse and cell lines
carrying human or rat BDNF gene loci.

e BAC transgenic mice and cell lines carrying 168 kb of the human or
207 kb of the rat BDNF genomic locus were generated and
characterised.

e Transgenic BAC cell lines carrying 207 kb of the rat BDNF genomic
locus were generated and characterised.

2) Studying BDNF gene regulation using the generated BAC transgenic
mouse and cell lines.

e The BDNF BAC transgenic mice developed in this study largely
recapitulated endogenous BDNF expression pattern in different tissues
and its regulation by neural activity in the brain.

e Analysis of reporter expression patterns in transgenic mice generated
here indicated location of a possible heart-specific regulatory region
downstream of BDNF gene.

e Effect of transgene integration site on reporter expression in BAC
transgenic mouse lines indicated that some insulating regulatory
elements exist outside of the genomic regions covered by human and rat
BDNF BAC:s.

e Episomal maintenance of BAC transgene in rat BDNF BAC cell lines
indicated presence of possible S'MAR elements in the genomic region
included in the studied rat BDNF gene locus.

e Transgenic BDNF BAC cell lines responded to known regulators of
BDNF gene transcription.

e Established cell lines could be used for screening of BDNF regulators in

vitro and transgenic mouse lines for further studies of BDNF gene
regulation in vivo.
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ABSTRACT

Brain derived neurotrophic factor (BDNF), a member of the neurotrophin
family, has important functions in development and functioning of the nervous
system. In early development, BDNF promotes survival and differentiation of
various neuronal populations in the central and peripheral nervous system. In
later development and adulthood, it plays important roles in the regulation of
synaptic plasticity. Given its involvement in several nervous system disorders,
studying BDNF gene regulation provides insight for developing therapeutics for
these disorders.

We generated transgenic mouse lines using large capacity bacterial artificial
chromosome (BAC) vectors carrying human or rat BDNF genomic loci. Human
BDNF BAC transgenic mice were generated using a BAC containing 168 kb of
human BDNF genomic region that was modified to encode the BDNF-EGFP
fusion reporter gene. Rat BDNF BAC transgenic mice were generated using a
BAC containing 207 kb of rat BDNF genomic locus that was modified to
encode the B-galactosidase (lacZ) reporter gene. Reporter mRNA expression
patterns in established transgenic mouse lines largely recapitulated endogenous
BDNF expression patterns in the brain and peripheral tissues. Transgenic
transcripts were also upregulated in response to neural activity similarly to
endogenous BDNF in different brain regions. These results show that BAC
transgenes used in generating these transgenic mouse lines contain most of the
regulatory regions responsible for endogenous BDNF transcription and its
regulation by neural activity. In addition, transgenic mice containing human
BDNF BAC open up the possibility to study regulation of the human BDNF
gene in vivo. The developed transgenic mouse lines are useful for future studies
of BDNF gene regulation.

To generate a screening system for regulators of BDNF gene expression, we
established several BAC transgenic cell lines in HeLa cell background using a
BAC containing 207 kb of rat BDNF genomic region, where the BDNF protein-
coding sequence was replaced with the hRluc-EGFP fusion reporter gene. These
cell lines had high episomal transgene copy numbers and displayed increased
reporter protein expression in response to treatment with known activators of
BDNF expression. These cell lines are useful for further studies of BDNF gene
regulation and screening of compounds and transcription factors regulating
BDNF expression.

Altogether, mouse and cell lines generated and characterised in this work
provide useful experimental models for studying BDNF gene regulation and
screening regulators of its expression both in vivo and in vitro.
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KOKKUVOTE

Neurotrofiinide perekonna liige, ajust périnev neurotroofne tegur (BDNF),
omab tdhtsat rolli organismi varajases arengus erinevate kesk- ja
piirdenérvisiisteemi neuronite populatsioonide elulemuses ja diferentseerimises.
Lisaks osaleb BDNF hilisemas arengus ja tdiskasvanud organismis ka
stinaptilise plastilisusega seotud protsessides. Tulenevalt BDNF valgu tasemete
hdirumisest erinevate neurodegeneratiivsete ja psiihhiaatriliste hdirete korral, on
BDNF geeni uurimine oluline nende haiguste mehhanismide viljaselgitamiseks
ja vdoimalike ravimeetodite viljatddtamiseks.

Antud t66 kéigus loodi transgeensed hiire- ja rakumudelid BDNF geeni
regulatsiooni uurimiseks. Transgeensed hiireliinid tehti kasutades bakteriaalse
kunstliku kromosoomi (BAC) konstrukte, mis sisaldasid inimese vdi roti BDNF
geeni. Inimese BDNF BAC sisaldas 168 kb BDNF geeni genoomset lookust,
kus valku kodeeriv osa oli muudetud kodeerimaks BDNF-EGFP liitvalku. Roti
BDNF BAC sisaldas 207 kb roti BDNF geeni genoomset lookust, kus valku
kodeeriv osa oli asendatud P-galaktosidaasi kodeeriva jirjestusega. Loodud
transgeensetes hiireliinides oli reporter mRNA-de ekspressioon erinevates
kudedes  suurel = méddral sarnane  endogeensele @ BDNF  geeni
ekspressioonimustrile. Transgeenide ekspressioon reguleerus ka neuraalse
aktiivsuse tagajirjel erinevates ajuosades sarnaselt endogeensele BDNF geenile.
Inimese BDNF BAC-i sisaldavas hiireliinis transgeeni reageerimine neuraalsele
aktiivsusele nditab, et seda hiireliini on edaspidi voimalik kasutada inimese
BDNF geeni regulatsiooni uurimiseks in vivo. Kokkuvdtvalt voib oelda, et
genoomsed regioonid, mis sisaldusid transgeensete hiireliinide loomiseks
kasutatud BAC konstruktides, sisaldavad enamikke regulatoorseid elemente,
mis on vajalikud BDNF geeni ekspressiooniks. Véljatootatud transgeensed
hiireliinid sobivad BDNF geeni regulatsiooni uurimiseks.

BDNF geeni reguleerivate tegurite sdeluuringuks sai loodud mitu BAC
transgeenset HelLa rakuliini, kasutades 207 kb roti BDNF BAC konstrukti,
milles valku kodeeriv osa oli asendatud hRluc-EGFP reportergeeniga. Koigis
saadud rakuliinides esines transgeen korge koopianumbrilise episoomina ja
ekspresseeris reportervalku. Stiimulid, mis teadaolevalt reguleerivad BDNF
geeni transkriptsiooni, tdstsid reportervalgu tasemeid BAC transgeensetes
rakuliinides. Seetottu saab neid rakuliine kasutada edaspidisel BDNF geeni
regulatsiooni uurimisel ja selle tasemeid reguleerivate ainete otsingul.

BAC transgeensed hiire- ja rakuliinid on sobivad t6dvahendid edaspidisteks
BDNF geeni regulatsiooni uuringuteks nii in vitro kui in vivo tingimustes.
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Abstract

Background: Brain-derived neurotrophic factor (BDNF) is a small secreted protein that has
important roles in the developing and adult nervous system. Altered expression or changes in the
regulation of the BDNF gene have been implicated in a variety of human nervous system disorders.
Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies
regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial
chromosome (BAC) transgenic mice harboring the human BDNF gene and its regulatory flanking
sequences constitute a useful tool for studying human BDNF gene regulation and for identification
of therapeutic compounds modulating BDNF expression.

Results: In this study we have generated and analyzed BAC transgenic mice carrying 168 kb of the
human BDNF locus modified such that BDNF coding sequence was replaced with the sequence of
a fusion protein consisting of N-terminal BDNF and the enhanced green fluorescent protein
(EGFP). The human BDNF-BAC construct containing all BDNF 5' exons preceded by different
promoters recapitulated the expression of endogenous BDNF mRNA in the brain and several non-
neural tissues of transgenic mice. All different 5' exon-specific BDNF-EGFP alternative transcripts
were expressed from the transgenic human BDNF-BAC construct, resembling the expression of
endogenous BDNF. Furthermore, BDNF-EGFP mRNA was induced upon treatment with kainic
acid in a promotor-specific manner, similarly to that of the endogenous mouse BDNF mRNA.

Conclusion: Genomic region covering 67 kb of human BDNF gene, 84 kb of upstream and 17 kb
of downstream sequences is sufficient to drive tissue-specific and kainic acid-induced expression of
the reporter gene in transgenic mice. The pattern of expression of the transgene is highly similar
to BDNF gene expression in mouse and human. This is the first study to show that human BDNF
gene is regulated by neural activity.

Background entiation of several neuronal populations during mam-
Brain-derived neurotrophic factor (BDNF) [1], a member  malian development [2,3]. In the adult central nervous
of the neurotrophin family, promotes survival and differ-  system, BDNF acts as a regulator of activity-dependent
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neurotransmission and plasticity [4] and promotes sur-
vival of newborn hippocampal neurons [5]. BDNF has
widespread expression in the developing and adult mam-
malian nervous system, its mRNA and protein levels rising
dramatically in postnatal development [6-10]. In the
adult, BDNF is also expressed in a number of non-neural
tissues, with the highest levels of BDNF mRNA detected in
thymus, heart and lung [11,12].

BDNF gene has a complex structure with multiple
untranslated 5' exons alternatively spliced to one protein-
coding 3' exon. The rat BDNF gene structure initially
described to contain five exons [13] has been recently
updated with a number of newly discovered exons for
rodent[14,15] and human [16,17] BDNF. Untranslated 5'
exons are linked with differentially regulated promoters
directing tissue-specific expression of BDNF [13-17]. Fur-
thermore, recently discovered BDNF antisense transcripts
in human may exert additional control over BDNF tran-
scription [16,17]. BDNF is a neural activity-dependent
gene in rodents: various physiological stimuli induce its
expression in neurons through excitatory neurotransmis-
sion-triggered calcium influx [18,19]. However, no data is
available about activity-dependent transcription of the
human BDNF gene in neurons, except one report showing
that dopamine signaling increases the levels of BDNF
exon IV transcripts in neuronally differentiated human
embryonic teratocarcinoma NT2 cells [20].

Alterations in BDNF function have been associated with a
variety of disorders of the nervous system [2]. As therapies
modulating neurotrophic activity are being actively
sought [21], it is of great importance to create model sys-
tems for studying the regulation of BDNT gene. BAC trans-
genic mice have proven useful in studying gene regulation
as a) BAC clones are often long enough to contain all nec-
essary DNA elements to recapitulate the expression pat-
terns of endogenous genes independent of host genomic
sequences flanking the transgene integration site and b)
they can be easily modified with homologous recombina-
tion in E. coli, e.g. to introduce reporter genes under the
control of promoters of interest [22]. BAC transgenes with
EGFP reporter gene have been used for characterization of
expression and regulatory regions of several neural genes
[23-25]. Transgenic mice have been generated previously
to study BDNF gene regulation in vivo [26,27]. Mouse
lines carrying rat BDNF sequences of 10 kb range recapit-
ulated BDNF expression only partially, suggesting that cis-
acting regulatory elements necessary for accurate control
of BDNF expression are located further away [26].
Recently, YAC-BDNF transgenic mice carrying 145 kb of
human BDNF locus with BDNF coding sequence substi-
tuted for the EGFP reporter gene have been reported [27].

In this study we have generated BAC transgenic mice car-
rying human BDNF-EGFP fusion (hBDNF-EGFP) reporter
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gene under the control of 168 kb of human BDNF
genomic sequences. C-terminal addition of EGFP to
BDNF protein has been shown not to affect BDNF cellular
localization, secretion and activation of its receptor TrkB
in cultured neurons [28-30]. Therefore, to enable studying
subcellular localization of the hBDNF-EGFP fusion pro-
tein in vivo, we specifically produced this fusion reporter
gene construct. The aims of the study were to investigate
a) expression of hBDNF-EGFP mRNA and protein in the
brain and non-neural tissues and b) activity-dependent
regulation of the hBDNF-EGFP transgene in the brain of
the BAC transgenic mice.

Results

Generation of transgenic mice with 169 kb hBDNF-EGFP-
BAC

A 168 kb BAC clone extending 84 kb upstream and 17 kb
downstream of human BDNF gene was used to generate
human BDNE-EGFP reporter transgenic mice (see Materials
and Methods and Figure 1A-C). Briefly, EGFP reporter gene
was inserted in-frame with BDNF coding region replacing
the BDNF stop codon (Figure 1C). Resulting hBDNF-EGFP
fusion protein was expected to mimic subcellular localiza-
tion of endogenous BDNF, allowing fine resolution of trans-
gene expression. hBDNF-EGFP-BAC construct was tested for
integrity using PCR and restriction analysis (data not
shown). Transgenic mice were generated by pronuclear
injection, yielding four transgenic founders (A4, E1, E4 and
C3). All founders contained one to two transgene copies as
estimated by slot-blot hybridization (Figure 1D). PCR anal-
ysis of C3 genomic DNA and sequencing of the PCR prod-
ucts revealed tandem integration of two transgene copies
and confirmed the intactness of 5' and 3' end sequences of
the integrated transgene (Figure 1E). Offspring was obtained
from three founders and bred for several generations to gen-
erate transgenic mouse lines E1, E4 and C3.

Expression of h(BDNF-EGFP in transgenic mouse tissues

From three transgenic founder lines, C3 line showed pat-
tern of expression of hBDNF-EGFP mRNAs that was
highly similar to the expression of mouse endogenous
BDNF (mBDNF) mRNA (Figure 2A). RT-PCR analysis
revealed relatively high transgene expression in all brain
regions of C3 mice, including cerebral cortex, hippocam-
pus, striatum, thalamus, hypothalamus, midbrain, pons,
medulla and cerebellum. In non-neural tissues, high lev-
els of transgene mRNA were detected in testis, moderate
levels in thymus and lung and low levels in skeletal mus-
cle. BDNF mRNA is endogenously expressed in all these
tissues both in mouse and human [14,16]; (Figure 2A).
However, dissimilarly from mouse endogenous BDNF
mRNA, hBDNF-EGFP mRNA was not detected in heart
and kidney, where relatively high levels of mBDNF mRNA
were detected. Low expression of hABDNF-EGFP transgene
in the mouse kidney correlates with the finding that
BDNTF is expressed at low levels in human kidney [8,16].
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Schematic drawings of rodent and human BDNF genes and the BAC transgenic construct used in this study.
Rodent (A) and human (B) BDNF gene structures. Rodent BDNF gene consists of a number of 5' exons (I-VIII) spliced
together with a common protein-coding sequence in exon IX (transcriptional start sites are indicated with arrows). BDNF
transcription can also start from exon IX introducing a unique 5' UTR sequence. Hatched lines indicate sites of alternative
splicing. Although the human BDNF gene has a similar structure and splicing pattern, it has additional exons Vh and Vlilh,
longer and more complexly spliced 5'UTR of exon IX. Furthermore, human BDNF exons VlIl and Vlilh are not used as 5'exons,
but are always spliced with exon V. For detailed description see [14,16]. (C) Schematic drawing of the modified BAC construct
used in this study containing the human BDNF locus. EGFP reporter gene was inserted in-frame with the BDNF coding region
before the BDNF stop codon creating a fused BDNF-EGFP open reading frame within 168 kb of human BDNF locus. Arrows
PI-3 indicate PCR primers used for analysis of transgene integration. (D) Slot-blot hybridization analysis of transgene copy
number in hBDNF-EGFP transgenic founder mice (A4, C3, El and E4). BAC standard contains hBDNF-EGFP-BAC DNA in
amounts equivalent to |-3 copies of transgene in the blotted genomic DNA. WT- wild type mouse DNA. (E) PCR analysis of
genomic DNA from transgenic mouse line C3 with primers detecting tandem integration of h(BDNF-EGFP-BAC constructs.
WT — wild type mouse DNA as a negative control; (+) — circular hBDNF-EGFP-BAC DNA as a positive control; (-) — PCR

without DNA as a negative control.

In E1 mice, transgene expression recapitulated that of the
endogenous BDNF mRNA in thymus, lung, kidney and
testis, but not in other non-neural tissues that express
BDNF. In the adult brain of E1 mice, transgene mRNA
expression was detected in midbrain, cerebellum, pons
and medulla at levels that were lower than in the respec-
tive brain regions of C3 mice. In E4 line, hBDNF-EGFP
mRNA was detected only in testis and thymus (Figure 2A).

Expression of transgenic hBDNF-EGFP mRNA was further
examined in different brain regions of C3 mice since this
line largely recapitulated endogenous BDNF expression
and expressed the transgene at the highest levels. Quanti-
fication of hBDNF-EGFP transcripts in C3 hippocampus
and cortex using ribonuclease protection assay (RPA)
revealed that transgene mRNA levels were about tenfold
lower than endogenous mBDNF mRNA levels (Figure
2B). Analysis of transcription from the alternative human

BDNF promoters in C3 mice confirmed the expression of
all transcripts with different 5' exons described to date
(exons I-IXe) both in hippocampus (Figure 2C) and cere-
bral cortex (data not shown).

In situ hybridization of C3 mice adult brain sections
revealed hBDNF-EGFP mRNA expression in the hippoc-
ampus, particularly in the pyramidal neurons of CA1 and
CA3 regions and in the polymorphic neurons in the hilus
of the dentate gyrus, and also in several cortical areas,
including neurons of frontal, sensorimotor and piriform
cortex (Figure 3, 4). Endogenous mBDNF mRNA was
detected in all brain areas where hBDNF-EGFP mRNA
labeling was observed. However, hBDNF-EGFP labeling
was absent or below the detection limit of our in situ
hybridization assay in several areas expressing mBDNF
mRNA, e.g. claustrum, amygdala, thalamic, hypothalamic
and pontine nuclei. Furthermore, in situ hybridization
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hBDNF-EGFP mRNA expression in tissues of three
transgenic mouse lines. (A) RT-PCR analysis of h(BDNF-
EGFP mRNA expression in tissues of three transgenic BAC
mouse lines — C3, El, E4. mBDNF — mouse BDNF; hBDNF —
human BDNF in human tissues; HPRT — reference gene
hypoxanthine phosphoribosyltransferase. Cx — cortex; Hc —
hippocampus; St — striatum; Th — thalamus; Mb — midbrain;
PM — pons/medulla; Cb — cerebellum; Ty — thymus; He —
heart; Lu — lung; Li — liver; Ki — kidney; SM — skeletal muscle;
Sp — spleen; Te — testis. (B) Analysis of hBDNF-EGFP mRNA
expression levels in C3 mouse brain by RNase protection
assay. hBDNF-EGFP probe was used to determine both
transgenic and endogenous BDNF mRNA levels as protein
coding sequences of mouse and human BDNF share a high
degree of similarity. P — probe without RNase; tRNA — yeast
tRNA; HC — hippocampus; CX — cortex. On the right, black
boxes denote vector-derived sequences, white boxes BDNF
and gray boxes EGFP sequences. (C) Expression of alterna-
tive hBDNF-EGFP transcripts in C3 mouse hippocampus
(HC), analyzed by RT-PCR. PCR primers used were specific
for human BDNF transcripts as shown by control reactions
with human (hHC) and mouse (mHC) hippocampal cDNA.
elX — transcript containing 5'-extended exon IX.

showed differential expression of hBDNF and mBDNF in
cortical and hippocampal subfields. While mBDNF
mRNA was expressed at high levels throughout the cere-
bral cortex, hABDNF-EGFP labeling was more prominentin
the frontal cortex and in the sensorimotor area extending
along the longitudinal fissure (Figure 3C, D and Figure
4K-N). In the hippocampus, hBDNF-EGFIP labeling was
observed over the CA1 and hilar subfields and part of the
CA3 subfield (CA3b in Figure 3G, H and Figure 4C, D),
mimicking the pattern of expression of endogenous
mBDNF mRNA. On the other hand, hBDNF-EGFP mRNA
was expressed at considerably lower levels in the part of
CA3 subfield that showed high levels of mBDNF mRNA
expression (CA3a in Figure 3G, H and Figure 4E, F). In
addition, no hBDNF-EGFP labeling was detected in the
granule neurons of dentate gyrus where endogenous

http://www.biomedcentral.com/1471-2202/10/68

hBDNF -EGFP

mBDNF

Figure 3

Overlapping patterns of BAC-driven hBDNF-EGFP
and mBDNF mRNA expression in C3 mouse brain. In
situ hybridization analysis, photoemulsion autoradiographs of
16 um sagittal (A,B) and coronal (C-H) sections. (C) and
(D) are sections taken at striatal level; (E) and (F) are sec-
tions taken at posterior hippocampal levels; (G) and (H)
show enlarged hippocampal area (scale bar: 0,5 mm). FC —
frontal cortex;SM — sensorimotor cortex; HC — hippocam-
pus; Pn — pontine nuclei; Hth — hypothalamus; Cg — cingulate
cortex; Pir — piriform cortex; Cl — claustrum; Str — striatum;
CAl, CA3 — hippocampal subfields; DG — dentate gyrus of hip-
pocampus; Hi — hilar area of dentate gyrus; Th — thalamus;
Amy — amygdala.

mBDNF mRNA was highly expressed (Figure 3G, H and
Figure 41, J).

Since the BDNF gene in the transgenic construct was of
human origin, we also analyzed the expression of BDNF
in the human hippocampus using in situ hybridization. In
agreement with earlier findings [31,32], our results
showed that the highest levels of hBDNF mRNA were
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hBDNF -EGFP

Cellular expression of hABDNF-EGFP mRNA in adult C3 mouse brain. In situ hybridization analysis, shown are bright-
field autoradiographs of emulsion-dipped sections. Hybridization probes are indicated above the columns. Filled arrowhead
indicates a neuron with strong labeling, empty arrowhead indicates a neuron with weak or absent labeling and double arrow-
heads indicate a glial cell showing no labeling. CAl, CA3 — hippocampal subfields; DG — dentate gyrus of hippocampus; Hi — hilar
area of dentate gyrus; FC — frontal cortex; SM — sensorimotor cortex; Pir — piriform cortex. Scale bar: 20 pm.

present in the granule cells of dentate gyrus, whereas other
hippocampal regions showed relatively weaker expression
(Figure 5). However, strong hBDNF labeling was detected
over majority of CA3 and CA1 neurons using high magni-
fication (Figure 5B, C), indicating that these areas show
much weaker signal in the dark-field image partly because
of the scarcity of neuronal cell bodies in the CA1 and CA3
subfields of the human hippocampus.

Next we examined expression of hBDNF-EGFP fusion pro-
tein across tissues in C3 mice. No EGFP fluorescence was
observed in brain sections or cultured primary embryonic
(E18) hippocampal neurons. In addition, hBDNF-EGFP
protein was not detected in the hippocampus, cortex and
testis by Western blot analysis with anti-EGFP or anti-
BDNF antibodies (data not shown). hBDNF-EGFP open

reading frame in C3 genomic DNA was analyzed for pos-
sible mutations by sequencing and was found to be intact.
Together with mRNA expression data these results suggest
that hBDNF-EGFP protein was either not translated in the
brain and testis of C3 mice or was expressed at levels
below the detection limits of our methods.

Kainic acid induces hBDNF-EGFP mRNA expression in
transgenic mouse brain

Kainic acid (KA), agonist of the KA subtype ionotropic
glutamate receptor, has been shown to induce BDNF
mRNA levels in adult rodent hippocampus and cerebral
cortex [13,19,33,34]. KA induction of transgenic hBDNF-
EGFP transcripts in the hippocampus and cerebral cortex
of C3 mice largely followed the induction pattern of
endogenous mBDNTF transcripts (Figure 6A). KA markedly
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Figure 5

Expression of BDNF mRNA in the human hippocam-
pus. (A) In situ hybridization autoradiograph of a 16 um
coronal section.DG — granular layer of dentate gyrus; Hi —
hilar area of dentate gyrus; Sub — subiculum; CAl, CA3 — hip-
pocampal subfields. (B-E) High magnification bright-field pho-
tomicrographs of hematoxylin-counterstained neurons in
subfields CAl (B) and CA3 (C), the hilus (D) and granular
layer of dentate gyrus (E). Filled arrowhead indicates a neu-
ron with strong labeling, empty arrowhead indicates a neu-
ron with weak or absent labeling and double arrowheads
indicate a glial cell showing no labeling.

upregulated both endogenous mouse and transgenic
hBDNF-EGFP transcripts containing exons I, IV and 5'-
extended exon IX (elX) in the hippocampus and cortex.
hBDNF-EGFP and mBDNF mRNAs containing other 5'
exons were induced to a lesser extent. Of note, recently
described human-specific exon Vh-containing transcripts
were not induced by KA in transgenic mice in the context
of 169 kb hBDNF-EGFP BAC construct (Figure 6A).

Levels of BDNF transcripts showing the most robust
induction by kainic acid were analyzed further using
quantitative real-time RT-PCR analysis (Figure 6B). Trans-
genic hBDNF-EGFP exon I, exon IV and 5'-extended exon
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Figure 6

Kainic acid (30 mg/kg) induces transgenic hBDNF-
EGFP mRNA expression in brains of C3 line trans-
genic mice. (A) Induction of alternatively spliced hBDNF-
EGFP transcripts in C3 mouse hippocampus (HC) and cere-
bral cortex (CTX), analyzed with RT-PCR. mBDNF — mouse
transcripts; ND — not determined; KA — kainic acid treated
mice; CTR — control mice. Three BDNF-II bands correspond
to alternatively spliced transcripts. (B) Quantitative real-time
RT-PCR analysis of selected BDNF transcripts, normalized to
HPRTI levels and expressed as fold difference relative to
mRNA levels in untreated mice. (C) In situ hybridization
autoradiographs of C3 mouse coronal brain sections. Pir —
piriform cortex; CAl, CA3 — hippocampal subfields; DG — den-
tate gyrus of hippocampus; Hi — hilar area of dentate gyrus;
Th — thalamus; Hth — hypothalamus; Amy — amygdala.
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IX transcripts, and total hBDNF-EGFP mRNA were
potently induced in both hippocampus and cortex follow-
ing 3 hours of kainate treatment, similarly to respective
endogenous mBDNF mRNAs. Exon VI-containing
hBDNF-EGFP and endogenous mBDNF transcripts
showed no induction, which is consistent with previous
findings [13,14,33].

In situ hybidization analysis showed marked induction of
transgenic hBDNF-EGFP mRNA by KA in the pyramidal
neurons of CA1-CA3 layers, in the hilar region of hippoc-
ampus and also in the layers II - VI of cerebral cortex (Fig-
ure 6C). Importantly, kainic acid induced transgene
expression also in the granular layer of dentate gyrus of
hippocampus, whereas control animals did not show any
detectable expression in this area. Endogenous mBDNF
was induced in the same neuronal populations, suggest-
ing that the 169 kb hBDNF-EGFP BAC construct contains
all the regulatory elements that mediate kainic acid induc-
tion. We also examined expression of the hBDNF-EGFP
protein in the brains of kainic acid treated C3 mice by
direct EGFP fluorescence and Western blot analysis but no
fusion protein was detected (data not shown).

Discussion

In this study, BAC transgenic mice carrying 168 kb of the
human BDNF locus and encoding human BDNF-EGFP
fusion protein were generated and analyzed. Out of three
analyzed founder lines, one line (C3) largely recapitulated
human BDNF mRNA expression in the brain, thymus,
lung, skeletal muscle and testis. Founder line E1 mim-
icked human BDNF mRNA expression in some brain
regions, and also in thymus, lung and kidney. Founder
line E4 expressed transgene only in the thymus and testis.
These results showed that although all three founder lines
expressed hBDNF-EGFP mRNA at different levels, the 169
kb BAC construct, carrying 67 kb of human BDNF gene,
84 kb of 5' and 17 kb of 3' sequences, contains regulatory
elements necessary for h(BDNF mRNA expression in many
brain regions and non-neural tissues. [lowever, integra-
tion site-dependent expression of transgene in different
founder lines suggests that the BAC construct may not
contain necessary insulator elements to protect it from the
influence of genomic regions flanking the transgene inte-
gration site. It has been shown for many genes that insu-
lators can functionally isolate neighboring genes and
block their interactions [35].

In several non-neural tissues, the 169 kb hBDNF-EGFP
BAC recapitulated endogenous expression of both mouse
and human BDNF. Transgenic mRNA was expressed in
the thymus and testis in three mouse lines, expression in
the lung was seen in two lines and only one line expressed
hBDNF-EGFP in the kidney and skeletal muscle. All these
tissues have been shown to express BDNF both in mouse
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and human [7,14,16]. Of note, all three founder lines
expressed relatively high levels of hBDNF-EGFP in adult
testis, in contrast to the very low expression levels of
endogenous mBDNF in the testis. This transgene expres-
sion pattern can be explained by human origin of the
BDNF gene as relatively high levels of BDNF mRNA, com-
parable to the levels in the brain, have been detected in
the human testis [16]. In the adult human testis, expres-
sion of BDNF and its receptor TrkB has been reported in
Leydig, Sertoli and germ cells [36], while in the adult
mouse testis, BDNT expression has been detected in Ser-
toli cells and expression of its receptor TrkB in germ cells
[37]. These findings indicate differences in BDNF expres-
sion between human and mouse and are further sup-
ported by the present study. On the other hand, none of
the founder lines expressed hBDNF mRNA in the heart, a
tissue with high levels of BDNF expression both in human
and rodents [8,11,12,14]. This suggests that distinct heart-
specific regulatory elements are located outside of the
genomic DNA fragment that was included in the BAC con-
struct.

Detailed analysis of hBDNF-EGFP expression in the C3
mouse brain by in situ hybridization showed that the
transgene mimicked mBDNF expression in many neuron
populations, including neurons of the CA1-CA3 and hilar
regions of the hippocampus and the cerebral cortex. How-
ever, hBDNF-EGFP failed to recapitulate endogenous
BDNEF expression in several neuron populations, includ-
ing the granule cells of dentate gyrus of hippocampus
where BDNF mRNA is expressed both in human and
rodents. hBDNF-EGFP expression was detected in all ana-
lyzed brain regions by RT-PCR, but not by in situ hybridi-
zation, indicating that transgene mRNA levels in several
brain structures were below the detection limit of our in
situ hybridization analysis.

BDNF transcription is regulated by neuronal activity
through calcium-mediated pathways [18,38]. Systemic
treatment of rodents with kainic acid (KA) has been used
to model activity-dependent induction of BDNF mRNA in
the nervous system [13,19,33,34]. Here we show that KA
differentially induced alternative hBDNF-EGFP tran-
scripts in the cortex and hippocampus (for comparison
with mouse and rat see Table 1). Pronounced induction of
transgenic hBDNF-EGFP transcripts containing exons I,
IV, and 5'-extended exon IX (eIX), moderate induction of
transcripts containing exons II, III and absence of induc-
tion of transcripts containing exon VI is consistent with
the induction pattern of respective BDNF mRNAs in
mouse and rat [13,14,33]. To our knowledge, this is the
first time to report neural activity-dependent regulation of
the human BDNF gene in vivo. Real-time PCR showed that
total transgenic mRNA, as well as transcripts containing
exons I, IV and 5'-extended exon IX were induced to a
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lesser extent than the respective endogenous mBDNF
mRNAs. This is consistent with earlier results reported for
shorter rat BDNF transgenes [26] and could be caused by
increased stability of transgenic BDNF-reporter mRNAs as
compared to the mouse endogenous BDNF mRNAs. Alter-
natively, the absence of important regulatory elements in
the transgenic construct may underlie the reduced induc-
tion of the transgene by kainic acid. In situ hybridization
analysis of KA-treated C3 mouse brains showed induction
of hBDNF-EGFP mRNAs in several neuronal populations
where endogenous BDNF mRNA levels were also
increased. These results show that, similarly to rodent
BDNF, expression of the human BDNF gene is induced by
neural activity and that regulatory elements mediating the
induction are included in the 168 kb of the human BDNF
locus contained in the BAC transgene. Several regulatory
elements located in the rat BDNF proximal promoter IV
and the transcription factors mediating activity-depend-
ent activation of this promoter have previously been char-
acterized [39]. Among these elements, CRE (cAMP-
response element) was found to be the most important
for Ca2+-mediated activation of rodent BDNF promoter IV
[40-42]. However, the respective regulatory elements and
transcription factors responsible for the activity-depend-
ent regulation of the human BDNF gene have not been

Table |I: Regulation of human, mouse and rat BDNF exon-
specific mRNAs by kainic acid in the hippocampus and cerebral
cortex.

human! mouse? rat3
exon HC CTX HC CTX HC
| ok ok ok ok ok
I * * * * *
m *_ * * * R
v ok ok sk sok sk
v * * * sok sk
Vh - - X X X
Vi - - - - -
VI ND ND ND ND ok
M1 X X ND ND *
elX ok sk sk Sok sk

- no induction; * weak induction; ** strong induction; ND — not
determined; X — transcript containing this exon as the 5' exon does
not exist in this organism; 2 based on data from the present study; 3
based on data from [14]; HC — hippocampus; CTX — cerebral cortex.
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characterized. Transgenic mice described here can be used
to study the regulation of human BDNF gene in vivo using
a variety of methods successfully applied in the studies of
rodent BDNF [39].

Previously, transgenic mice carrying shorter fragments of
the BDNF locus have been generated and characterized
[26,27]. Mice expressing the CAT reporter gene under the
control of 9 kb of rat BDNF genomic sequences covering
promoters I-III or promoters IV-VI showed relatively high
CAT activity in most tissues and brain regions expressing
endogenous BDNF mRNA. In situ hybridization analysis
showed that these constructs carrying either BDNF pro-
moters [-III or IV-VI were able to drive CAT mRNA expres-
sion in adult rat brain in a pattern largely overlapping
with mouse BDNF mRNA expression. Nevertheless, reca-
pitulation of endogenous BDNF expression had a number
of shortcomings in these transgenes: both constructs were
not expressed or were expressed at low levels in the den-
tate granule cells and granule cells of cerebellum; BDNF
IV-VI did not mimic BDNF expression in the heart; both
constructs displayed relatively high reporter activity in the
striatum where rat BDNF is virtually not expressed [43]. It
was assumed that these transgenic constructs lacked
important regulatory elements, which could be present in
a much longer gene fragment than the BAC clone used
here. Although BAC transgenic mouse lines generated in
this study showed improved recapitulation of expression
as compared to that of the BDNF-CAT transgenic mice
[26], we could not detect transgene expression in several
tissues and neuron populations that express endogenous
BDNF mRNA.

A recent study reported generation of human BDNF-EGFP
transgenic mice using a 145 kb YAC clone including 45 kb
of 5' and 33 kb of 3' flanking sequences of hBDNF gene
with the protein coding sequence partially replaced with
EGFP reporter gene [27]. Three out of five transgenic
founder lines obtained in that study expressed transgenic
mRNA in the brain and only one of these showed expres-
sion of transgenic hBDNF transcripts containing exons IV
and VI in the heart. Out of three lines analyzed, EGFP flu-
orescence was detected in the brain of only one line, spe-
cifically in the claustrum, intermediate layer of parietal
cortex, pyramidal cell layer of CA3 hippocampal subfield
and a population of neurons in the granule cell layer of
the dentate gyrus. However, EGFP fluorescence was not
detected in other cortical neuron populations and in the
CA1 region of hippocampus where rodent and also
human BDNF mRNA are expressed [27]. Differences in
the tissue- and neuron-specific expression of transgenic
hBDNF-EGFP mRNA and protein between the study by
Guillemot et al. [27] and this study can be explained with
different lengths of the BDNF gene-flanking genomic
regions in the transgenic constructs used: the hBDNF-BAC
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Table 2: PCR primers used in this study

Primer/application

Sequence

BAC modification

hBDNFcod_rpsL_neo_s

5' GGATAGACACTTCTTGTGTATGTACATTGACCATTAAA
AGGGGAAGATAGGGCCTGGTGATGATGGCGGGATCG 3'

hBDNF_rpsL_neo_as

5'’AATAGATAATTTTTGTCTCAATATAATCTAATCTATACAACATAAATCCATCAGAAGAACTCGTCAA
GAAGG 3'

hBDNFcod_linker_EGFP_s

5' TAAGGATAGACACTTCTTGTGTATGTACATTGACCAT
TAAAAGGGGAAGACGGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTG 3'

hBDNF_EGFP_as

5" AATAGATAATTTTTGTCTCAATATAATCTAATCTATAC
AACATAAATCCATTACTTGTACAGCTCGTCCATGCCGA 3'

genotyping/slot-blot hybridization/expression analysis

hBDNF_s

GTACGTGCGGGCCCTTACCATGGATAGC

EGFP_as

TGGTGCAGATGAACTTCAGGGTCAGC

expression analysis

mBDNF_s GTATGTTCGGGCCCTTACTATGGATAGC
mBDNF_as AAGTTGTGCGCAAATGACTGTTTC
HPRTI_s CTTTGCTGACCTGCTGGATTAC
HPRTI _as GTCCTTTTCACCAGCAAGCTTG
hBDNF_I_s GATGCCAGTTGCTTTGTCTTCTGTAG
hBDNF_II_s GGGCGATAGGAGTCCATTCAGCACC
hBDNF_III_s AGTTTCGGGCGCTGGCTTAGAG
hBDNF_IV_s GCTGCAGAACAGAAGGAGTACA
hBDNF_V_s TCGCGTTCGCAAGCTCCGTAGTG
hBDNF_Vh_s GGCTGGAACACCCCTCGAA
hBDNF_VI_s GGCTTTAATGAGACACCCACCGC
hBDNF_VII_s GAACTGAAAGGGTCTGCGACACTCT
hBDNF_IXb_s GCTGCTAAAGTGGGAAGAAGG
hBDNF_IX _as| GTCCTCATCCAACAGCTCTTCTATC

hBDNF_IX_as2 (with VII_s)

GAAGTGTACAAGTCCGCGTCCTTA

expression analyis (QPCR)

EGFPq_s

CAGAAGAACGGCATCAAGGTG
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Table 2: PCR primers used in this study (Continued)
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EGFPq_as TGGGTGCTCAGGTAGTGGTTG
hBDNFq_I_s CAGCATCTGTTGGGGAGACGAGA
hBDNFq_IV_s GAAGTCTTTCCCGGAGCAGCT
hBDNFq_VI_s ATCGGAACCACGATGTGACT
hBDNFq_IXc_s AACCTTGACCCTGCAGAATGGCCT
hBDNFq_IX_as| (with I, IV_s) ATGGGGGCAGCCTTCATGCA
hBDNFq_IX_as2 (with VI_s) ACCTTGTCCTCGGATGTTTG

hBDNFq_IX_as3 (with IXc_s)

GATGGTCATCACTCTTCTCACCT

mBDNFq_I_s TTGAAGCTTTGCGGATATTGCG
mBDNFq_IV_s GAAATATATAGTAAGAGTCTAGAACCTTG
mBDNFq_VI_s GCTTTGTGTGGACCCTGAGTTC
mBDNFq_IXa_s GGACTATGCTGCTGACTTGAAAGGA

mBDNFq_IX_as| (with I, IV, Vis)

AAGTTGCCTTGTCCGTGGAC

mBDNFq_IX_as2 (with [Xa_s)

GAGTAAACGGTTTCTAAGCAAGTG

mBDNFq_coding s GGCCCAACGAAGAAAACCAT
mBDNFq_coding s AGCATCACCCGGGAAGTGT
HPRTIq_s CAGTCCCAGCGTCGTGATTA
HPRTIq_as AGCAAGTCTTTCAGTCCTGTC
transgene integrity

pBACe3.6_SP6 (5'end) TATTTAGGTGACACTATAG

rpl1_5"_as (5'end)

GGACAACAGACCCAAGGAGA

rpl1_3"_s (3'end)

GTAGGGTGTCTGGGTTGGTG

pBACe3.6_T7 (3'end)

TAATACGACTCACTATAGGG

transgene tandem integration

rpl1_3"_s (PI)

GTAGGGTGTCTGGGTTGGTG

pBACe_l 1326_s (P2)

CGGTTACGGTTGAGTAATAAATGGATG

PBACe_11365_s (P3)

GGGGCACATTTCATTACCTCTTTCTC
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used in the present study contained 39 kb longer 5'and 16
kb shorter 3' genomic regions of hBDNF gene than the
reported hBDNF-YAC construct [27]. In addition, part of
BDNF coding sequence had been replaced with EGFP
reporter gene in the hBDNF-YAC transgene [27], possibly
removing cis-elements with regulatory function. In con-
trast to the present study, hBDNF-YAC transgenic mRNA
expression was not analyzed in different brain regions and
expression of transgenic mRNAs containing exons III, V,
Vh, VII and 5'-extended exon IX was not analyzed. More
detailed comparison of hBDNF-EGFP expression in the
two hBDNF transgenic mouse models would allow nar-
rowing down genomic regions containing enhancer ele-
ments for tissue-specific expression of human BDNF. For
example, on the basis of current data it can be hypothe-
sized that a cis-element promoting heart-specific expres-
sion of hBDNF mRNA is located within the 3' terminal 16
kb of hBDNF-YAC construct (17-33 kb downstream of
the hBDNF gene; chr11:27,600,000-27,616,000; UCSC
Genome Browser, Mar 2006 Assembly). Recently, a BDNF
regulatory locus has been discovered 850 kb upstream of
the human and mouse BDNF genes that causes obesity,
cognitive impairment and hyperactivity when disrupted
[44,45]. Therefore, it is possible that in addition to regu-
latory elements included in the hBDNF-BAC of this study
and the hBDNF-YAC described before [27], others can be
found hundreds of kilobases away from the BDNF gene.

EGFP reporter gene has been successfully used to visualize
BAC-driven expression of neural genes in a number of
studies [23-25]. In the BAC construct that was used to gen-
erate transgenic mice in the present study, EGFP reporter
gene was fused C-terminally with the human BDNF cod-
ing sequence to allow detailed characterization of human
BDNF expression in the nervous system. Unfortunately,
we could not detect EGFP protein in the brain of C3 mice
neither with fluorescence microscopy nor with Western
blot analysis. This could be explained with low levels of
hBDNF-EGFP protein expressed in the C3 mouse brain as
transgenic hBDNF-EGFP mRNA levels were about tenfold
lower than these of endogenous BDNF. It is also possible
that founder mice with higher levels of BDNF-EGFP
expression died during embryonic development due to
overactivation of BDNF receptor TrkB. This hypothesis is
supported by a study showing that embryonic overexpres-
sion of BDNF from nestin promoter results in gross
abnormalities in brain architecture and perinatal death
[46]. Although the hBDNF-EGFP fusion protein can be
expressed in cultured cells in vitro [28-30], it is conceivable
that it is not translated or has poor translatability and/or
stability when expressed in transgenic mice in vivo.

Conclusion
Human genomic region covering 67 kb of the BDNF gene,
84 kb of upstream and 17 kb of downstream sequences is

http://www.biomedcentral.com/1471-2202/10/68

able to drive tissue-specific and kainic acid-induced
expression of reporter gene in transgenic mice that largely
overlaps with BDNF gene expression and regulation in
mouse and human. This is the first study to directly show
that human BDNF gene is regulated by neural activity. The
BDNF-BAC transgenic mice are useful for studying the
transcription regulation of human BDNTF gene in vivo. In
addition, these mice could be used for screening therapeu-
tic agents modulating human BDNF transcription.

Methods

Generation of transgenic mice

BAC clone (RP11-651M4) containing the human BDNF
locus [GenBank:AC087446.13] was purchased from
Chori BACPAC Resources (USA). Red®/ET® homologous
recombination in E. coli (Counter-Selection BAC Modifi-
cation Kit, Gene Bridges Gmbll, Germany) was used to
delete BDNF stop codon and to insert EGFP reporter gene
with the linker sequence (CGG GAT CCA CCG GTC GCC
ACC) into the 3' end of BDNF. For sequences of primers
used for insert synthesis see Table 2. Modified BAC was
tested for the absence of rearrangements using EcoRV
restriction analysis and pulsed field gel electrophoresis.
Integrity of the hBDNF-EGFP reading frame was con-
firmed by sequencing. In order to validate the reporter
activity, BAC DNA was purified using the Large Construct
Purification Kit (Qiagen, USA) and transfected into COS-
7 cells using DEAE-dextran mediated transfection system
[47]. Five days after transfection EGFP expression and dis-
tribution in COS-7 cells was visualized using fluorescence
microscopy (Eclipse 80i upright microscope, Nikon).

hEGFP-BDNF BAC DNA was purified for microinjection
by alkaline lysis and linearized with PI-Scel enzyme (NEB,
USA). Restriction solution was separated in low-melt aga-
rose gel (Fermentas, Lithuania) using CHEF-DR II Pulsed
Field Electrophoresis System (Bio-Rad, USA). Linearized
BAC DNA was excised from the gel and purified from aga-
rose using Gelase enzyme (NEB, USA). Transgenic mice
were generated by pronuclear injection of linearized
hBDNF-EGFP-BAC into CBA x C57BI/6 mouse pronuclei
in the Karolinska Center for Transgene Technologies
(Sweden). Founder mice carrying the BAC transgene were
identified by PCR analysis of genomic DNA. Transgene
copy number was analyzed by slot-blot hybridization of
genomic DNA with a [a-32P]|dCTP-labeled probe gener-
ated with Hexalabel DNA Labeling Kit (Fermentas,
Lithuania) using pEGFP-N1 (Clontech, USA) plasmid as a
template. Genomic DNA of the C3 mouse founder line
was analyzed by PCR for the presence of 5' and 3' ends of
the linearized transgene. Tandem insertion of transgene
into the C3 line genomic DNA was analyzed by PCR with
primers pBACe_11326_s or pBACe_11365_s in combina-
tion with rp11_3'_s (see Table 2) and sequencing of the
PCR product. All animal experiments were performed in

Page 11 of 14

(page number not for citation purposes)



BMC Neuroscience 2009, 10:68

agreement with the local Ethical Committee of Animal
Experimentation.

Cell culture, antibodies and animal experiments

African green monkey kidney fibroblast COS-7 cells were
grown in DMEM with 10% fetal calf serum and antibiot-
ics. Primary neuronal cultures from embryonic day 18 cer-
ebral cortex were prepared as described [48]. For Western
blots and immunohistochemistry the following antibod-
ies were used: mouse anti-GFP monoclonal antibodies
(Roche Applied Science), mouse anti-GFP monoclonal
antibodies (Clontech, USA); rabbit anti-BDNF (Santa
Cruz Biotechnology, USA). For kainic acid treatment,
adult mice weighing 20-25 g were injected intraperito-
neally with 30 mg/kg of kainic acid or 1x PBS. 3 hours
later mice were decapitated, hippocampus and cortex dis-
sected, frozen on dry ice and stored at -70°C. For in situ
hybridization whole brains were embedded in Shandon
Cryomatrix™ (Thermo Fisher Scientific, USA). Four kainic
acid-treated C3 mice and two control mice were used for
quantitative RT-PCR analysis of total hBDNF-EGFP
mRNA expression in the cerebral cortex and hippocam-
pus. Total hABDNF-EGFP mRNA was induced 2,5-6 fold in
the hippocampus of kainic acid-treated C3 mice and the
mouse displaying highest induction of hBDNF-EGFP and
mBDNF mRNA was analyzed further with RT-PCR for
expression of exon-specific transcripts. Five kainic acid-
treated C3 mice and two control mice were used for in situ
hybridization analysis and the mouse showing highest
induction of hBDNF-EGFP and mBDNF mRNA was fur-
ther analyzed in more detail.

RT-PCR

Total RNA was isolated from mouse and human tissues
using TRI reagent (Ambion, USA). All experiments with
human tissues were approved by the local Ethical Com-
mittee for Medical Research. Two mice from each trans-
genic line were analyzed for tissue-specific expression of
hBDNF-EGFP mRNA in brain regions and non-neural tis-
sues and they showed identical transgene expression pat-
tern. RNA was treated with DNase (DNA-free, Ambion,
USA) following manufacturer's instructions and five
micrograms of total RNA was used for cDNA synthesis
with oligo-dT primer (Microsynth, Switzerland) and
SuperScript III reverse transcriptase (Invitrogen, USA).
PCR amplification was carried out with HotFire DNA
polymerase (Solis Biodyne, Estonia) according to the
manufacturer's instructions. Quantitative real-time PCR
was performed on a LightCycler 2.0 instrument (Roche
Applied Science) using qPCR Core kit for SYBR® Green [
No ROX (Eurogentec, Belgium). Melting curve analysis
was carried out at the end of cycling to confirm amplifica-
tion of a single PCR product. All qPCR reactions were per-
formed in triplicate and normalized to hypoxanthin
phosphoribosyltransferase 1 (HPRT1) mRNA levels.

http://www.biomedcentral.com/1471-2202/10/68

Ribonuclease protection assay

For cRNA synthesis 624 bp BDNF-EGFP fragment con-
taining 452 bp of BDNF, 21 bp linker sequence and 151
bp of EGFP sequence was amplified with PCR from mod-
ified BAC clone RP11-651M4 and cloned into pBluescript
SK+ vector (Stratagene, USA). [a-32P|UTP-labeled cRNA
probe was in vitro transcribed from linearized plasmid
template using MAXIscript Kit and T3 polymerase
(Ambion, USA). 10 ug of total RNA and 2.5 x10> CPM of
radiolabeled probe were used for RPA hybridization and
the assay was performed with the RPA III Kit from
Ambion as suggested by the manufacturer. The protected
fragments were separated in 4% acrylamid-urea gel and
detected autoradiographically using BioRad Molecular
Imager FX.

In situ hybridization

cRNA probe complementary to the coding region was
used to mouse BDNF mRNA and probe complementary
to EGFP was used to detect hBDNF mRNA. Probes were
synthesized from DNA fragments subcloned into pCR4-
TOPO vector (Invitrogen, USA). [a-35S|UTP-labeled
probes were generated with MAXIScript In Vitro Transcrip-
tion Kit (Ambion, USA) using linearized DNA template
and T3 or T7 RNA polymerase. 16 um sections of fresh-
frozen C3 mouse brain were processed according to the
protocol described in [13]. Slides were exposed to either
BioMax MR X-ray film for one week or NTB-2 photoemul-
sion for 2 months, developed with D19 developer and
fixed with a general-purpose fixer (all from Eastman
Kodak, USA). Slides exposed to NTB-2 were counter-
stained with hematoxylin (Vector Laboratories Inc., USA).
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Summary: Brain-derived neurotrophic factor (BDNF), a
member of the neurotrophin family of neurotrophic fac-
tors, has important functions in the peripheral and cen-
tral nervous system of vertebrates. We have generated
bacterial artificial chromosome (BAC) transgenic mice
harboring 207 kb of the rat BDNF (rBDNF) locus contain-
ing the gene, 13 kb of genomic sequences upstream of
BDNF exon |, and 144 kb downstream of protein encod-
ing exon IX, in which protein coding region was replaced
with the lacZ reporter gene. This BDNF-BAC drove
transgene expression in the brain, heart, and lung, reca-
pitulating endogenous BDNF expression to a larger
extent than shorter rat BDNF transgenes employed pre-
viously. Moreover, kainic acid induced the expression of
the transgenic BDNF mRNA in the cerebral cortex and
hippocampus through preferential activation of pro-
moters | and IV, thus recapitulating neuronal activity-de-
pendent transcription of the endogenous BDNF gene.
genesis 48:214-219, 2010. © 2010 Wiley-Liss, Inc.
Key words: neurotrophin; transcription; promoter; BAC;
transgenic mouse; kainic acid

Brain-derived neurotrophic factor (BDNF), a member of
the neurotrophin family of proteins, supports the sur-
vival and differentiation of certain neuronal populations
during development (Bibel and Barde, 2000; Binder and
Scharfman, 2004). In the adult, BDNF regulates long-
term potentiation of synapses, thus playing a key role in
long-term memory formation (Lu et al., 2008). BDNF
was originally isolated from the brain, but it is also
expressed in the peripheral nervous system and non-
neural tissues (Binder and Scharfman, 2004). Changes in
BDNF gene expression accompany and contribute to
the development of various disorders of the nervous sys-
tem (Bibel and Barde, 2000).

The BDNF gene contains multiple promoters that initi-
ate the transcription of a number of distinct mRNAs,
each of which contains an alternative 5’ untranslated
exon spliced to a common 3’ protein coding exon. In
addition, the protein coding exon employs two different
polyadenylation sites that give rise to mRNA species
with 3’ untranslated regions (UTRs) of different lengths.
Alternative promoter usage, differential splicing, and the
use of two different polyadenylation sites within each of

the transcription units generate at least 22 different
BDNF mRNAs in rodents and 34 BDNF mRNAs in human
that encode the same mature BDNF protein (Aid et al.,
2007; Pruunsild et al., 2007). It has been shown that the
subcellular localization of BDNF mRNAs and its regula-
tion by neuronal activity depends on the 5" exon and 3’
UTRs used in the transcript (An et al., 2008; Chiaruttini
et al., 2008). In addition, it has been shown that BDNF
mRNAs containing the short 3’ UTRs are more enriched
in polysomal fraction isolated from total brain than
BDNF mRNAs with the long 3’ UTRs suggesting that
they are more efficiently translated (Timmusk et al.,
1994). Numerous regulatory elements involved in the
regulation of BDNF expression in vitro and in vivo have
been identified and characterized in different BDNF pro-
moters. Transcription factors such as REST (Timmusk
et al., 1999; Zuccato et al., 2003), CREB (Shieh et al.,
1998; Tao et al., 1998), NFkB (Lipsky et al., 2001), MEF2
(Flavell et al., 2008), NPAS4 (Lin et al., 2008), bHLHB2
(Jiang et al., 2008), and MeCP2 (Chen et al., 2003; Marti-
nowich et al., 2003) have been shown to regulate BDNF
expression in a promoter-specific manner. However, the
genomic regions including all necessary cis-acting
elements responsible for the tissue-specific and activity-
dependent BDNF gene regulation in vivo remain poorly
characterized. A few studies have addressed these issues
using transgenic mouse models (Funakoshi et al., 1998;
Guillemot et al., 2007; Koppel et al., 2009; Timmusk
etal., 1995, 1999).

In the present study, we have generated a transgenic
mouse line using a bacterial artificial chromosome (BAC)
clone containing 207 kb of rat BDNF (rfBDNF) locus,
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FIG. 1. (a) Schematic diagram of the BAC construct used for generating rBDNF-lacZ-BAC transgenic mice (thick lines). White boxes repre-

sent untranslated sequences and the blue filled box represents lacZ reporter gene that replaces the BDNF coding sequence. rBDNF-CAT
constructs (-l and IV-VI) used by Timmusk et al. (1995) to generate rBDNF transgenic mice are shown with asterisks. (b) RT-PCR analysis
of rBDNF-lacZ mRNA expression driven by rBDNF promoters in transgenic mouse tissues. Abbreviations: mBDNF, mouse BDNF; HPRT,
hypoxanthine phosphoribosyltransferase 1; Cx, cortex; He, hippocampus; Cb, cerebellum; OB, olfactory bulb; TH, thalamus and hypothala-
mus; PM, pons/medulla; Mb, midbrain; St, striatum; Ty, thymus; He, heart; Lu, lung; Li, liver; Ki, kidney; SM, skeletal muscle; Sp, spleen; Te,
testis. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

encompassing the genomic region from 13 kb upstream
of ¥BDNF exon I to 144 kb downstream of #BDNF coding
exon. Neighboring genes of the »yBDNF gene lie 151 kb
upstream (Ifna4) and 190 kb downstream (Sgrdl) from it
and therefore no additional genes/promoters were
included in the BAC construct. To facilitate detection of
transgene expression, we replaced the protein coding
region of exon IX in the yBDNF-BAC with lacZ reporter
gene (Fig. 1a). This should lead to the expression of func-
tional B-galactosidase protein but not a BDNF-lacZ fusion
protein. Functional B-galactosidase protein encoded by
the lacZ reporter gene in rBDNF-lacZ-BAC was detected
by transient expression in COS-7 cells (data not shown).

In the »yBDNF-lacZ-BAC transgenic line, the expression
of ¥YBDNF-lacZ mRNA was detected by RT-PCR in several
brain regions and peripheral organs expressing endoge-
nous mouse BDNF (mBDNF) mRNA (Fig. 1b). Specifi-
cally, the expression of *YBDNF-lacZ mRNA was detected
in the brain regions of cortex, hippocampus, cerebel-
lum, olfactory bulb, thalamus/hypothalamus, pons/me-
dulla, midbrain, striatum, and also in the heart and lung.
rBDNF-lacZ mRNA expression levels were not detected
by RT-PCR in the thymus, liver, kidney, spleen, and skele-
tal muscle. Particularly high expression of the transgene
was observed in the testis.

In the adult brain of the *yBDNF-lacZ-BAC transgenic
mice, in situ hybridization analysis revealed intense
labeling of both *BDNF-lacZ and endogenous mBDNF
mRNAs in the cerebral cortex (Figs. 2a-f and 3gh),
olfactory nucleus (Fig. 2a,b), hippocampus (Figs. 2e,f
and 3a-f), amygdala (Fig. 2e-f), nucleus of the lateral ol-
factory tract (Fig. 2i,j), and hypothalamic nuclei (Fig.
2e,f and 2k-n) including mamillary nuclei (Fig. 2k,D. In
the granular cell layer of the olfactory bulb (Fig. 2a,b),
caudate putamen, and nucleus accumbens (Fig. 2¢,d),
high levels of rBDNF-lacZ mRNA were detected,

whereas labeling of the endogenous mBDNF mRNA was
indistinguishable from background signal. In the claus-
trum (Fig. 2¢,d) and hypothalamus (Fig. 2e,f), rBDNF-
lacZ mRNA expression levels were relatively lower than
mBDNF mRNA levels. In the hippocampus, intensive
rBDNF-lacZ labeling over scattered neurons in the CAl
and CA3 subfields (Fig. 3a,c) mirrored the expression of
the endogenous mBDNF (Fig. 3b,d). However, in the
granule cells of dentate gyrus that showed high expres-
sion of mBDNF mRNA (Figs. 2f and 3f) no expression of
rBDNF-lacZ was detected (Figs. 2e and 3e). In the cor-
tex, ¥YBDNF-lacZ expression was observed in cingulate
and somatosensory areas in layers II-III and V-VI (Figs.
2c,e and 3g), whereas endogenous mBDNF was
expressed throughout layers II-VI (Figs. 2d,f and 3h).
Expression of rBDNF-lacZ (Fig. 2g,0) and mBDNF (Fig.
2h,p) mRNA was detected also in cardiac blood vessels
but not in ventricular myocardium (Fig. 2g,h). In lung tis-
sue, the levels of both ¥rBDNF-lacZ and mBDNF mRNA
were below detection limits of our in situ hybridization
analysis (data not shown).

We also analyzed the expression and enzymatic activ-
ity of B-galactosidase protein in *BDNF-lacZ-BAC mouse
tissues. Reporter activity was not detected in the brain
or testis of the analyzed rBDNF-lacZ-BAC mouse line
using X-gal staining assay. In addition, no expression of
B-galactosidase protein was detected in the hippocam-
pus, cortex, and testis of the transgenic animals using
Western blot analysis (data not shown). These results
suggest that (3-galactosidase protein was either not trans-
lated from BAC-driven rBDNF-lacZ mRNAs or the levels
of expression of the reporter protein remained below
detection limits of the methods used in this study.

Kainic acid has been shown to induce BDNF mRNA
expression in the adult rodent hippocampus and cere-
bral cortex (Zafra et al., 1990) in a promoter-specific
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FIG. 2.

In situ hybridization analysis of rBDNF-lacZ mRNA expression in adult rBDNF-lacZ-BAC transgenic mouse brain and heart. Photo-

micrographs of 16 pm coronal brain (a—f; i-n) and transverse heart sections (g,h,0,p) hybridized with *°S-labeled /acZ or mouse endogenous
BDNF (mBDNF) cRNA. The brain sections shown are at the levels of olfactory bulb (a,b), striatum (c,d), and hippocampus (e,f). (i-n) Magnifi-
cations of selected brain regions: LOT, nucleus of the lateral olfactory tract; MM, medial mammillary nucleus; DMH, dorsomedial hypothala-
mic nucleus; VMH, ventromedial hypothalamic nucleus. (o,p) Magnifications of cardiac blood vessels. Scale bars: 1 mm (a-h) and 0.5 mm
(i-p). Abbreviations: Ctx, cortex; GrO, olfactory bulb, granular cell layer; ON, olfactory nuclei; CPu, caudate putamen; Cl, claustrum; NAc,
nucleus accumbens; Pir, piriform cortex; Hc, hippocampus; Th, thalamus; Hth, hypothalamus; Amy, amygdala; Ve, ventricle; V, cardiac

blood vessel.

manner (Aid et al., 2007; Timmusk et al., 1993). Three
hours after systemic injection of kainic acid, the levels of
transgenic *BDNF-lacZ mRNA were increased in »BDNF-
lacZ-BAC mice similarly to endogenous mBDNF mRNA
(see Fig. 4). The elevated levels of rBDNF-lacZ and
mBDNF mRNA expression were observed in cortical
layers II-III and V-VI, hippocampal subfields CAl1 and
CA3, and in the amygdala. However, in contrast to en-
dogenous mBDNE, induction of rBDNF-lacZ mRNA
expression in the granule cells of the dentate gyrus was
not observed (Fig. 4e,f). Quantitative real-time PCR anal-
ysis showed that induction pattern of different »BDNF-
lacZ transcripts by kainic acid largely followed that of
the endogenous BDNF: both transgenic and endogenous
exon I and exon IV mRNAs transcribed from promoters I
and IV, respectively, showed higher levels of induction
than exon VI mRNAs transcribed from promoter VI
(Fig. 4g,h). Similarly to untreated mice, (3-galactosidase

activity and protein expression was not detected in the
cortex, hippocampus, and testis of kainate-treated
rBDNF-lacZ-BAC mice (data not shown).

Transgenic mice expressing reporter genes under the
control of various regulatory regions of the #yBDNF gene
have been described previously. #BDNF-CAT transgenic
mice carrying 9 kb of genomic sequence comprising
one or more BDNF 5 untranslated exons were reported
in (Timmusk et al., 1995). These transgenic mice
(Fig. 1a) recapitulated BDNF expression in most brain
regions and in the thymus. However, BDNF IV-VI con-
struct failed to recapitulate BDNF expression in the cere-
bellum, heart, and other peripheral tissues (Timmusk
et al., 1995) where BDNF transcripts IV and VI are endo-
genously expressed (Aid et al., 2007; Pruunsild et al.,
2007; Timmusk ef al., 1993). Here we demonstrate that
rBDNF-lacZ-BAC including 50 kb of the #BDNF gene, 13
kb of upstream and 144 kb of downstream sequences
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mBDNF

FIG. 3. Cellular expression of rBDNF-lacZ mRNA in adult trans-
genic mouse brain: in situ hybridization analysis. (a—f) Bright-field
photomicrographs of hippocampal subfields CA1, CA3, and dentate
gyrus (DG). Hybridization probes are indicated above the columns;
closed arrowheads indicate neurons with strong labeling; open
arrowheads indicate neurons with weak or absent labeling; double
arrowheads indicate a glial cell showing no labeling. (g,h) Distribu-
tion of lacZ and mouse BDNF labeling in cortical layers I-VI. Abbre-
viation: CC, corpus callosum. Scale bars: 20 um (a-f) and 100 pm
(9h).

contains regulatory elements necessary for recapitula-
tion of endogenous BDNF expression in the brain, heart,
and lung, indicating that regulatory elements governing
BDNF mRNA expression in these tissues are located
within the 207 kb rat genomic sequence of the trans-
gene. In addition, neuronal activity induced expression
of yBDNF-lacZ mRNA in a promotor-specific manner in
the ¥BDNF-lacZ-BAC mice, mimicking induction of the
respective 5’ exon-specific transcripts of endogenous
BDNE

Recently, we have shown that human BDNF-EGFP-
BAC covering 67 kb of the human BDNF (hBDNF) gene,
84 kb of upstream and 17 kb of downstream sequences
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are not sufficient to drive EGFP (enhanced green fluores-
cent protein) reporter gene expression in the heart
(Koppel et al., 2009). Expression of ¥BDNF-lacZ mRNA
in the heart of rBDNF-lacZ-BAC transgenic mice
reported here (with 144 kb region 3’ of the rBDNF
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FIG. 4. Induction of rBDNF-lacZ mRNA in transgenic mouse brain
by kainic acid treatment. (a—f) In situ hybridization analysis with
probes for transgenic rBDNF-lacZ and mouse endogenous
(mBDNF) mRNA. Autoradiographs of sections from vehicle-treated
(a,b) and kainate-treated animals (c-f) are shown. Dark-field autora-
diographs of coronal sections (a-d); high magnification bright-field
photomicrographs of the dentate gyrus (e,f). Scale bar: 20 um (e,f).
(9,h) Quantitative real-time PCR analysis of rBDNF-lacZ and endog-
enous mBDNF mRNA expression in the hippocampus (g) and cere-
bral cortex (h) of transgenic mice, expressed as fold difference rela-
tive to mRNA levels in vehicle-treated mice. Shown are transcripts
containing exons |, IV, VI, and total BDNF mRNA (BDNF X). Error
bars represent standard deviation of three RT-PCR experiments.
Abbreviations: CTR, vehicle-treated control mice; KA, kainate-
treated mice; CA1, CA3, hippocampal subfields; DG, dentate gyrus;
Ctx, cortex; Amy, amygdala.
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Table 1
PCR Primers Used in This Study

BAC modification
mrBDNF_rpsLneo_F
rBDNF _rpsLneo_R
BDNF_lacZ_300_F
BDNF_lacZ_300_R

Genotyping/RT-PCR
rBDNF_LacZ_F
rBDNF_LacZ_R

GCCGTCACTTGCTTAGAAACCGTT
GAGTACTAACAAGAACGAAGATACT

CCCTGCAGCTGGAGTGGATCAGTAAG
GAAGATCGCACTCCAGCCAGCTTTCC

TGTCTGTCTCTGCTTCCTTCCCACAGTTCCACCAGGTGAGAAGAGTGGGCCTGGTGATGATGGCGGGATCG
ATACAAATAGATAA GTCTCAATATAATCTATACAACATAAATCCATCAGAAGAACTCGTCAAGAAGG

mBDNF_F GTATGTTCGGGCCCTTACTATGGATAGC
mBDNF_R AAGTTGTGCGCAAATGACTGTTTC
HPRT1_F CTTTGCTGACCTGCTGGATTAC
HPRT1_R GTCCTTTTCACCAGCAAGCTTG

Quantitative real-time RT-PCR
Mouse endogenous mRNAs

mBDNFq_I_F TTGAAGCTTTGCGGATATTGCG
mBDNFq_IV_F GAAATATATAGTAAGAGTCTAGAACCTTG
mBDNFqg_VI_F GCTTTGTGTGGACCCTGAGTTC
mBDNFg_RT_IXcod_ R AAGTTGCCTTGTCCGTGGAC
mBDNFqg_cod_F GGCCCAACGAAGAAAACCAT
mBDNFqg_cod_R AGCATCACCCGGGAAGTGT
HPRT1q_F CAGTCCCAGCGTCGTGATTA
HPRT1q_R AGCAAGTCTTTCAGTCCTGTC

Rat BDNF-lacZ mRNAs
rBDNFq_I_F AGTCTCCAGGACAGCAAAGC
rBDNFq_IV_F GAAATATATAGTAAGAGTCTAGAACCTTG
rBDNFq_VI_F GCTTTGTGTGGACCCTGAGTTC
LacZqg_F CGAAGTGACCAGCGAATACCTGT
LacZqg_R1 CAACTGTTTACCTTGTGGAGCGACA
LacZqg_R2 (with I_F) CAAGGCGATTAAGTTGGGTAAC
LacZqg_R3 (with I,VI_F) GTTTTCCCAGTCACGACGTT

gene) suggests that a heart-specific regulatory element is
located within 18-144 kb 3’ of BDNF gene. However,
this prediction should be treated with caution as regula-
tory regions of BDNF genes of different species are com-
pared. On the other hand, neither hBDNF-EGFP-BAC
(Koppel et al., 2009) nor rBDNF-lacZ-BAC could direct
transgene expression to hippocampal dentate granule
cells suggesting that the respective regulatory regions
are located in genomic regions further than 84 kb
upstream of BDNF exon I and 144 kb downstream of
BDNF coding exon. Existence of remote cis-acting ele-
ments controlling BDNF transcription has been demon-
strated by recent studies describing a regulatory region
850 kb upstream of human and mouse BDNF genes, dis-
ruption of which causes obesity, cognitive impairment,
and hyperactivity (Gray et al., 20006; Sha et al., 2007).

In conclusion, we have generated transgenic mice
containing ¥rBDNF-lacZ-BAC transgene that recapitulated
the expression of endogenous BDNF mRNA in the brain
and peripheral tissues and neuronal activity-dependent
regulation of BDNF mRNA in the adult cerebral cortex
and hippocampus. This mouse model represents a useful
tool for further mapping of proximal and distal regula-
tory elements in rodent BDNF gene in vivo.

METHODS

rBDNF-lacZ-BAC transgenic mice were generated using
BAC clone CH230-106M15 (Chori BACPAC Resources,
Oakland, CA) modified to replace rBDNF coding

sequence with the lacZ reporter gene Red™/ET™ ho-

mologous recombination technology, Gene Bridges, Hei-
delberg, Germany) (Muyrers et al., 1999). The BAC
clone contains 207 kb of the »BDNF genomic locus
(GenBank: AC108236) including 50 kb of rBDNF gene,
13 kb of 5" and 144 kb of 3’ flanking sequences (Fig. 1a).
Purified *BDNF-lacZ-BAC was transfected into COS-7
cells by DEAE-dextran and tested for reporter activity
using (3-galactosidase assay. Transgenic mice were gener-
ated at the Karolinska Center for Transgene Technolo-
gies (Stockholm, Sweden) by injection of NotI-linearized
rBDNF-lacZ-BAC into CBA x C57BI/6 mouse pronuclei.
One transgenic founder mouse was obtained and bred to
establish a transgenic mouse line. Integration of two
copies of rBDNF-lacZ-BAC transgene was estimated
by slot-blot hybridization of genomic DNA with
[a->?P]dCTP-labeled lacZ-specific probe.

RNA isolation and analysis of rBDNF-lacZ mRNA
expression in transgenic mouse tissues with RT-PCR was
performed as described (Pruunsild et al., 2007). Quanti-
tative real-time PCR was performed on LightCycler 2.0
(Roche Diagnostics, Mannheim, Germany) using qPCR
Core Kit for SYBR® Green I No ROX (Eurogentec, Liege,
Belgium). qPCR reactions were processed in triplicate
and all expression data were normalized to hypoxan-
thine phosphoribosyltransferase 1 (HPRT1) mRNA lev-
els. For primer sequences see Table 1. In situ hybridiza-
tion analysis with [oc-?’SS]UTP-labeled cRNA probes for
rBDNF-lacZ and endogenous mouse BDNF mRNA was
performed as described in Timmusk et al. (1993). Kainic



RAT BDNF-BAC TRANSGENIC MICE

acid (KA; 30 mg/kg) or phosphate-buffered saline was
administered intraperitoneally to adult yBDNF-lacZ-BAC
mice weighing 20-25 g. Two kainic acid-treated and two
vehicle-treated animals were used for qRT-PCR analysis.
Four kainic acid-treated animals and one vehicle-treated
animal were used for in situ hybridization analysis. Only
animals with induced tonic-clonic seizures were selected
for analysis and results are shown for individuals show-
ing highest induction of transgenic and endogenous
BDNF mRNA. All animal procedures were carried out in
compliance with the local ethics committee.
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Abstract

its expression regulation.

Background: Brain derived neurotrophic factor (BDNF) belongs to a family of structurally related proteins called
neurotrophins that have been shown to regulate survival and growth of neurons in the developing central and
peripheral nervous system and also to take part in synaptic plasticity related processes in adulthood. Since BDNF is
associated with several nervous system disorders it would be beneficial to have cellular reporter system for studying

Methods: Using modified bacterial artificial chromosome (BAC), we generated several transgenic cell lines
expressing humanised Renilla luciferase (hRluc)-EGFP fusion reporter gene under the control of rat BDNF gene
regulatory sequences (rBDNF-hRIuc-EGFP) in Hela background. To see if the hRIuc-EGFP reporter was regulated in
response to known regulators of BDNF expression we treated cell lines with substances known to regulate BDNF
and also overexpressed transcription factors known to regulate BDNF gene in established cell lines.

Results: rBDNF-hRIuc-EGFP cell lines had high transgene copy numbers when assayed with gPCR and FISH analysis
showed that transgene was maintained episomally in all cell lines. Luciferase activity in transgenic cell lines was
induced in response to ionomycin-mediated rise of intracellular calcium levels, treatment with HDAC inhibitors and
by over-expression of transcription factors known to increase BDNF expression, indicating that transcription of the
transgenic reporter is regulated similarly to the endogenous BDNF gene.

Conclusions: Generated rBDNF-hRIuc-EGFP BAC cell lines respond to known modulators of BDNF expression and
could be used for screening of compounds/small molecules or transcription factors altering BDNF expression.

Keywords: BDNF, Cell line, Bacterial artificial chromosome, HDAC inhibitor
.

Background
Brain derived neurotrophic factor (BDNF), a nerve growth
factor family member [1], has been shown to have import-
ant roles in the development and functioning of nervous
system [2]. During development, BDNF supports survival
and differentiation of distinct neuronal subpopulations
[1,3,4]. In adulthood, BDNF has been shown to have ef-
fects in activity-dependent synaptic plasticity including
learning and long-term potentiation [5], pain modulation
[6], synaptogenesis [7,8] and regulation of metabolism [9].
BDNF gene has complex transcriptional regulation
with different untranslated 5" exons spliced to a com-
mon protein coding 3" exon. Nine different promoters
(I-IX) controlling transcription from nine or eleven 5’
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( BiolVied Central

exons, in rodents or humans respectively, and two differ-
ent polyadenylation sites give rise to a range of mRNAs
[10-12]. BDNF transcription has been shown to be regu-
lated by a multitude of transcription factors (reviewed in
[13]), for instance promoter I by cAMP response elem-
ent binding protein (CREB) [14], upstream stimulatory
factors (USF) [14], myocyte enhancer factor 2D (MEF2D)
[15], nuclear factor kappa beta (NFkB) [16], basic helix-
loop-helix (hPHLH)-PAS transcription factor neuronal PAS
domain protein 4 (NPAS4) and aryl hydrocarbon receptor
nuclear translocator 2 (ARNT?2) heterodimer (NPAS4-
ARNT?2) [17,18]; promoter II by repressor element-1 tran-
scription factor (REST) [19,20]; promoter IV by CREB
[21,22], calcium response factor (CaRF) [23], USF-s
[18,24], methyl CpG binding protein 2 (MeCP2) [25],
NF«kB [26], bHLHB2 [27], and NPAS4-ARNT?2 hetero-
dimer [17,18], MEF2C [28]; promoter IX by CREB and
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NPAS4-ARNT?2 heterodimer [18]. Due to the presence of
many promoters and resulting large number of transcripts
with the same protein coding sequence but alternating 5’
and 3’ untranslated regions, BDNF expression is tempor-
ally and spatially controlled in different tissues [11,12,29],
developmental stages [30] and within different cell com-
partments [31-33]. Additionally, the BDNF gene locus also
encompasses the antisense BDNF gene (BDNFOS) [12,34,35]
with a complex splicing and expression pattern. Transcripts
of the antisense BDNF gene have been shown to form
dsRNA duplexes with BDNF transcripts [12] and regulate
BDNF levels [35] in vivo.

Alterations in BDNF expression have been associated
with several neurodegenerative disorders. BDNF expres-
sion has been shown to be decreased in brains of Alzhei-
mer’s [36], Parkinson’s [37,38] and Huntington’s disease
[39] patients. Changes of BDNF levels are accompanied
by several other pathologies, like neuropsychiatric dis-
orders, obesity, impairment of learning and memory,
neuropathic pain and epileptogenesis [2]. Due to BDNF in-
volvement in nervous system disorders, it has been of great
interest to use it as a therapeutic [40]. Unfortunately, direct
use of recombinant BDNF protein is problematic due to its
low serum half-life, poor penetration across blood brain bar-
rier and low diffusion properties in tissues. Delivery of
BDNF into the brain using viral vectors can have problems
with vector toxicity, expression dosage and insertional muta-
genesis. These problems have promoted screening of drug
candidates that could promote expression of endogenous
BDNF [41]. HDAC inhibitors are one class of drugs that
have been shown to mediate their effect on memory and
synaptic plasticity in models of nervous system disorders
through increase in BDNF expression [42,43].

Bacterial artificial chromosomes (BACs) are large cap-
acity vectors which are easy to maintain and modify
using homologous recombination in E. coli [44]. Due to
their large size, BACs can incorporate whole gene gen-
omic loci while at the same time being easier to handle
and modify than yeast artificial chromosomes (YACs).
BACs have been used to create transgenic mice and cell
lines for studying protein function [45], expression regu-
lation [46-48] and for use in high-throughput screening
of gene expression modulators [49].

Our group has previously created transgenic mice using
BACs containing human [50] or rat [51] BDNF genomic
sequences. Transgenes in these mice recapitulated en-
dogenous BDNF expression patterns in different tis-
sues. In the current study, we have generated transgenic
cell lines expressing humanised Renilla luciferase (hRluc)-
EGFP fusion reporter gene under the control of rat BDNF
gene regulatory sequences. To this end we used BAC con-
taining rat BDNF gene locus with BDNF protein coding
region replaced with the hRluc-EGFP coding sequence.
These transgenes maintain transgene episomally in high
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numbers and express reporter gene at high levels. Re-
porter gene is induced in response to rise in intracellular
calcium levels, treatment with different HDAC inhibitors
and overexpression of NPAS4-ARNT2 heterodimer or
constitutively active CREB1 (VP16-CREB) that are known
to regulate BDNF expression. These transgenic cell lines
could be used for screening drug candidates or transcrip-
tion factors that modulate BDNF expression.

Results
Generation of rBDNF-hRIuc-EGFP Hela stable cell lines
HeLa cell line was chosen for generation of rBDNF-
hRIuc-EGFP cell lines because its relatively carefree growth
conditions and fast growth are good properties for trans-
genic cell line. Endogenous human BDNF gene was also
expressed in HeLa cell line showing that signaling path-
ways regulating BDNF expression were active in HeLa cells
(see below). The hRluc-EGFP fusion reporter was used be-
cause EGFP fluorescence was useful for initial screening
and subcloning of transgenic cell lines by fluorescence mi-
croscopy and FACS. However for screening of substances
or transcription factors regulating BDNF expression,
Renilla luciferase luminescence detection is more sen-
sitive and gives less background signal than fluores-
cence based detection methods [52]. Renilla luciferase
also has commercial live cell substrates that allow for
repeated measurements of the treated cells making it
easier to assay the time dependent effect on the re-
porter expression while conserving reagents.
rBDNF-hRluc-EGFP BAC construct used for generat-
ing cell lines was created using BAC clone that contains
rat BDNF locus spanning 13 kb upstream of the first
exon and 144 kb downstream of the last polyadenylation
signal (Figure 1A). BAC clone was modified by homolo-
gous recombination to: (i) replace BDNF coding se-
quence with sequence coding for humanised Renilla
luciferase, Ala-Ala-Ala-Thr linker and EGFP fusion pro-
tein (Figure 1B) and (ii) replace CAT gene in BAC vector
by neo cassette to confer resistance to G418 for positive
selection during cell line generation. The final rBDNEF-
hRluc-EGFP BAC construct was transfected into HeLa
cells by nucleofection and G418 was applied for selection.
Following two months of G418 selection, FACS analysis
of polyclonal cell population showed that 15% of cells were
positive for EGFP signal. Luciferase signal measured in cell
lysate was 10* times over the HeLa background signal (data
not shown). By FACS assisted cell sorting a number of sin-
gle cell clones were established displaying varying levels of
transgene expression. Six cell lines were chosen for subse-
quent analysis: 1A4s2, 1A4s3, 2A4, 2B2s, 3E2s and 3Gd4s.

rBDNF-hRIuc-EGFP cell lines express hRluc-EGFP reporter gene
In all six cell lines, EGFP signal was detected by fluorescence
microscopy in live cells, and hRluc-EGFP fusion protein
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Figure 1 Schematic drawing of the rBDNF-hRIuc-EGFP-BAC construct used for generation of HeLa cell-lines expressing the transgene.
(A) The BAC used contained the rat BDNF locus spanning 13 kb upstream of the first exon and 144 kb downstream of the last polyadenylation
signal. The exonic structure of rat BDNF gene is adapted from [11]. (B) The coding region of BDNF was replaced by homologous recombination
with sequence coding for humanised Renilla luciferase, Ala-Ala-Ala-Thr linker and EGFP fusion protein. Protein coding regions are shown as gray

(BDNF), orange (hRIuc) or green (EGFP) boxes. Untranslated regions are shown as white boxes.

was distributed diffusely all over the cell (Figure 2A).
Flow-cytometric analysis of the six cell lines showed that
the percentage of EGFP positive cells in population varied
from 95 to 59 percent (Figure 2B). Additionally there was
a variance over several log units in reporter expression
level within a cell line (Figure 2C). This prompted us to
analyse the stability of reporter expression in time. For this
we passaged the cell lines in media containing increasing
concentrations of selective antibiotic G418 (0, 200, 400,
800 and 1200 pg/ml). If no antibiotic was added to the
growth medium then the proportion of EGFP positive
cells in different cell lines decreased 1.5 to 10 times in
three weeks. At the same time the proportion did not
change substantially when cells were grown in medium
containing 800 or 1200 pg/ml of G418 (data not shown).
Next we measured the activity of Renilla luciferase in
live cells using Enduren substrate and normalised it to
cellular ATP levels. The signals obtained from the six
cell lines were 35 to ~200 times over the background
signal of the parental HeLa cells (Figure 2D). Based on
reporter expression level we divided the cell lines into
two groups: the group with high reporter expression in-
cludes the cell lines 1A4s2, 1A4s3 and 2A4; the low
reporter expression group consists of the cell lines
2B2s, 3E2s and 3G4s. In the first group luciferase sig-
nal was ~100-200 times above background and in the sec-
ond group around ~35-60 times above background.
Having detected both, Renilla luciferase luminescence
and EGFP fluorescence, of the fusion reporter protein
we decided to determine which of the alternative chi-
maeric rat BDNF hRluc-EGFP mRNAs are transcribed
in the six cell lines. Expression of endogenous human
BDNF transcripts in the 6 cell lines were similar to par-
ental HeLa cells with a few exceptions: transcript I was
not expressed in 3G4s cell line and transcript IXa long
(corresponding to transcript IXabed in [12]) was not
expressed in 1A4s2 cell line (Figure 3A). Using RT-PCR
analysis we were able to detect transgenic transcripts I,
IIL, IV, V, VI, VIII and IXa in all cell lines (Figure 3B).
Transgenic transcript I was expressed at very low levels
in five out of six cell lines, its levels were elevated in

2A4 cells. Neither endogenous nor transgenic transcript
II was detected in cell lines or parental HeLa cells.
While overall expressions of endogenous and transgenic
transcripts were similar there were some differences.
First, endogenous transcript III was not expressed in any
of the cell lines while transgenic transcript III was expressed
in all cell lines. Second, transgenic transcript VII was not
expressed in any of the cell lines although being expressed
endogenously. Altogether these data show that correctly
spliced transgenic rat BDNF hRluc-EGFP mRNAs are tran-
scribed and functional hRluc-EGFP fusion protein is
expressed in rBDNF-hRluc-EGFP cell lines.

Transgene is maintained in rBDNF-hRIuc-EGFP cell lines as
a high copy number episome

Since transgene integration site and copy number can
influence reporter gene expression from the transgene,
we aimed to determine the copy number and chromo-
somal state (integrated or episomal) of rBDNF-hRluc-
EGFP BAC DNA in cell lines. qPCR analysis using copy
number standard showed that transgene copy number
varied up to five times amongst the different cell lines.
Over 900 transgene copies per HeLa genome were present
in 1A4s2 and 1A4s3 cell lines and ~190-300 transgene
copies in 2A4, 2B2s, 3E2s, 3G4s cell lines (Figure 4A). The
status of transgene DNA was analysed by fluorescent in
situ hybridisation (FISH) with rBDNF-hRluc-EGFP BAC
specific probe. As demonstrated in Figure 4B, transgenic
BAC DNA was maintained episomally in all cell lines —
the rBDNF-hRluc-EGFP BAC specific hybridisation sig-
nals were localised near chromosomes, but integration
was not detected. Transgene copy numbers per cell also
varied highly between cells of the same cell line. In con-
clusion, the obtained rBDNF-hRIuc-EGFP cell lines con-
tain relatively high numbers of transgenic BAC DNA per
cell that replicates episomally.

Elevated intracellular calcium induces reporter gene
expression in rBDNF-hRIuc-EGFP cell lines

BDNF promoters contain several Ca®" responsive regula-
tory elements [14,18,21-24,53] and BDNF levels in vivo
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Figure 2 Detection of hRIuc-EGFP reporter expression in rBDNF-hRIuc-EGFP cell lines. (A) Fluorescence microscopy images of rBONF-hRIuc-EGFP
cell lines. (B) Percentage of EGFP positive cells in different rBDNF-hRIuc-EGFP BAC cell lines counted by fluorescence-activated cell sorting
(FACS). (€) Histograms showing the variability of reporter gene expression level within a cell population of different rBDNF-hRIuc-EGFP cell
lines counted by FACS. (D) Detection of Renilla luciferase enzymatic activity in rBDNF-hRIuc-EGFP cell lines relative to the background signal
measured in parental Hela cells. Enduren luciferase live cell substrate was added with fresh culture medium to rBDNF-hRIuc-EGFP cells and
Hela cells and Renilla luciferase luminescence was measured after 12 hour incubation. Results are normalised to cell viability assayed by cellular
ATP levels after 12 hour incubation. Error bars indicate SD of three independent experiments.

are induced by neural activity related Ca** influx into
neurons [54]. To test if transgene is induced by elevated
intracellular Ca** levels in different cell lines we treated
cells for 12 hours with 1 pM ionomycin, a calcium iono-
phore known to induce BDNF expression in neurons
[55], and monitored Renilla luciferase signal using Endu-
ren live cell luciferase substrate during this period. Iono-
mycin treatment induced reporter gene expression in all
cell lines compared to vehicle treated control. As shown
in Figure 5A, the relative increase of luminescence signal

was higher in cell lines with low reporter expression:
3E2s, 2B2s and 3G4s. In these three cell lines the fold
change reached its peak after eight hours when it was
2.00 (p<0.01); 1.95 (p<0.01); and 1.86 (p<0.05) re-
spectively. In the cell lines with high reporter expression
the fold change remained smaller and the maximum
values for cell lines 1A4s2, 1A4s3 and 2A4 were 1.46
(p<0.05); 1.56 (p<0.01) and 1.43 (p<0.01) respect-
ively. To exclude the possibility that ionomycin affects
cell viability we measured the cell viability levels of
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Figure 3 Expression of alternative 5’ exon-specific mRNAs transcribed from rBDNF-hRIuc-EGFP cell lines and Hela cells. Expression of
alternatively spliced 5" exon specific transcripts form (A) endogenous BDNF and (B) rBDNF-hRIuc-EGFP BAC reporter construct in different
rBDNF-hRIuc-EGFP cell lines and parental Hel.a cells. Endogenous IXa long and short transcripts correspond to human BDNF transcripts
IXabcd and IXabd in [12].

control and ionomycin treated cells after 12 hours. No sig-
nificant decrease in cell viability was detected in response
to ionomycin treatment (Figure 5B). These results demon-
strate that reporter expression in rBDNF-hRluc-EGFP cell
lines is regulated by changes in intracellular calcium level.

HDAC inhibitors induced reporter gene expression in
rBDNF-hRIuc-EGFP cell lines

Due to interest in finding low molecular weight substances
regulating BDNF expression we sought to establish whether
our cell lines could be used for screening of substances
modulating BDNF expression. HDAC inhibitors are a class
of drugs that inhibit histone deacetylases — group of
enzymes that deacetylate histones and non-histone

proteins. It has been shown that certain HDAC inhibi-
tors have antidepressant actions and regulate BDNF ex-
pression [56], for example valproate [42,57-59], TSA
[58,60] and SAHA [61]. Since it would be of interest to
use our cell lines for screening of other compounds that
could epigenetically regulate BDNF expression, we tested
response of the reporter gene in BAC cell lines to four
HDAC inhibitors. Two cell lines were chosen for treat-
ments, higher copy number cell line 1A4s2 and lower
copy number cell line 3E2s. The cells were treated with
100 nM apicidin, 1 pM SAHA, 100 nM TSA and 1 mM
sodium valproate for 12 hours while assaying reporter
gene expression during that time using Enduren live cell
Renilla luciferase substrate.
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Figure 4 Analysis of transgene copy number and chromosomal state. (A) qPCR analysis of transgene copy number in different rBDNF-hRIuc-EGFP
cell lines. Error bars show SE of three technical replicates. (B) FISH analysis of reporter construct chromosomal status in different rBDNF-hRIuc-EGFP cell
lines. Hybridisation was performed with rBDNF-hRIuc-EGFP BAC specific probe (red signal) and DNA was stained with Hoecht 33342 (blue signal).
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Figure 5 Treatment with ionomycin induces reporter expression in
different rBDNF-hRIuc-EGFP cell lines. (A) Luciferase activity in 1 pM
ionomycin treated cells relative to vehicle (0.1% DMSO) treated
cells (dashed line) at each time point, measured in live cells
during 12 hours. Renilla luciferase luminescence was measured
using Enduren substrate 2-12 hours after the start of the
treatment at one hour intervals. Error bars indicate SD of three
independent experiments. (B) Cell viability in ionomycin treated
cells relative to vehicle treated cells after 12 hours in different cell
lines. Viability was assayed by cellular ATP levels. Error bars
indicate SD of three independent experiments.

HDAC inhibitors increased reporter gene expression
in both cell lines compared to vehicle treated control.
100 nM apicidin increased reporter gene expression in
1A4s2 and 3E2s cell lines 1.70 and 1.58 fold at 12 hours
and 11 hours of treatment, respectively (both p<0.01,
Figure 6A). 1 pM SAHA treatment increased reporter
gene expression in 1A4s2 and 3E2s cell lines 1.65 and 1.64
fold at 12 hours and 11 hours, respectively (both p <0.01
Figure 6B). 100 nM TSA treatment increased reporter
gene expression in 1A4s2 and 3E2s cell lines 1.63 and 1.70
fold at 12 hours and 11 hours, respectively (both p <0.01,
Figure 6C). 1 mM sodium valproate increased reporter
gene expression in 1A4s2 and 3E2s cell lines 1.22 and 1.24
fold at 11 hours and 10 hours, respectively (p < 0.05 and
p <0.01, Figure 6D). None of the used HDAC inhibi-
tors showed significant effect on cellular survival after
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12 hours of treatment in either cell line (Figure 6E and F).
Taken together, these results show that HDAC inhibitors
upregulate reporter gene expression in rBDNF-hRluc-
EGFP cell lines 1A4s2 and 3E2s.

VP16-CREB and NPAS4-ARNT2 transcription factors increased
transgene expression in BAC transgenic cell lines

BDNF is regulated by 9 different promoters containing
binding sites for different transcription factors regulating
expression of different BDNF transcripts. Of these tran-
scription factors CREB and bHLH transcription factor
heterodimer NPAS4-ARNT2 have been shown to regu-
late BDNF expression from various promoters [18,21,22].
To test if the transgenic cell lines could be used for
screening of transcription factors that induce BDNF tran-
scription we transfected cell lines 1A4s2 and 3E2s with
constructs expressing VP16-CREB (constitutively active
form of CREBI, fused with viral transactivation domain)
[62] or NPAS4 and ARNT?2, or with empty pRC vector for
comparison.

24 hours after transfection VP16-CREB transcription
factor increased transgene expression in 1A4s2 and 3E2s
cell lines 1.55 (p <0.01) fold. Transcription factor NPAS4
together with ARNT2 increased reporter expression in
1A4s2 and 3E2s cell lines 1.89 (p < 0.01) and 1.35 fold, re-
spectively (Figure 7A and B). These results show that
VP16-CREB and NPAS4-ARNT2 heterodimer increase
transgene expression in 1A4s2 and 3E2s rBDNF-hRluc-
EGEFP cell lines.

Discussion
In the current study, we have developed rBDNF-hRluc-
EGEFP reporter cell lines in HeLa background, using bac-
terial artificial chromosome (BAC) containing rat BDNF
genomic locus with protein coding region replaced with
hRluc-EGFP fusion reporter gene, for studying the regu-
lation of the BDNF gene and for analysis of the effect of
different compounds and transcription factors on BDNF
expression. Generation of transgenic mice for studying
BDNF regulation using large transgenic constructs by us
[50,51] and others [63] has shown that use of BAC (or
YAC) transgenic constructs helps to better recapitulate
endogenous BDNF expression. It has also been demon-
strated that using BAC constructs for generating cell
lines helps to avoid transgene integration specific effects
and provides levels and timing of transgene expression
that mimic that of the endogenous gene [64]. The large
rat BDNF genomic locus contained in the BAC construct
used in this work should include regulatory elements po-
sitioned further away from BDNF gene and help to bet-
ter emulate endogenous BDNF expression.

Out results show that rBDNF-hRluc-EGFP reporter
construct was maintained extrachromosomally in high
copy numbers in all established cell lines. Previously it
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Figure 6 Treatment with HDAC inhibitors induces reporter expression in 1A4s2 and 3E2s rBDNF-hRIuc-EGFP cell lines. (A, B, C, D) Fold
luciferase activity in HDAC inhibitor treated cells relative to vehicle treated cells (dashed line) measured in live cells during 12 hours. 1A4s2 and
3E2s cells were treated with HDAC inhibitors apicidin (100 nM) (A), SAHA (1 uM) (B), TSA (100 nM) (C), sodium valproate (1 mM) (D) and vehicle
control (0.1% DMSO or water) together with Enduren live cell substrate. Error bars indicate SD of three independent experiments (* p < 001, # p < 005,
relative to vehicle treated control). (E, F) Cell viability in HDAC inhibitor treated cells relative to vehicle treated cells after 12 hours of treatment in 1A4s2 cell
line (E) and 3E2s cell line (F). Viability was assayed by cellular ATP levels. Error bars indicate SD of three independent experiments.
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has been shown that plasmids containing matrix attach-
ment regions (MARs) are maintained in double minute
extrachromosomal elements in HeLa cells [65]. These
are autonomously replicating extrachromosomal ele-
ments that are up to a few Mb in size [66], have been
known to be associated with active histones [67] and can
be purified by histone immunoprecipitation [68]. MARs
and scaffold attachment regions (SARs), together named
as S/MARSs, are regions on the DNA which attach to nu-
clear matrix and have been associated with functions
such as anchoring of DNA, maintenance of nuclear
architecture, regulation of transcription and replication.
It has been estimated that S/MARs are spaced on aver-
age 70 kb from each other in mammalian genomes [69].
Given the large size of BDNF locus contained in BAC
construct used in this study (207 kb) it is probable that
it contains S/MAR elements enabling extrachromosomal
maintenance in HeLa cells. We used SMARTest tool [70]
to predict the existence of 6 candidate sites in the genomic
locus included in rBDNF-hRluc-EGFP BAC which exhibit

S/MAR like characteristics (data not shown). It would be
of interest to study which regions of the BDNF BAC used
in this study are responsible for its extrachromosomal
maintenance.

We detected expression of almost all 5 exon-specific
BDNF mRNAs in the rBDNF-hRluc-EGFP cell lines show-
ing that the entire BDNF gene is maintained in inserted
transgene. We also observed stable and copy number
dependent expression of hRluc-EGFP fusion reporter pro-
tein by fluorescence and luminescence based methods. Pre-
viously it has been shown that protein expression in BAC
transgenic cell lines is proportional to transgene copy num-
bers [71]. BAC-derived BDNF gene is not highly expressed,
as shown by transgenic animals previously produced in our
lab where one or two copies of transgenic BDNF BAC con-
struct were inserted in the genome. In contrast, the high
copy numbers of transgene in the cell lines developed in
this study directed high levels of reporter gene expression.

We used hRluc-EGFP fusion protein, analogous to the
Rluc-GFP reporter used previously by [72], as a reporter
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Figure 7 Overexpression of VP16-CREB and NPAS4 + ARNT2 induces
reporter expression in 1A4s2 and 3E2s rBDNF-hRIuc-EGFP cell lines.
(A, B) 1A4s2 (A) and 3E2s (B) cells were transfected with constructs
expressing VP16-CREB, NPAS4 and ARNT?2 (at 1:1 ratio) transcription factors
or empty vector control pRC. Renilla luciferase luminescence was assayed
24 hours after transfection and fold luciferase activity relative to
empty vector control (pRC) was calculated. Error bars indicate SD.
(n = number of independent experiments, * p < 0.01, relative to
empty vector control).

in the BAC construct. The use of hRluc-EGFP protein
makes it possible to apply both fluorescence and more
sensitive luminescence based methods for reporter de-
tection. While EGFP fluorescence could be used for
measuring reporter expression via flow cytometry, use of
live cell substrates allow for sensitive detection of Renilla
luciferase signal which could be advantageous for high-
throughput screening procedures. The half-life of Renilla
luciferase is 3—4 hours and the half-life of EGFP is about
26 hours [73] in mammalian cells. However, stability of
the hRluc-EGFP fusion protein is not known. It is prob-
able that the induction of measurable reporter activity in
response to different treatments underestimates the true
effect on transcriptional activity due to slow turnover of
the hRluc-EGFP fusion protein, suggesting that it would
be important to develop a less stable hRluc-EGFP fusion
protein in future studies.

To assess the suitability of the cell lines generated by
us for use in studying BDNF gene regulation, the cells
were treated with stimuli known to induce BDNF ex-
pression. Ionomycin induces BDNF expression through
Ca®" mediated signalling pathways [54], HDAC inhibi-
tors through increasing histone acetylation leading to tran-
scriptionally active chromatin around subset of genes,
including BDNF [56,74]. Transcription factor CREB and
NPAS4-ARNT?2 heterodimer have been shown to promote
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transcription from several BDNF promoters [18,21,22]. As
expected, treatment with different modulators of BDNF ex-
pression induced expression of hRluc-EGFP fusion re-
porter protein. The effect of treatment with ionomycin or
HDAC inhibitors was different when comparing high and
low transgene copy number cell lines. Ionomycin induced
reporter expression to a higher extent in lower copy num-
ber cell lines than in higher copy number cell lines. How-
ever, treatment of high and low transgene copy number
cell lines with different HDAC inhibitors induced trans-
gene expression similarly in both cell lines regardless of the
used inhibitor. The apparent copy number dependent ef-
fect on reporter induction by ionomycin might be ex-
plained by higher number of transcription factor response
elements in high copy number cell lines competing for lim-
ited supply of Ca>* dependent transcription factors. In con-
trast, the effect of HDAC inhibitors on gene expression is
more general, regulating expression of large number of
genes, and they may act by inducing transgene expression
independent of copy number.

Since BDNF has been primarily studied as a neuronal
gene, the non-neuronal nature of the generated trans-
genic cell lines sets certain limitations to their use in
studying neuron-specific regulation of BDNF expression.
For example, BDNF mRNAs have been known to be
transported to dendrites [75,76] and their translation
there to be regulated in response to local synaptic signal-
ling [77], regulatory steps that are not recapitulated in
our cell lines. Also, neuronal stimuli known to regulate
BDNF expression, for example depolarisation by potas-
sium [54] or glutamate [78], do not recapitulate in HeLa
background. Therefore, modulators that have been found
to regulate transgene expression in these transgenic cell
lines should be also verified in neuronal background.
However, the active transcription of endogenous BDNF
mRNAs in HeLa cells and the robust nature of the HeLa
cells make these cell lines convenient tools for screening
of factors regulating BDNF expression.

Conclusions

In conclusion, we have generated a rBDNF-hRluc-EGFP
BAC cellular reporter model for use in studying BDNF
regulation. Transgene is maintained in cell lines extra-
chromosomally as high copy number episome. High
transgene copy number makes it possible to reliably de-
tect reporter expression. Transgene expression is induced
in response to known modulators of BDNF expression
making these cell lines useful for further studies of BDNF
regulation.

Methods
Constructs
BAC clone CH230-106 M15 containing rat BDNF gene
was purchased from Chori BACPAC Resources. Clone
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CH230-106 M15 contains rat genomic DNA region span-
ning the BDNF gene locus cloned into the EcoRI site of
PTARBAC2.1 vector. The vector carried chloramphenicol
resistance and resided in E. coli host strain DH10B (recA™,
recBC"). Sequence of the BAC clone CH230-106 M15 was
obtained from NCBI GeneBank [GenBank:AC108236]. Vec-
tors pCDNA3.1-NPAS4, pCDNA3.1-ARNT2 and pACT-
CREB1 (containing VP16 viral transcription activation
domain) have been described previously [18].

Homologous recombination

BAC modifications using Red/ET homologous recom-
bination were performed according to the BAC Modifi-
cation Counter-Selection System protocol (Gene Bridges
GmbH). For amplification of inserts, 75-mer oligonucle-
otides were synthesised (Proligo). The 5'-end of each
oligonucleotide contained 50 nucleotides of homology
region shared by the target BAC and a linear insert
followed by a 25 nucleotide primer for PCR amplifica-
tion of the linear insert from the template. Where neces-
sary, linker sequence was added between homology arm
and primer sequences. Inserts for homologous recom-
bination were amplified by PCR using Expand Long
Template PCR system (Roche) or Hot GyroPol PCR sys-
tem (Solis BioDyne). The synthetic humanised version of
Renilla luciferase reporter gene (hRluc), the red-shifted
variant of wild-type Aequorea green fluorescent protein
(EGFP) reporter gene and SV40-Neo'-polyA cassette
were amplified from pTK-hRluc (Promega), pEGFP-N1
(Clontech) and pEGFP-C1 vectors (Clontech), respect-
ively. Following PCR primers were used for insert syn-
thesis — hRLuc: sense 5'-CCT GTT CTG TGT CTG
TCT CTG CTC CTT CCC ACA GTT CCA CCA GGT
GAG AAG AGT GAT GGC TTC CAA GGT GTA
CGA CCC CG-3', antisense 5-ATA CAA ATA GAT
AAT TTT TGT CTC AAT ATA ATC TAT ACA ACA
TAA ATC CAT TAC TGC TCG TTC TTC AGC ACG
CGC T-3'; EGFP: sense 5-TGG GTA AGT ACA TCA
AGA GCT TCG TGG AGC GCG TGC TGA AGA
ACG AGC AGG CCG CCG CCG CCA CCATGG TGA
GCA AGG GCG AGG AGC TG-3', antisense 5-ATA
CAA ATA GAT AAT TTT TGT CTC AAT ATA ATC
TAT ACA ACA TAA ATC CAT TAC TTG TAC AGC
TCG TCC ATG CCG A-3'; SV40- Neo" -polyA cassette:
sense 5'-CAC CAT AAT GAA ATA AGA TCA CTA
CCG GGC GTA TTT TTT GAG TTA TCG AGA TTT
TCA GGA GCT AAG GAA GCT AAA TTC AAA TAT
GTA TCC GCT CAT GAG A-3’, antisense 5 -ATT CAT
CCG CTT ATT ATC ACT TAT TCA GGC GTA GCA
ACC AGG CGT TTA AGG GCA CCA ATA ACT GCC
TTT TTT ATT CTG TCT TTT TAT TGC CGT C-3".
BAC was modified by first replacing BDNF protein coding
region with hRluc coding sequence, then inserting Ala-
Ala-Ala-Thr linker and EGFP coding sequences to the end
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of hRluc sequence and finally by replacing the CAT gene
in BAC vector with SV40-Neo"-polyA cassette. The modi-
fied BAC containing colonies were screened by colony
PCR and colony hybridisation and further verified by re-
striction analysis and sequencing.

Cell culture and transfection

HeLa (DSMZ) human cervical cancer cells were propa-
gated in DMEM (Dulbecco’s Modified Eagle Medium;
PAA) supplemented with 10% fetal bovine serum (PAA),
penicillin (PAA) and streptomycin (PAA) at 37°C in 5%
CO2. For BAC DNA transfection 1 pg of BAC DNA
purified with Large-Construct Kit (Qiagen) was mixed
with 5 x 10° HeLa cells and transfection was performed
using Amaxa Nucleofector program A-28 and Cell Line
Nucleofector Kit R (Amaxa). 72 hours later 400 ug/
ml G418 (Sigma) was added to the growth medium to
select for BAC containing cells. After two months of se-
lection, single EGFP-positive clones were isolated with
FACSAria cell sorting system (Becton-Dickinson). The
cell lines were routinely grown in medium containing
800 pg/ml G418. For transfection of plasmid constructs
cells were seeded into white 96-well clear bottom micro-
titer plate (Greiner Bio-One) at 10 000 cells per well in a
volume of 200 pl of G418-containing culture medium.
The next day medium was replaced with 100 pl of
medium without G418 and cells were transfected with
GenJet Hela transfection reagent (SignaGen Laborator-
ies) using 100 ng of DNA per well at 1:3 DNA to lipid
ratio. NPAS4 and ARNT2 constructs were cotransfected
at 1:1 ratio. Five hours post-transfection medium was re-
placed with 200 pl of G418-containing medium.

Drug treatments

One day before treatments, cells were seeded into white
96-well clear bottom microtiter plates (Greiner Bio-One)
at 10 000 cells per well. The next day medium was re-
placed with 75 pl of fresh medium containing ionomy-
cin, apicidin, sodium valproate (all Sigma Aldrich), SAHA
or TSA (both Cayman Chemical). All drugs except sodium
valproate were dissolved in DMSO and added to cells at a
final DMSO concentration of 0.1%. Sodium valproate was
dissolved in MilliQ grade water. Appropriate vehicle con-
trols (DMSO or water) were included in all experiments.

Reporter assays

EGEFP was detected by fluorescence microscopy (Axiovert
200 M, Zeiss) and flow cytometry (FACSCalibur, Becton-
Dickinson). In flow-cytometric analysis no compensation
was used and markers for positive EGFP-signals were set
on FL1 vs FL2 dot blot using the autofluorescence diag-
onal of parental HeLa cells. EGFP-positive cells were iden-
tified by divergence from the autofluorescence diagonal
towards higher FL1 fluorescence. For monitoring hRluc
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enzymatic activity in live cells, 30 pM Enduren substrate
(Promega) was added to cells at the beginning of drug
treatment and luminescence was measured once per hour
at 2—12 hour time points. For measuring endpoint hRluc
activity, cells were lysed in 20 pl Passive Lysis Buffer (Pro-
mega) 24 hours after transfection and subjected to
Renilla-Glo Luciferase Assay System (Promega) according
to the manufacturer’s instructions. Relative luminescence
was measured with GENios Pro plate reader (TECAN).
For normalisation and monitoring cell viability ViaLight
Plus Cell Proliferation And Cytotoxicity BioAssay Kit
(Lonza, USA) were used. For drug treatments, three inde-
pendent experiments were performed, each in triplicate.
Luciferase signal in response to drug treatments was nor-
malised to vehicle control for each time point, means and
standard deviations were calculated and t-tests for analysis
of statistical significance for indicated time points were
performed. For transcription factor transfections, four or
five independent experiments were performed, each in
triplicate. Luciferase signal in response to expression of
transcription factor(s) was normalised to signal in pRC
empty vector transfected cells, means and standard devia-
tions were calculated and t-tests for analysis of statistical
significance were performed.

Fluorescence in situ hybridisation

Mitotic blocking was performed by treating cells with
50 ng/ml colcemid (Sigma) for 4 hours. The cells were
harvested by shakeoff and subjected to hypotonic treat-
ment with 0.075 M KClI for 15 min. The cells were fixed
in methanol:acetic acid (3:1) and used for chromosome
slide preparation. Slides were chemically aged and dena-
tured as described [79]. Prior to denaturation and hy-
bridisation, chromosome preparations were treated with
RNase A (100 pg/ml in 2 x SSC), pepsin (50 pg/ml in
0.01 N HCI) and 1% formaldehyde (in PBS containing
50 mM MgCl,). rBDNF-hRluc-EGFP BAC specific probe
was labeled with digoxigenin-11-dUTP (Roche) by nick
translation. For each hybridisation 45 ng of the labeled
probe was used together with 25 pg of salmon sperm
DNA. Hybridisation was carried out by incubating slides
in 50% deionised formamide, 2 x SSC, 0.1 M phosphate
buffer, 10% dextran sulfate overnight at 37°C in humid
chamber. Hybridised probe was detected by affinity reaction
with mouse anti-digoxygenin primary antibody (Roche)
followed by Alexa 546 conjugated anti-mouse secondary
antibody (Life Technologies, USA) and chromosomes were
counterstained with Hoecht 33342. Slides were mounted
in ProLong Gold anti-fade reagent (Life Technologies,
USA) and imaged with Zeiss LSM DUO microscope.

RNA extraction and RT-PCR
Total RNA from cells was purified with RNeasy Micro
kit (Quiagen) as recommended by the manufacturer and
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treated with DNase I using DNA-free kit (Ambion).
First-strand cDNA was synthesised from 5 pg of total
RNA with Superscript III reverse transcriptase (Life Sci-
ences) according to manufacturer’s recommendations.
PCR reactions were performed with HotFire polymerase
(Solis Biodyne) in a volume of 10 pl containing 1/80 of
reverse transcription reaction as a template. Human
BDNF 5’ exons’ specific primers have been described
previously [12]. Rat BDNF 5° exons’ specific primers
have been described previously [11] and were used in
combination with ZRluc specific antisense primer 5'-GTA
CTT GTA GTG ATC CAG GAG GCG AT-3".

Genomic DNA extraction and quantitative PCR

Genomic DNA was extracted from cells by proteinase K
digestion and phenol:chloroform extraction followed by
ethanol precipitation and resuspension overnight in TE
(pH 8.0). Genomic DNA concentration was quantified
with UV spectrophotometer (NanoDrop) and diluted to
16 ng/pl for qPCR. For standard curve, a series of mix-
tures in which the number of pEGFP-C1 (Promega)
plasmid molecules ranged from 128 to 1024 copies per
HeLa genome were prepared using HeLa genomic DNA.
32 ng of genomic DNA from different cell lines or copy
number standards were subjected to quantitative PCR.
Quantitative PCR was performed on Roche LightCycler
2.0 using qPCR Core kit for SYBR® Green I No ROX
(Eurogentec). qPCR reactions with copy number stan-
dards were performed in duplicate. qPCR reactions with
cell line genomic DNAs were performed in triplicate.
Melting curve analysis was carried out at the end of cyc-
ling to confirm amplification of a single PCR product.
Following EGFP and human TRKB (genomic control)
specific PCR primer sets were used: EGFP sense 5'- CAG
AAG AAC GGC ATC AAG GTG-3', antisense 5'- TGG
GTG CTC AGG TAG TGG TTG -3'; TRKB sense
5'- CAC AGG GCT CCT TAA GGA TAA C -3, anti-
sense 5'- GCA CAG TGA GGT TGA CAG AAT C-3".
Copy number estimates were calculated with qBASEPlus
2.6 software (Biogazelle) using EGFP as target and TRKB
as reference.
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