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INTRODUCTION 

As a second known member of the neurotrophin family, brain derived 
neurotrophic factor (BDNF) was initially purified from pig brain as a factor 
capable of supporting survival of sensory neurons. Regulation of BDNF 
signalling is complex with highly regulated transcription, translation, processing 
and controlled vesicular sorting, and secretion of the neurotrophin. Errors or 
inefficiencies at any of these steps leading to lower BDNF levels have been 
associated with several neurodevelopmental and -degenerative disorders.  

Due to BDNF’s involvement in nervous system functioning and disease, 
development of model systems for studying BDNF gene regulation is of 
interest. Previously generated transgenic mice using BDNF promoters have 
shown that including larger genomic areas of BDNF genomic locus in transgene 
helps to better mirror the endogenous BDNF expression patterns and makes 
models more useful for BDNF regulation studies. However, reporter genes in 
these transgenic mice still did not fully mimic the endogenous BDNF 
expression. Bacterial artificial chromosomes (BACs) are large capacity DNA 
vectors, able to contain entire genes together with their upstream and 
downstream genomic areas. Due to existence of genomic BAC libraries for 
human and rodents, and convenient methods for their modification, they have 
been increasingly used for generating transgenic models for studies of gene 
regulation and protein function. 

In the following text I will give a brief overview of BDNF expression, 
processing, signalling and function. I will also review the use of BACs in 
studying the regulation of genes in transgenic systems. 
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1. REVIEW OF THE LITERATURE 

1.1. Neurotrophin family 

Neurotrophin growth factor family member brain-derived neurotrophic factor 
(BDNF) was initially purified from pig brain as a factor capable of supporting 
survival of sensory neurons (Barde et al., 1982). Altogether, neurotrophin 
family of proteins includes BDNF, nerve growth factor (NGF), neurotrophin 3 
(NT3) and neurotrophin 4 (NT4) – all of which have diverse functions in 
neuronal survival and synaptic plasticity related processes in developing and 
adult nervous system (Bibel and Barde, 2000; Park and Poo, 2013). 
Neurotrophin family members are synthesised as pro-neurotrophins and are 
processed intra- or extracellularly to produce mature neurotrophins. These two 
forms of neurotrophins bind to different receptors with pro forms of all 
neurotrophins binding with high affinity to common pro-neurotrophin receptor 
p75NTR and mature forms of neurotrophins binding to their specific 
tropomyosin-related kinase receptors (Trk-s) – NGF to TrkA, BDNF and NT4 
to TrkB, NT3 to TrkC (Huang and Reichardt, 2001). Binding to these receptors 
activates distinct signalling pathways in cells, with p75NTR activating signalling 
pathways associated with apoptosis and reduction of synaptic complexity (Teng 
et al., 2010), and TrkB signalling activating intracellular signalling pathways 
that support cellular survival, neurite outgrowth and increase of synaptic 
plasticity (Huang and Reichardt, 2001). 

1.2. BDNF expression and regulating stimuli 

Importance of BDNF in development and functioning of mammalian nervous 
system is shown by its wide expression in central and peripheral nervous 
system. BDNF levels in the brain increase during the embryonic development 
reaching peak during first postnatal weeks (Maisonpierre et al., 1990; Timmusk 
et al., 1994a) with the expression appearing mainly in neurons (Ernfors et al., 
1990; Maisonpierre et al., 1990; Wetmore et al., 1990; Timmusk et al., 1994a; 
Conner et al., 1997; Katoh-Semba et al., 1997). In addition to nervous system, 
BDNF is also expressed in several non-neural tissues with highest levels 
detected in heart and lung, but also in skeletal muscle, liver, kidney, thymus and 
spleen (Maisonpierre et al., 1990; Yamamoto et al., 1996; Katoh-Semba et al., 
1997; Aid et al., 2007; Pruunsild et al., 2007). 

BDNF expression is changed in nervous system in response to wide array of 
stimuli, most of which are associated with neuronal activity but also with 
processes like injury, stress and disorders. Direct stimulation of neural activity 
by kainic acid (Zafra et al., 1990; Metsis et al., 1993), electrical stimulation 
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(Ernfors et al., 1991; Patterson et al., 1992; Castrén et al., 1993), lesion-induced 
seizures (Isackson et al., 1991) or cortical application of potassium chloride 
(Kokaia et al., 1993) have been shown to increase BDNF expression in nervous 
system. BDNF regulation is also associated with sensory and memory related 
processes that increase neural activity. It is increased in response to whisker 
stimulation in rodents (Rocamora et al., 1996; Nanda and Mack, 2000). BDNF 
levels are increased in visual cortex in response to light (Castrén et al., 1992) 
and decreased in case of monocular inhibition (Bozzi et al., 1995; Rossi et al., 
1999). Its levels are also increased in response to hippocampus and amygdala-
dependent learning (Hall et al., 2000; Rattiner et al., 2004) and enriched 
environment (Falkenberg et al., 1992; Young et al., 1999). BDNF levels have 
also been shown to be regulated during diurnal cycle with the levels increasing 
during the beginning of animals activity period (Bova et al., 1998; Berchtold et 
al., 1999). Inhibition of neural activity by GABA reduces BDNF levels 
(Berninger et al., 1995). 

In addition to BDNF regulation in response to neuronal activity, other 
stimuli also affect BDNF expression levels. BDNF has been shown to be 
induced in response to injuries to nervous system like ischemic and 
hypoglycaemic insults (Lindvall et al., 1992), and peripheral nerve axotomy 
(Meyer et al., 1992; Funakoshi et al., 1993). BDNF is also is involved in 
responses to stress with decreased levels in dentate gyrus and hippocampus due 
to immobilisation stress (Smith et al., 1995a, 1995b), and downregulation of its 
mRNAs in response to acute or chronic social defeat stress (Pizarro et al., 2004; 
Tsankova et al., 2006). BDNF expression is also altered in depression (Smith et 
al., 1995b; Berton et al., 2006; Tsankova et al., 2006; Larsen et al., 2010) with 
antidepressant treatments withholding its stress caused reduction (Tsankova et 
al., 2006) and also inducing BDNF levels (Nibuya et al., 1995; Dias et al., 2003; 
Berton et al., 2006; Tsankova et al., 2006; Larsen et al., 2010). Additionally, 
BDNF is involved in addiction related processes with its levels increased in 
mesolimbic system following cocaine withdrawal (Grimm et al., 2003) and in 
nucleus accumbens in response to cocaine self-administration (Graham et al., 
2007). 

1.3. BDNF synthesis, processing and secretion 

BDNF is first synthesised as a precursor protein preproBDNF, that is cleaved in 
endoplasmic reticulum to yield 32kDa proBDNF, which can then be cleaved 
further at several places along its trafficking route to yield 13kDa mature BDNF 
(Mowla et al., 2001). This processing is performed intracellularly in trans-Golgi 
network by furin, or in immature secretory vesicles by proprotein convertases 
(Seidah et al., 1996), and extracellularly by tissue plasminogen activator 
(tPA)/plasmin system (Pang et al., 2004) or matrix metalloproteinases (Lee et 
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al., 2001b). The proBDNF is sorted in trans-Golgi network to constitutive or 
regulated secretory pathway with most of the secretion going by regulated 
pathway in neurons (Goodman et al., 1996; Heymach et al., 1996; Mowla et al., 
1999; Wu et al., 2004). Sorting of BDNF protein to dense core vesicles of 
regulated secretory pathway is reliant on its pro sequence (Brigadski et al., 
2005; Lou et al., 2005). This process has been shown to be dependent on 
carboxypeptidase E (CPE) (Lou et al., 2005) and sortilin (Chen et al., 2005), 
both of which interact with pro region of proBDNF in trans-Golgi network and 
regulate its sorting. In addition to sorting BDNF to regulated secretory pathway, 
sortilin takes part in directing BDNF containing vesicles to lysosome (Evans et 
al., 2011).  

Vesicular transport to axons or dendrites 

BDNF-containing vesicles have been shown to be localised and bi-directionally 
(antero- and retrogradely) transported in axons and dendrites (Haubensak et al., 
1998; Adachi et al., 2005; Park et al., 2008; Kwinter et al., 2009; Dieni et al., 
2012). Anterograde BDNF vesicle transport takes place along microtubules and 
is dependent on assembly of huntingtin/huntingtin associated protein 1/dynactin 
complex (Gauthier et al 2004, Kwinter et al 2009). Phosphorylation of 
huntingtin enables the assembly of complex and its anterograde transport while 
non-phosphorylated huntingtin leads to its disassembly and retrograde transport 
of vesicles (Colin et al., 2008). CPE has also been shown to be necessary for 
assembly of motor protein complex and bi-directional transport of vesicles, 
possibly by recruiting kinesins and dyneins (Park et al., 2008). 

Mechanisms responsible for selective axonal or dendritic localisation of 
BDNF are still being studied. Ca2+-Dependent Activator Protein for Secretion 
(CAPS2) has been found to associate with BDNF-containing vesicles and be 
responsible for their axonal localisation (Sadakata et al., 2014). In addition to 
BDNF transported from soma to dendrites, overexpressed tagged BDNF has 
been shown to be localised to local dendritic Golgi, indicating local translation, 
processing, and secretion (Horton and Ehlers, 2003; Horton et al., 2005). 

BDNF secretion 

Regulated secretion of BDNF from cultured neurons has been shown in 
response to several stimuli – treatment with glutamate (Canossa et al., 2001), 
depolarisation (Goodman et al., 1996; Kojima et al., 2001), spontaneous 
synaptic activity (Kuczewski et al., 2008), and electrical stimulation (Balkowiec 
and Katz, 2000; Hartmann et al., 2001). Ca2+ necessary for secretion can be 
sourced extracellularly by activation of ionotropic glutamate receptors 
(Hartmann et al., 2001), L-type voltage-gated cation channels (VGCC) 
(Hartmann et al., 2001; Kolarow et al., 2007), or N-type calcium channels 
(Balkowiec and Katz, 2002). In addition, activation of metabotropic GABAB 
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receptors by GABA increases intracellular Ca2+ leading to BDNF secretion 
(Fiorentino et al., 2009). Initial Ca2+ increase is enhanced through Ca2+ release 
from endoplasmic reticulum via activation of ryanodine receptors (Kolarow et 
al., 2007). Additionally, activation of calmodulin-dependent protein kinase II 
(CaMKII) and cAMP/protein kinase A is necessary for depolarisation-induced 
BDNF secretion, and activation of phospholipase C-γ (PLC-γ) pathway is 
necessary for glutamate or Trk receptor activation-induced BDNF release 
(Canossa et al., 2001; Kolarow et al., 2007). BDNF secretion has been shown to 
be negatively regulated by synaptotagmin IV, SNARE complex binding protein 
localised to BDNF-containing vesicles (Dean et al., 2009). 

As previously mentioned, proBDNF can be processed at trans-Golgi 
network, dense-core vesicles, or extracellularly to yield mature BDNF, so there 
has been some controversy whether the major form of secreted BDNF is pro- or 
mature BDNF (Barker, 2009). Work of Matsumoto et al., showed that 
proBDNF is rapidly converted to mature BDNF in neurons (Matsumoto et al., 
2008), and secretory vesicles have been shown to contain mostly mature BDNF 
and its cleaved pro-peptide together with small amount of proBDNF (Dieni et 
al., 2012). In alternate experimental setting, however, mostly proBDNF is 
secreted from neurons and subsequently cleaved extracellularly by plasmin 
(Yang et al., 2009b). Since tPA/plasmin is released from presynaptic terminals 
together with proBDNF in response to high-frequency neural activity (Pang et 
al., 2004) and tPA has been associated with synaptic plasticity and memory 
related processes (Calabresi et al., 2000), this represents one possible 
mechanism how opposing effects of pro- or mature BDNF could be controlled 
by neural activity at synaptic sites. Internalisation and recycling of proBDNF 
for later release has also been described in astrocytes (Bergami et al., 2008). 

1.4. BDNF signalling and function 

Mature BDNF dimers bind with high affinity to the tropomyosin-related kinase 
receptor TrkB, resulting in activation of intracellular signalling cascades –
 mitogen activated protein kinase/extracellular signal regulated kinase 
(MAPK/ERK) pathway, phosphatidylinositol-3-kinase/Akt kinase (PI3K/Akt) 
pathway, and activation of phospholipase Cγ1 (PLCγ1). MAPK/ERK signalling 
pathway promotes neuronal differentiation, PI3K/Akt leads to neuronal 
survival, and PLCγ1 activation leads to release of intracellular Ca2+ stores 
(Patapoutian and Reichardt, 2001). Tumor necrosis factor receptor superfamily 
member p75NTR together with its co-receptor sortilin acts as high affinity 
receptor for proBDNF (Teng et al., 2005, 2010). Activation of p75NTR leads to 
activation of Jun N-terminal kinase, p53, and caspases, leading to neuronal 
apoptosis (Dechant and Barde, 2002). 
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BDNF was discovered due to its survival effects on cultured spinal sensory 
neurons of chick embryos (Barde et al., 1982) and was soon shown to promote 
survival of several neural populations in central and peripheral nervous 
system – sensory neurons (Davies et al., 1986; Ernfors et al., 1994; Jones et al., 
1994), motoneurons (Sendtner et al., 1992), retinal ganglion cells (Johnson et 
al., 1986; Rodriguez-Tébar et al., 1989; Frade et al., 1997), dorsal root ganglion 
cells (Kalcheim et al., 1987), dopaminergic neurons (Hyman et al., 1991), 
cerebellar granule neurons (Segal et al., 1992; Kubo et al., 1995) and septal 
cholinergic neurons (Alderson et al., 1990). These pro-survival effects are 
mostly via TrkB receptor signalling while proBDNF signalling via p75NTR 
receptor has been shown to lead to apoptosis of several neuron populations (Lee 
et al., 2001b), including cultured superior cervical neurons (Teng et al., 2005) 
and natural sympathetic neurons (Bamji et al., 1998). 

BDNF signalling also affects neurite growth and synaptic development, with 
mature BDNF signalling leading to initiation and stimulation of axon growth 
(Cheng et al., 2011), increased branching of ganglion axon terminals (Cohen-
Cory and Fraser, 1995), increased dendritic growth, arborisation (McAllister et 
al., 1995) and spine maturation (Tanaka et al., 2008; Kaneko et al., 2012). 
Again signalling through p75NTR seem to have diametrically opposite effects 
causing developmental axon pruning (Singh et al., 2008), retraction of 
presynaptic terminals (Yang et al., 2009a), decreasing dendritic complexity and 
spine density (Zagrebelsky et al., 2005; Yang et al., 2014). Mature BDNF has 
been shown to increase synaptic efficiency and neurotransmitter release 
(Nagappan and Lu, 2005; Lu et al., 2009), and also enhance hippocampal late 
long-term potentiation (LTP) (Pang et al., 2004). proBDNF acting through 
p75NTR enhances long-term depression (LTD) (Woo et al., 2005), decreases 
synaptic efficacy (Yang et al., 2009a), and inhibits GABAergic 
neurotransmission (Riffault et al., 2014). 

1.5. BDNF in development and disease 

Importance of BDNF in nervous system development can be seen in BDNF 
knock-out mice – homozygous knockout mice die during the second postnatal 
week in development with deficiencies in coordination of movements and 
balance (Ernfors et al., 1994, 1995; Liu et al., 1995). Heterozygous BDNF 
knock-out mice are obese and aggressive (Lyons et al., 1999), have impaired 
LTP (Korte et al., 1995), and display learning difficulties (Linnarsson et al., 
1997) - phenotypes that are also observed in case of BDNF haploinsufficiency 
in humans (Gray et al., 2006). Obesity and hyperphagia phenotypes have also 
been described in some cases of WAGR syndrome, where genomic deletions 
cause BDNF haploinsufficiency in humans (Han et al., 2008). Abnormal levels 
of BDNF have been described in some neurodevelopmental disorders with 
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BDNF levels being altered in mental retardation, autism and Rett syndrome 
(Miyazaki et al., 2004; Kasarpalkar et al., 2014; Katz, 2014). Altered BDNF 
expression has also been shown in several neurodegenerative disorders with 
mRNA and protein levels being altered in patients of Alzheimer’s Disease 
(Phillips et al., 1991; Narisawa-Saito et al., 1996; Ferrer et al., 1999), reduced in 
substansia nigra of Parkinson’s Disease patients (Mogi et al., 1999; Howells et 
al., 2000), and in cortices of Huntington’s Disease patients (Ferrer et al., 2000; 
Zuccato et al., 2008). BDNF has also been associated with sensitisation and 
development of neuropathic pain (Coull et al., 2005). 

Due to its involvement in nervous system development and functioning, with 
its altered levels being associated with serious dysfunctions, it is of great 
interest to study BDNF gene structure and regulation to understand its 
involvement in these pathologies and possibly develop treatments. 

1.6. BDNF gene structure 

To this date, BDNF gene has been described in human (Pruunsild et al., 2007), 
mouse and rat (Aid et al., 2007), chicken (Yu et al., 2009), pond turtle 
(Ambigapathy et al., 2013, 2014), sea bass (Tognoli et al., 2010) and zebrafish 
(Heinrich and Pagtakhan, 2004). In most of the organisms where BDNF gene 
structure has been described, it has a characteristic structural conservation with 
several 5’ untranslated exons, under the control of different promoters, spliced 
to single protein coding 3’ exon. 

The human BDNF gene (Figure 1A) consists of 11 different exons, with two 
of the exons (Vh and VIIIh) being human specific. Promoters preceding exons I, 
II, III, IV, V, Vh, VI, VII and IX direct tissue specific expression of different 
transcripts containing these exons as 5’ exons. Exons II, V and VI contain 
alternative splice sites that can lead to transcripts with different 5’ UTR lengths. 

Figure 1. Structure of human (A) and rodent (B) BDNF gene structure. White boxes 
show exons, gray boxes protein coding regions, arrows known promoters, ATG –
 in-frame start codons, pA – polyadenylations sites, dashed lines – possible splice 
boundaries. Human BDNF gene structure adapted from Pruunsild et al., 2007, rodent 
gene structure adapted from Aid et al., 2007.
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The exon IX consists of four different regions “a”, “b”, “c” and “d” with 
transcripts containing 5’ exons I to VIIIh preferentially including protein coding 
region “d” only. Exon VI-containing transcripts rarely include also region “b”. 
Occasionally transcription starts from the beginning of region “a” of exon IX. In 
those cases there is usually no splicing and all parts of exon IX are included in 
the final transcript. Sometimes region “c” is spliced out of transcripts that start 
from the beginning of exon IX. Exon IX also contains two different 
polyadenylation sites that lead to mature transcripts with different 3’ UTR 
lengths. Translation from all the transcripts starts from start codon in the “d” 
region of exon IX. Exons I, VII and VIII contain an additional in-frame ATG 
that could be used to synthesize BDNF protein with a longer N-terminus. 
However, usage of these start-codons has not been shown in vivo. Altogether 
this leads to transcription of 17 transcripts with different 5’ and 3’ UTR-s from 
human BDNF gene (Pruunsild et al., 2007). 

The mouse and rat BDNF gene (Figure 1B) has eight untranslated 5’ exons 
and one protein coding 3’ exon. Each 5’ exon has a separate promoter and can 
be alternatively spliced to the 3’ protein coding exon (Timmusk et al., 1993; 
Aid et al., 2007). As human BDNF exon II, rat BDNF exon II undergoes cryptic 
splicing producing three splice variants of different lengths. Alternative usage 
of BDNF promoters leads to transcription of eleven different rodent BDNF 
transcripts with different 5’ exons and a common 3’ protein coding exon (Aid et 
al., 2007). In addition, tripartite transcript containing exons VII and VIII has 
also been described (Liu et al., 2006). Rodent exon IX also contains two 
different polyadenylation signals leading to transcripts with different 3’ UTR 
lengths (Timmusk et al., 1993). Exon I also contains in-frame ATG, leading to 
translation of BDNF protein with longer N-terminus (Koppel et al., 2015). 

BDNF gene in chicken (Yu et al., 2009), pond turtle (Ambigapathy et al., 
2013, 2014), sea bass (Tognoli et al., 2010) and zebrafish (Heinrich and 
Pagtakhan, 2004) is structurally similar to that of human and rodent genes with 
5’ untranslated exons being spliced to single 3’ protein coding exon. It is 
interesting to note that in pond turtle there have been described existence of 
transcript with truncated 3’ end leading to truncated BDNF protein expression 
(Ambigapathy et al., 2014). This is only the second described splicing event 
known to take place in BDNF protein coding region with the first one being rare 
in-frame deletion in rat BDNF possibly also leading to expression of truncated 
protein (Liu et al., 2006). 

1.7. BDNF gene regulation 

Complex structure of the BDNF gene also allows its complex regulation at 
epigenetic, transcriptional, mRNA trafficking and translational level. Many 
regulatory mechanisms at these steps are responsive to neural activity, starting 
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from neural activity activated transcription, chromatin modifying complexes, 
and culminating with increased mRNA transport, stability and translation. 

Regulatory elements and binding factors at BDNF promoters 

Multitude of regulatory elements have been mapped to different BDNF 
promoters (recently reviewed in West et al., 2014), some of them act by local 
chromatin modification, some by directly recruiting core transcription 
machinery. Out of different characterised BDNF promoters, expression from 
promoters I and IV is highly induced in response to neural activity, and 
regulation of both have been extensively studied. Promoter I has been shown to 
contain cis-regulatory elements PasRE, binding basic helix-loop-helix (bHLH)-
PAS transcription factor neuronal PAS domain protein 4 (NPAS4) and aryl 
hydrocarbon receptor nuclear translocator 2 (ARNT2) heterodimer (NPAS4-
ARNT2) (Pruunsild et al., 2011); CRE, binding cAMP response element 
binding protein (CREB) (Tabuchi et al., 2002); E-box elements binding 
upstream stimulatory factors (USFs) (Tabuchi et al., 2002); and NFkB 
regulatory elements, binding nuclear factor kappa beta (NFkB) (Lubin et al., 
2007). Transcription from promoter I is also influenced by neuron-restrictive 
silencing element (NRSE) in promoter II that binds repressor element 1 
silencing transcription factor (REST) and represses transcription from 
promoters I and II (Timmusk et al., 1999; Zuccato et al., 2003). Promoter IV 
contains regulatory elements CaRE1, binding calcium response factor (CaRF) 
(Tao et al., 2002); CaRE2, binding upstream stimulatory factors 1/2 (USFs 1/2) 
(Chen et al., 2003b; Pruunsild et al., 2011); CaRE3/CRE, binding CREB (Shieh 
et al., 1998; Tao et al., 1998); hHLHB2-RE binding basic helix-loop-helix 
transcription factor bHLHB2 (Jiang et al., 2008); PasRE, binding NPAS4-
ARNT2 heterodimer (Lin et al., 2008; Pruunsild et al., 2011) and NFkB-RE, 
bound by NFkB (Lipsky et al., 2001). Promoter IV also binds transcription 
factors myocyte enhancer factor 2 (MEF2) (Lyons et al., 2012) and methyl CpG 
binding protein 2 (MeCP2) (Martinowich et al., 2003). All these elements and 
transcription factors are to lesser or greater extent involved in calcium-
dependent induction of transcription from promoters I and IV with 
PasRE/NPAS4-ARNT2 control at promoter I (Pruunsild et al., 2011) and 
CaRE3/CREB control at promoter IV (Hong et al., 2008) having critical role in 
transcriptional regulation of these promoters. In addition to these experimentally 
shown transcription factors, Aid-Pavlidis et al. have predicted in silico a number 
of transcription factor binding sites in BDNF promoters that are conserved in 
genes co-expressed with BDNF in different tissues/conditions/organisms using 
publicly available microarray data (Aid-Pavlidis et al., 2009). 

Transcriptional control from gene promoters is also affected by distal 
regulatory elements like enhancers and insulators (Smallwood and Ren, 2013). 
Work with transgenic animals using genomic regions from BDNF gene locus 
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have shown that BDNF gene has regulatory regions outside of areas covered by 
these transgenes (Timmusk et al., 1995; Guillemot et al., 2007). Enhancer 
element 6.5 kb upstream of promoter I, binding transcription factor MEF2D, 
has been shown to control activity dependent transcription from this promoter  
(Flavell et al., 2008). A distal regulatory locus controlling BDNF expression has 
been mapped 850 kb upstream of human and mouse gene. Disruption of this 
locus leads to BDNF haploinsufficiency phenotype in human and mouse (Gray 
et al., 2006; Sha et al., 2007). 

Regulation of BDNF expression by chromatin modifications 

Transcription from genomic locus is influenced by chromatin structure 
surrounding the gene and its promoters. Acetylation of lysine residues at 
histones H3 and H4 is mostly associated with transcriptional activation and 
open chromatin. Histone methylation effect is more dependent on the target 
lysine residue and nucleosome positioning on genome, with H3 lysine 4 and 14 
methylation associated with transcriptional activation and H3 lysine 9 
associated with repression. The histone modification-dependent effect to gene 
expression is modulated by chromatin modifying proteins – histone 
acetyltranferases (HATs) and deacetylases (HDACs); histone 
methyltransferases (HMTs) and demethylases (HDMs) (Kouzarides, 2007). In 
addition, DNA methylation of cytosine residues in CpG islands at promoters is 
associated with transcriptional repression (Moore et al., 2013). 

Several stimuli that influence BDNF transcription are associated with change 
in acetylation status at corresponding BDNF promoters. Seizure (Huang et al., 
2002; Tsankova et al., 2004), membrane depolarisation (Chen et al., 2003a; 
Martinowich et al., 2003), treatment with antidepressants (Tsankova et al., 
2006; Yasuda et al., 2007), cocaine administration (Kumar et al., 2005) and its 
forced abstinence (Sadri-Vakili et al., 2010), extinction of conditioned fear 
(Bredy et al., 2007), light deprivation (Karpova et al., 2010), and exercise 
(Tsankova et al., 2006) have been shown to increase histone acetylation at 
BDNF promoters together with increased BDNF expression. 

Neural activity-induced changes in histone methylation have also been 
described at BDNF promoters. Membrane depolarisation increases 
transcription-activating histone methylation and reduces repressive methylation 
at promoter IV (Chen et al., 2003a; Martinowich et al., 2003). Similarly, 
environmental enrichment increases activating histone methylation at promoters 
II and IV and decreases repressive ones at promoters III and IV (Kuzumaki et 
al., 2011). Chronic social defeat stress (Tsankova et al., 2006), light deprivation 
(Karpova et al., 2010) and increasing NAD levels (Chang et al., 2010) increase 
repressive histone methylations at BDNF promoter IV. Activity-dependent 
changes in DNA methylation at BDNF promoters have been shown in response 
to membrane depolarisation (Martinowich et al., 2003), exercise (Tsankova et 
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al., 2006), light-deprivation (Karpova et al., 2010), early-life abusive behaviour 
(Roth et al., 2009), contextual fear learning (Lubin et al., 2008) and change in 
NAD levels (Chang et al., 2010). 

Several mechanisms responsible for regulating histone and DNA 
modifications at BDNF promoters have been described. Quite often these 
modifications are interdependent on each other and are associated with neural 
activity-induced upregulation of BDNF expression. Neural activity-induced 
phosphorylation of CREB recruits histone acetyltransferase CBP (CREB 
binding protein) to BDNF promoter IV (Hong et al., 2008). MeCP2, binding to 
methylated CpGs, recruits mSin3A/HDAC1 repressor complex at promoters I, 
IV (Chen et al., 2003a; Martinowich et al., 2003; Tian et al., 2010) and VI 
(Rousseaud et al., 2015) thereby facilitating repression of these promoters at 
resting conditions. Upon calcium/neural activity-dependent phosphorylation of 
MeCP2, it is released from promoters, allowing binding of activating factors to 
these sites, for example CREB to promoters I and IV (Chen et al., 2003a; 
Martinowich et al., 2003; Tian et al., 2010). Loss of CTCF/cohesin binding to 
promoter IV also leads to increased DNA methylation, MeCP2 binding and 
increased repressive histone methylation at the promoter (Chang et al., 2010). 
HDAC2, HDAC4 and HDAC5 have also been shown to regulate BDNF 
expression with HDAC2 being associated with promoters I, II and IV (Guan et 
al., 2009; Gräff et al., 2012) and HDAC4 as well as HDAC5 being responsible 
for repression of promoter IV (Koppel and Timmusk, 2013). Neural activity-
dependent DNA demethylation at promoter IX has been shown to be mediated 
by Gadd45b and TET1 (Ma et al., 2009; Guo et al., 2011). Changes in 
chromatin modifications at BDNF locus have also been associated with age and 
Alzheimer’s Disease, with lower levels of histone acetylation and increased 
repressive methylation leading to lower BDNF expression in both cases 
(Walker et al., 2012). 

BDNF mRNA localisation, stability and translational control 

BDNF gene expression is also regulated post-transcriptionally by regulation of 
mRNA localisation, stability and translatability. This is made possible in part by 
combination of alternating 3’ and 5’ untranslated regions in BDNF mRNAs that 
have been shown to contain sequences responsible for localisation, stability or 
translation of BDNF mRNAs in response to various stimuli. 

Different BDNF transcripts have been demonstrated to have markedly 
different localisation within cell compartments. This subcellular localisation of 
BDNF transcripts is in part based on 5’ noncoding exons with transcripts 
containing exons II and VI localised in soma and proximal dendrites and 
transcripts containing exons I and IV restricted to soma (Pattabiraman et al., 
2005; Aliaga et al., 2008; Chiaruttini et al., 2008). BDNF 3’ UTR has been 
shown to be partly responsible for localisation of mRNAs containing short 3’ 
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UTR to soma and transcripts with long 3’ UTRs to dendrites (An et al., 2008). 
Targeting of BDNF mRNAs to dendrites is also controlled by neural activity 
(Tongiorgi et al., 1997, 2004; An et al., 2008). Exercise and antidepressant 
treatment have been shown to increase BDNF exon VI-containing mRNA 
trafficking to dendrites (Baj et al., 2012). Some mechanisms responsible for 
targeting of BDNF mRNAs to distinct cellular compartments have been 
characterised. Protein coding region in BDNF mRNAs contains constitutively 
active dendritic targeting signal bound by RNA trafficking protein translin that 
regulates trafficking of BDNF mRNAs at resting and depolarised conditions 
(Chiaruttini et al., 2009; Wu et al., 2011). BDNF short 3' UTR also contains two 
cytoplasmic polyadenylation element like elements that interact with CPEB-1 
and are responsible for constitutive and activity dependent targeting of BDNF 
mRNAs (Oe and Yoneda, 2010). There is however some doubt whether the 3’ 
UTR is responsible for the dendritic localisation of BDNF mRNAs because 
recently both were seen to be expressed at low levels, localised to soma and to 
be induced the same amount in rat hippocampal neurons (Will et al., 2013). 

Two elements have been found in BDNF transcripts that have effect on their 
stability. A conserved AU-rich element in BDNF long 3’ UTR interacts with 
HuD protein, leading to stabilisation of these transcripts (Lim and Alkon, 2012; 
Allen et al., 2013) and a stem-loop secondary structure in BDNF short 3’ UTR 
have been shown to be responsible for activity-dependent control of BDNF 
mRNA stability (Fukuchi and Tsuda, 2010). 

The different BDNF UTRs also have effect on activity-dependent translation 
of BDNF mRNAs. This was first seen in increased association of short 3’ UTR 
containing mRNAs with polysomes (Timmusk et al., 1994b). Long BDNF 3’ 
UTR represses translation of BDNF protein at rest, while short 3’ UTR 
containing BDNF transcripts are translated to keep basal BDNF levels. Upon 
neuronal activity, long 3’ UTR-containing BDNF transcripts are localised to 
polysomes and translation is induced (Lau et al., 2010). Different 5’ and 3’ 
UTRs also affect the translatability of BDNF mRNAs in response to treatment 
with different stimulators of BDNF expression suggesting the existence of 
quantitative code for regulated protein expression (Vaghi et al., 2014). 
Transcripts containing exon I have an additional in-frame AUG that functions 
as a more efficient translation initiation codon than the conventional start-codon 
at exon IX (Koppel et al., 2015). Activity-dependent dendritic BDNF synthesis 
has also been shown to be regulated by eukaryotic elongation factor 2 (eEF2K) 
(Verpelli et al., 2010). In addition to increasing transcript stability, neural 
activity-dependent HuD binding to BDNF 3’ UTR relieves basal repression of 
BDNF mRNA translation in dendrites, leading to increased BDNF synthesis 
(Vanevski and Xu, 2015). 
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Non-coding RNA regulation of BDNF 

Non-coding RNA species (ncRNAs) exert influential control over gene 
expression by having effect on chromatin structure and transcript stability. 
miRNAs mediate their effects through degradation of target mRNAs by RISC 
complex or also through their effects on chromatin, while many long ncRNAs 
transcribed from antisense strand of mammalian protein coding genes (natural 
antisense transcripts) have been shown to repress expression of gene by 
remodelling chromatin or associating with gene transcripts as dsRNA (Tushir 
and Akbarian, 2014). 

Importance of miRNA-based regulation for neural differentiation have been 
demonstrated with conditional Dicer knockout mice, where forebrain specific 
knockdown of Dicer led to loss of brain specific miRNAs and also increased 
BDNF expression (Konopka et al., 2010). Several miRNAs have been shown to 
regulate BDNF mRNAs – miR-30a-5p (Mellios et al., 2008; Müller, 2014), 
miR-15a (Friedman et al., 2009), miR-22 (Muiños-Gimeno et al., 2011), 
miR-206 (Lee et al., 2012; Miura et al., 2012), miR-10b-5p (Müller, 2014), 
miR-1, miR-10b, miR-155 and miR-191 (Varendi et al., 2014). BDNF locus in 
human (Liu et al., 2005; Pruunsild et al., 2007) and mouse (Modarresi et al., 
2012) has been shown to transcribe natural antisense ncRNA gene (BDNFOS) 
starting from promoter on opposite DNA strand downstream from exon IX. 
Transcripts from the antisense BDNF gene form dsRNA duplexes with BDNF 
transcripts (Pruunsild et al., 2007) and regulate BDNF levels in vivo through 
polycomb repressive complex 2 mediated repressive chromatin remodelling 
(Modarresi et al., 2012). 

1.8. Transgenic mice used for studying BDNF regulation 

Several transgenic mice have been developed for studies of BDNF gene 
regulation, providing insight into genomic regions responsible for its tissue and 
activity-specific expression. Plasmid based mini-gene constructs using 9kb rat 
BDNF gene regions containing exons I-III or exons IV-VI together with CAT 
reporter gene were used to study tissue-specific, axotomy and neuronal-activity 
induced BDNF regulation in transgenic mice (Timmusk et al., 1995). While 
transgene expression in these mice recapitulated endogenous BDNF expression 
in several brain regions and peripheral tissues, there were shortcomings in 
expression patterns across tissues, possibly due to the lack of distal regulatory 
elements and transgene positional effects from random insertion into the mouse 
genome. These effects could be avoided using larger genomic fragments for 
generation of transgenic mice as was done by Guillemot et al., who used yeast 
artificial chromosome (YAC) containing 145 kb of human BDNF locus 
modified to encode EGFP reporter gene. The obtained mice still did not fully 
recapitulate endogenous BDNF expression patterns, indicating that more distal 
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elements regulating the gene were still missing from the transgene (Guillemot et 
al., 2007). 

1.9. Bacterial Artificial Chromosomes 

Ideal transgenic model for use in studying gene regulation would contain all the 
endogenous regulatory elements of the gene under study and also should be 
isolated from transgene positional effects in the genome. Transgenic animals 
and cell lines using plasmid or mini-gene constructs containing limited 
regulatory regions of gene under study have shown that these vectors are 
usually restricted by their capacity, positional effects and only partially 
recapitulate endogenous expression of the transgene. Increasing the size of the 
included genomic area surrounding the transgene increases faithfulness of 
reporter gene expression and avoids positional effects in transgenic animals and 
cell lines. This has been done using large capacity vectors systems like yeast 
artificial chromosomes, P1 artificial chromosomes, and bacterial artificial 
chromosomes (BACs) (Giraldo and Montoliu, 2001). Out of these, BAC vector 
system was developed as a high-capacity cloning system based on E. coli F 
plasmid for genomic library construction in Human Genome Project (Shizuya 
and Kouros-Mehr, 2001). 

BAC is capable of stably containing genomic fragments up to 300 kb in size 
(Shizuya et al., 1992), meaning it is capable of containing most mammalian 
genes together with possible upstream and downstream regulatory regions. In 
addition, compared to YACs that need careful handling and sometimes display 
chimaerism and instability, working with BACs is similar to working with 
traditional plasmid constructs and BACs are highly stable in E. coli. Use of 
traditional molecular cloning methods to introduce modifications to BAC DNA 
is, however, challenging due to their large size. Therefore, alternative methods 
have been developed to facilitate introduction of deletions, insertions or 
mutations. Most common of these is homologous recombination in E. coli using 
either RecE and RecT proteins from prophage (Zhang et al., 1998) or 
functionally analogous system based on Redα, Redβ and Redγ proteins from λ 
phage Red operon (Muyrers et al., 1999; Poteete, 2001). Homologous 
recombination allows site-directed modification of BAC using selection cassette 
with homologous arms to target region. Additionally, it can be used for 
seamless BAC modification by using counter-selection targeting cassette (Bird 
et al., 2012). Commercial kits (from Genebridges GmbH) and non-commercial 
plasmid-based systems (Hartwich and Nothwang, 2012) for recombineering are 
available and well established protocols for the use of the method for generating 
transgenic constructs have been developed (Hollenback et al., 2011). In addition 
to introducing changes to BACs, recombination system have been used for 
subcloning of BAC regions to smaller plasmids using gap repair (Lee et al., 
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2001a; Hartwich and Nothwang, 2012), combine regions from overlapping 
BACs to assemble a larger gene locus (Zhang and Huang, 2003; Kotzamanis 
and Huxley, 2004) and rapid addition of multiple mutations to BACs using 
oligonucleotides (Swaminathan et al., 2001). Recombination has also been 
optimised for high-throughput BAC modification (Poser et al., 2008; Gong et 
al., 2010). In addition to homologous recombination, Cre/loxP and Flpe/FRT 
recombinase systems have been used for BAC modifications, for example 
removal of selection cassettes (Parrish et al., 2011), introduction of 
resistance/episomal maintenance cassette (Magin-Lachmann et al., 2003), and 
truncation of BAC ends (Shakes et al., 2005). 

Due to the use of BACs in genome sequencing projects, large BAC libraries 
covering entire genomes for human, rat, mouse and other organisms are 
available (https://bacpac.chori.org/). This, in addition to size capacity, 
convenient modification and handling methods, have made BACs popular in 
generation of transgenic mice using pronuclear injection (Yang et al., 1997) or 
embryonic stem cell transgenesis (Kaufman et al., 1999). One of the best 
examples of using BACs to study gene expression in central nervous system is 
GENESAT project, which used BACs of nervous system expressed genes to 
generate over 10000 transgenic mouse lines expressing EGFP reporter gene 
under the control of various gene regulatory regions (Gong et al., 2010; Schmidt 
et al., 2013). This annotated repository of BAC transgenic mouse lines has been 
subsequently used for purification and functional analysis of specific cell types 
in nervous system (Gong et al., 2003; Zhang et al., 2014) and generation of Cre 
driver lines for targeting specific CNS cell types (Gong et al., 2007). Use of 
multiple BAC transgenesis into single mouse locus has also been demonstrated, 
significantly speeding up generation of transgenic mice  with multiple marked 
cell populations and making it possible to better study functional interactions 
between different cell types (Dougherty et al., 2012). 

In addition to generation of transgenic mice, BACs have also been used in 
cell culture systems for gene regulation and protein function studies, quite often 
for the same reasons that made them useful in mice. Delivery and expression of 
transgenes from BACs in mammalian cells have been demonstrated using lipid 
or polyamine-based transfection (Montigny et al., 2003; White et al., 2003; 
Magin-Lachmann et al., 2004; Schwank et al., 2013), electroporation 
(Abranches et al., 2013), nucleofection (Placantonakis et al., 2009), gene gun 
(Smith-Hicks et al., 2010), viral delivery (Wade-Martins et al., 2003; Inoue et 
al., 2004) or bacterial transfer (Narayanan and Warburton, 2003; Laner et al., 
2005). Also, BAC vectors have been retrofitted with oriP/EBNA-1 sequences 
allowing episomal maintenance in mammalian cells (Wade-Martins et al., 1999; 
Magin-Lachmann et al., 2003; Eeds et al., 2007). Compared to small plasmid 
expression vectors, expression from BAC transgenes seems to take longer time 
to develop (3-5 days) but is more persistent (Montigny et al., 2003). This has 
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led to use of BACs in development of expression vectors based on genomic 
regions with known open chromatin context (for example housekeeping genes) 
for recombinant protein production in mammalian cells. These vectors provide 
higher protein yields and transgene stability than most traditional plasmid based 
protein expression systems (Blaas et al., 2009; Bian and Belmont, 2010; Mader 
et al., 2013; Zboray et al., 2015). 

Using BACs as transgenic vectors, several elegant models for gene 
regulation and functional studies in mammalian cells have been developed. 
Large scale BAC modification and transgenesis has allowed their use in protein 
function studies in tissue culture and mouse embryonic stem cells (Poser et al., 
2008). In addition, it has been used in gene function studies for 
complementation of genetic deficiency in mammalian cells (Wade-Martins et 
al., 2000, 2003; Inoue et al., 2004), studies of Cdc6 protein function during cell-
cycle (Illenye and Heintz, 2004), effect of single nucleotide polymorphisms on 
RNA splicing and processing in whole gene context (Eeds et al., 2007), and to 
elucidate the necessity of a specific transcription factor binding site in Arc gene 
locus for its functioning in establishing late phase of LTD in cerebellar Purkinje 
cells (Smith-Hicks et al., 2010). Furthermore, BAC transgenesis has been used 
in human and mouse embryonic stem cell cultures to mark cell pluripotent state 
(Abranches et al., 2013) and study cell fate and signalling during differentiation 
(Placantonakis et al., 2009) as well as in intestinal epithelial organoid cultures 
to mark cell lineage (Schwank et al., 2013). In addition to these works, cell lines 
using BAC transgenes have been established for disease related genes which 
allow high-throughput screening of drug candidates for therapeutic purposes (Li 
et al., 2013). All these experimental systems have benefitted from inclusion of 
entire genomic locus in inserted BAC transgene, which provides close to 
endogenous gene environment aimed at native functioning of chromatin, 
transcriptional and RNA processing mechanisms for faithful reporter gene 
expression. 
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2. AIMS OF THE STUDY 

The purpose of this study was to develop and study transgenic model systems 
for elucidating the regulation of BDNF gene. For this the following aims were 
set: 

1) Generation and characterisation of BAC transgenic mouse and cell lines 
carrying human or rat BDNF gene locus. 

2) Studying BDNF gene regulation using the generated BAC transgenic 
mouse and cell lines. 
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3. MATERIALS AND METHODS 

3.1. Semiquantitative RT-PCR analysis 

Publications I and II 

3.2. PCR genotyping 

Publications I and II 

3.3. Quantitative RT-PCR analysis 

Publications I and II 

3.4. Cell culture, transfection and stable cell line generation  

Publication III 

3.5. Luciferase reporter assay 

Publication III 

3.6. FACS analysis of reporter expression 

Publication III 

3.7. Quantitative qPCR analysis of transgene copy number 

Publication III 

3.8. Fluorescent in situ hybridisation (FISH) analysis 

Publication III 

3.9. rBDNF-lacZ copy number analysis by slot-blot hybridisation 

Transgene copy number was analysed in rBDNF-lacZ mouse line by slot-blot 
hybridisation of genomic DNA with a [α-32P]dCTP-labelled probe generated 
with DecaLabel DNA labelling kit (Fermentas, Lithuania) using rBDNF-lacZ 
BAC specific probe generated with primers 3p_II_s (5’-
CCGGGGAGATGTGTTTCTAA-3’) and 3p_II_as (5’-
CACTCAGAAGCCTTGGGAAG-3’) as a template. 
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3.10. Genome walking 

Genome walking was used to map transgene integration sites in rBDNF-lacZ 
transgenic mouse line using protocol described in GenomeWalker Universal Kit 
(Clontech Laboratories Inc., Cat. No. 638904) with primers and adaptor oligos 
ordered from Microsynth (Switzerland). Transgene and adaptor-specific primers 
used for genomic fragment isolation are shown in Table 1. Fragments were 
amplified using HotFire DNA polymerase (Solis Biodyne, Estonia). Fragments 
amplified by genome walking were sequenced and resulting sequences were 
searched against mouse genome using NCBI Blast 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). After mapping the integration site to 
DGK-β locus, it was confirmed with locus specific primers mDGKB_ctr1_s and 
mDGKB_ctr1_as. Tandem integration of several transgenes was also confirmed 
by PCR with primers ch230_3p_gw_2 together with ch230_5p_gw_1. PCR 
products were confirmed by sequencing. 

 

Table 1. Primers used for integration site mapping by genome walking, integration site 
confirmation. 

Primer name Primer sequence (5’-3’) Description 
Adp1 GTAATACGACTCACTATAGGGC Adaptor primer 1 
Adp2  ACTATAGGGCACGCGTGGT Adaptor primer 2 
ch230_3p_w17_n1 ATGTTACTGGTGATGGACTTAGTTAGC

 
 
 
Rat BAC specific 

primers for 
Genome Walking 
 

 

ch230_3p_w17_n2 CTTAGTTAGCAGGGAGTATCTGAGTTG
ch230_3p_w27_n1 CTGATTTGATACAAAGAGGAGACAGAC
ch230_3p_w27_n2 TACAAAGAGGAGACAGACTGAACTAAG
ch230_3p_w31_n1 AAGGCAGGGTGCTGTAAATCTCAG
ch230_3p_w49_n1 CTATACACATAGGAAGCCTAACATGG
ch230_3p_w49_n2 GAGAGGTTGTAGAAACAAATCTCCAC
ch230_5p_w11_n1 GAGTATTCATATGCACCCCTAAAGAG
ch230_5p_w11_n2 GAATACCTTTCACCAAGTACAGTCAC
ch230_5p_w5_n1 ATCGTGACTACTAAGTATTGAGCACTG
ch230_5p_w5_n2 GGTTAGCAACTGATAGGATGAGAACTA
mDGKB_CTR_F CAGAGATGTGTGAGATGATTCCA Integration site 

control primers 
 

 

mDGKB_CTR_R CCATGCTGCCAAAAGAAAAGTAGCATA
ch230_3p_w31_n1 AAGGCAGGGTGCTGTAAATCTCAG
ch230_5p_w11_n2 GAATACCTTTCACCAAGTACAGTCAC
ch230_3p_gw_2 TATGAAGAAGGCAGTTCCACAGAGTGAT Tandem site 

control primers ch230_5p_gw_1 AGCTGAGAATTCCCTATGAAGATCCTTC

3.11. DGK-β RT-PCR analysis 

To probe DGK-β expression in rBDNF-lacZ transgenic mouse line tissues, RT-
PCR was performed on cortex cDNAs using primers 
mDGKb_ex20s/mDGKb_ex22as for transcripts containing DGK-β exons 20-22 
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and mDGKb_ex18s/mDGKb_ex20as for transcripts containing DGK-β exons 
18-20. 
 

Table 2. Primers used for RT-PCR analysis of DGK-β transcripts. 

Primer name Primer sequence (5’-3’)  
mDGKb_ex18s GACTGGCAATGACTTAGCAAGG
mDGKb_ex20as GTGCTTTTCTCTCATGATGTGG
mDGKb_ex20s ATTCCACATCATGAGAGAAAAGC
mDGKb_ex22as AAACTTCAGCTCTTTTGCATCTG
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4. RESULTS AND DISCUSSION 

4.1. BDNF BAC transgenic mice display reporter mRNA expression 
similar to endogenous gene (publications I and II) 

To study BDNF regulation, BAC transgenic mice were generated using BAC 
constructs containing human and rat BDNF gene that were modified to contain 
reporter proteins. The hBDNF-EGFP BAC contained 168 kb of the human 
BDNF gene together with regions 84 kb upstream and 17 kb downstream of the 
gene and the protein coding region was modified to encode for hBDNF-EGFP 
fusion reporter gene (publication I). The rBDNF-lacZ BAC contained 207 kb of 
rat BDNF gene together with genomic regions 13 kb upstream and 144 kb 
downstream with BDNF coding sequence replaced with β-galactosidase (lacZ) 
reporter gene (publication II). Using BACs as vectors for generation of 
transgenic mice was expected to negate positional effects of genomic insertion 
site and also provide sufficient native context for the endogenous like 
expression of the reporter gene. Altogether, pronuclear injection yielded four 
transgenic founder lines – hBDNF-EGFP BAC transgenic lines C3, E1 and E4 
and one rBDNF-lacZ BAC transgenic mouse line. 

Out of three transgenic cell lines established with hBDNF-EGFP BAC, C3 
transgenic mouse line expressed reporter mRNA most similarly to endogenous 
mouse BDNF in different parts of the brain and in thymus, lung, skeletal muscle 
and testis. In two founder lines E4 and E1 transgene mRNA expression pattern 
deviated more from endogenous mouse BDNF mRNA with E1 showing 
expression only in midbrain, medulla, cerebellum and in thymus, lung and 
kidney, and E4 showing reporter expression only in thymus and testis 
(publication I). In C3 line, all transgenic transcripts with different human 5’ 
exons were transcribed in the hippocampus of transgenic mice (publication I). 

In rBDNF-lacZ BAC transgenic mice lacZ reporter mRNA expression 
resembled endogenous BDNF expression in the brain, heart and lung. However, 
there were also differences from endogenous BDNF expression including no 
detectable transgene expression in thymus, liver, kidney, skeletal muscle, and 
dentate granule cells of the hippocampus. Transgene was also expressed in 
striatum, olfactory bulb granular layer, caudate putamen, nucleus accumbens, 
and testis – regions where endogenous mouse BDNF mRNA was not detected 
(publication II). 

In both hBDNF-EGFP-C3 and rBDNF-lacZ mouse lines, treatment with 
kainic acid induced transgene mRNA levels correspondingly to respective 
endogenous BDNF mRNAs in hippocampus and cortex (publication I and II), 
indicating that regulatory elements for activity-dependent BDNF expression 
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were included in the genomic regions covered by the BACs. Induction of 
reporter mRNA in the hBDNF-EGFP-C3 mouse line is the first demonstration 
of neural-activity dependent activation of transcription from the human BDNF 
gene. This mouse line has been used in further studies, that are not part of this 
thesis, showing that this line is useful for studies of human BDNF gene 
regulation (Pruunsild et al., 2011). 

The varying expression patterns of reporter mRNA in different 
hBDNF-EGFP BAC transgenic mice lines with similar transgene copy numbers 
(publication I) suggests that the genomic region in the BAC is not sufficient to 
overcome the positional effects of transgene insertion. Positional effects 
influencing reporter expression were also seen in the rBDNF-lacZ transgenic 
mouse line. In rBDNF-lacZ mouse line, 2-3 copies of BAC construct had 
integrated into the mouse genome between exons 20 and 21 of diacylglycerol 
kinase β (DGK-β) gene (Figure 2A and B). Integration of the transgene into this 
locus disrupted the expression of the endogenous DGK-β transcripts (Figure 
2C). It is possible that high expression of reporter mRNA in caudate putamen 
and nucleus accumbens (and maybe also granular layer of olfactory bulb), areas 
where endogenous mouse BDNF mRNA is not expressed or is expressed at low 

Figure 2. rBDNF-lacZ transgene integration into DGK-β gene intron in rBDNF-lacZ 
mouse line disrupting endogenous DGK-β expression. (A) Genome walking placed 
transgene insertion into intron of DGK-β gene between exons 20 and 21. Primers used 
for confirming integration site are marked with arrows. Dashed line shows integrated 
BAC sequences. (B) Slot-blot hybridisation analysis of transgene copy number in 
rBDNF-lacZ mouse line. BAC standard contains rBDNF-lacZ BAC DNA in 1-6 copies 
in the blotted genomic DNA. (+/+) homozygous rBDNF-lacZ mouse DNA, wt – wild-
type mouse DNA. (C) RT-PCR analysis of DGK-β transcripts containing exons 18-20 
in cortex of homozygous (+/+), heterozygous (+/-) rBDNF-lacZ transgenic and 
wild-type (wt) mice. 
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levels, is due to the integration site-specific effects because DGK-β has been 
shown to be strongly expressed in these brain regions (Goto and Kondo, 1993). 
Altogether, this suggests that while BAC constructs used in this work contain 
many of the regulatory elements necessary for reproducing the tissue-specific 
expression of the BDNF transgene, these are not sufficient to fully protect 
transgenes from position effects. 

Neither hBDNF-EGFP fusion protein nor β-galactosidase reporter protein 
was detected in hBDNF-EGFP-C3 or rBDNF-lacZ mouse brain, respectively, in 
basal or kainic acid induced conditions, while mRNAs encoding for the 
transgenic transcripts were readily detected. When compared to endogenous 
BDNF mRNA levels, transgene expression was about ten-fold lower in 
hBDNF-EGFP-C3 transgenic line (publication I). Copy numbers of integrated 
BAC transgenes were low in both transgenic mouse lines and it has been shown 
in GENSAT project that integration of fewer than five BAC transgene copies 
into genome may lead to very low expression levels that can cause problems 
detecting reporter expression (Gong et al., 2003). It is possible that low 
transgene copy numbers together with missing regulatory elements lead to very 
low reporter protein levels that were below the detection limit in both 
hBDNF-EGFP-C3 and rBDNF-lacZ transgenic lines. 

Several transgenic mouse lines have been developed for studies of BDNF 
gene regulation. Transgenic mice containing different rat BDNF promoter 
regions fused to the CAT reporter gene, while recapitulating BDNF expression 
in some tissues, also showed minimal or lack of transgene expression in dentate 
granule cells of hippocampus and heart (Timmusk et al., 1995). Five transgenic 
mouse lines were generated by Guillemot et al. using YAC containing 145 kb of 
human BDNF gene with regions 45 kb upstream and 33 kb downstream 
sequences, where BDNF protein coding region was replaced with EGFP 
reporter gene (Guillemot et al., 2007). Some indications of tissue-specific 
regulatory regions can be made based on the expression patterns of these 
previously developed mice and transgenic lines characterised by us. Similarly to 
previously generated rat promoter CAT transgenic mice, where reporter was not 
expressed (or was expressed at low levels) in dentate gyrus granule cells 
(Timmusk et al., 1995), rBDNF-lacZ mouse line did not replicate the BDNF 
expression in hippocampal dentate gyrus granule cells, while in 
hBDNF-EGFP-C3 mouse line reporter expression in these cells was detectable 
after kainate treatment (publication I). However, expression of the reporter gene 
in some dentate granule cells in human YAC transgenic mice lines (Guillemot 
et al., 2007) suggests that at least some of the regulatory regions responsible for 
BDNF expression are located in the hBDNF YAC transgene used. It is possible 
that hBDNF-EGFP BAC used here and hBDNF YAC transgene contained some 
of the regulatory regions needed for BDNF expression in dentate gyrus cells 
while in rBDNF-lacZ BAC these elements were missing or masked due to 
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position effects. While endogenous BDNF is expressed at extremely low levels 
in rat striatum and at slightly higher levels in mouse striatum (Timmusk et al., 
1994b, 1995), rat BDNF-CAT, hBDNF-EGFP-C3 and rBDNF-lacZ BAC 
transgenic mouse lines all showed strong reporter expression in striatum 
(Timmusk et al., 1995, publication I and II). The hBDNF-EGFP-C3 mouse line 
did not express reporter gene mRNA in the heart where endogenous BDNF is 
expressed, while rBDNF-lacZ line did. This suggests that elements responsible 
for heart-specific BDNF expression are located 17-144 kb downstream of 
BDNF gene. One human YAC transgenic mouse line also displayed reporter 
gene expression in the heart (Guillemot et al., 2007) suggesting that heart-
specific regulatory region lies somewhere between 17-33 kb downstream of 
human BDNF gene. 

Previous indications of distal BDNF regulatory areas have come from 
studies associating disruption of genomic region about 850 kb upstream of 
BDNF gene with phenotype similar to BDNF haploinsufficiency in human 
(Gray et al., 2006) and mice (Sha et al., 2007). High-resolution genome 
interaction data shows two increased association peaks near this genomic 
region, one 811 kb (chr11:28,550,000-28,555,000, GRCh37/hg19) and another 
976 kb (chr11:28,710,000-28,720,000, GRCh37/hg19) upstream of BDNF exon 
I, both interacting with region comprised of second cluster of BDNF 
promoters/exons (IV-VI, chr11:27,720,000-27,725,000, GRCh37/hg19) in 
GM12878 lymphoblastoid cell line (Rao et al., 2014). These peaks reflect the 
presence of chromatin loops that are often associated with enhancer-promoter 
interactions. Additional regulatory elements between these distal enhancers and 
BDNF promoters may exist as evidenced by disruption of genomic region 80 kb 
upstream of BDNF in some of obese patients of WAGR syndrome (Han et al., 
2008) and existence of MEF2D interacting region 6.5 kb upstream of promoter 
I, which possibly acts as a proximal enhancer taking part in activity-induced 
BDNF transcription from promoter I (Flavell et al., 2008). 

The high level of similarity between transgene and endogenous BDNF 
expression in basal and neural activity-induced conditions in both 
hBDNF-EGFP-C3 and rBDNF-lacZ BAC transgenic lines developed here 
shows that they are useful models for in vivo studies of BDNF gene regulation. 

4.2. BAC transgenic cell lines for screening of modulators of BDNF 
expression (publication III) 

Transgenic cell lines are often used for studies of gene expression regulation. 
Transgenic mice generated using rat BDNF BAC showed that it contains 
regulatory elements for mostly faithful reporter gene mRNA expression under 
basal and induced Ca2+ signalling conditions (publication II). For more 
convenient screening of factors regulating BDNF expression, we developed 
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BAC transgenic cell lines in HeLa cell background using rat BDNF BAC, 
where the BDNF protein coding region was replaced by hRluc-EGFP reporter 
gene using homologous recombination (publication III). Previously, use of 
BACs as transgene vectors for generating cell lines for drug screening have 
shown that these cell lines faithfully express reporter genes and can be used for 
large scale screening of possible modulators of gene under study (Li et al., 
2013). 

In all HeLa hBDNF-hRluc-EGFP BAC cell lines we generated, detection of 
EGFP fluorescence and hRluc luminescence showed that hRluc-EGFP reporter 
gene was expressed (publication III). Expression of most of the transgenic 
transcripts also showed that entire rat BDNF gene was maintained in transgenic 
cell lines (publication III). High copy numbers of transgenes in all established 
cell lines led to suggest that transgenic construct was maintained episomally in 
transgenic cell lines, which was confirmed by FISH analysis (publication III). In 
all established cell lines, the reporter gene under the control of rat BDNF 
promoter regions was induced in response to ionomycin-mediated Ca2+ 
signalling (publication III), treatment with histone deacetylase inhibitors 
(publication III) and by overexpression of VP16-CREB and NPAS4+ARNT2 
heterodimer transcription factors (publication III), all known to induce BDNF 
expression (Pruunsild et al., 2011). 

Given the previous reports that plasmids containing matrix attachment 
regions (MARs) are maintained episomally as double minute chromosomes in 
HeLa cells (Shimizu et al., 2001), episomal maintenance of transgene in our 
reporter cell lines suggests presence of possible scaffold/matrix attachment 
regions (S/MARs) in the genomic locus contained in rat BDNF BAC. S/MARs 
are regions on DNA that have been associated with multitude of functions such 
as anchoring of DNA and maintenance of the nuclear architecture, but also 
regulation of replication and transcription. The six in silico predicted S/MAR 
elements were all positioned inside the BDNF gene with SMAR1 and 2 
positioned in the intron between exons I and II, SMAR 3 and 4 in the intron 
between exons VII and VIII, SMAR 5 in the intron between exons VIII and IX 

Figure 3. S/MAR elements predicted with SMARTest tool mapped to rat BDNF gene. 
Coordinates of the displayed rat genomic locus are chr3:107368728-107426727 (RGSC 
5.0/rn5). 
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and SMAR6 in the 3’ UTR of exon IX overlapping the polyA site (Figure 3). 
Interestingly, SMAR1, SMAR2 and SMAR6 are all located at or near sites of 
high conservation between different species. 

In established transgenic cell lines, BAC transgene was maintained 
episomally in high copy numbers and therefore both luminescence and 
fluorescence of hRluc-EGFP reporter protein was readily detected. This is in 
contrast to our BDNF-BAC transgenic mice where we could not detect reporter 
protein expression. It is possible that high copy numbers of transgene in reporter 
cell lines led to readily detectable levels of hRluc-EGFP reporter expression. 
However low reporter induction in response to different known activators of 
BDNF expression (~1.5-2 fold) shows that while high transgene copy number 
provides sufficient levels of reporter protein expression, it may have effect on 
induction of the reporter. This is best seen with ionomycin treatment on high 
and low copy number cell lines, with lower copy number cell lines showing 
higher reporter induction (publication III). This may be due to depletion of 
transcription factors by their response elements in BDNF regulatory regions in 
high copy number cell lines. The lack of copy number effect on reporter 
induction by HDAC inhibitor treatments is probably due to the already open 
chromatin context of double minute chromosomes and more general effect of 
increased histone acetylation leading to opening of chromatin at transgenic 
DNA regions. 

The choice of using hRluc-EGFP fusion protein as the reporter enabled to 
use both fluorescence and luminescence methods for reporter detection. EGFP 
fluorescence makes it possible to monitor the expression and regulation of 
transgene at single cell levels using flow cytometry or fluorescent microscopy, 
while Renilla luciferase (hRluc) luminescence allows sensitive detection of 
reporter using either conventional luminescence detection kits for end point 
signal detection, or live cell luciferase substrates for continuous monitoring of 
reporter expression. One drawback of the used hRluc-EGFP protein may be its 
increased stability due to the EGFP. The half-life of the EGFP has been shown 
to be 26 hours in mammalian cells (Corish and Tyler-Smith, 1999) and the 
half-life of hRluc is about 3-4 hours (Promega, personal communication). While 
the half-life of the hRluc-EGFP fusion protein is not known, it is possible that 
part of the low induction in response to the tested treatments is due to the high 
stability of the reporter protein. This effect could be alleviated by the inclusion 
of a protein destabilising sequence in the reporter gene in future studies. 

Another approach to increase the induction fold of the transgene reporter 
protein in future cell lines would be to control the copy numbers of the BDNF 
BAC transgene. However, this may lead to a trade-off – low (or single) copy 
numbers of the transgene may not be enough for the detection of the reporter 
protein while increasing the transgene copy number may lead to decreased 
induction fold in response to a modulator. This problem might be solved by 
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using two-step transcriptional activation (TSTA) system where BDNF locus in 
BAC vector would encode a strong artificial transcriptional activator, for 
example Gal4-VP16 or VP16-E2, that would activate the reporter expression 
from a second promoter controlling the expression of suitable reporter gene. 
TSTA system have been used for such reporter induction systems and have 
shown to greatly enhance reporter (or therapeutic) gene expression under the 
control of weak promoter (Iyer et al., 2001; Arendt et al., 2009). This approach 
could allow expression from low copy numbers of weakly expressing BAC 
transgene that would reliably reflect the endogenous BDNF gene and at the 
same time increase the reporter expression to detectable levels. The exponential 
effect of reporter induction in TSTA system might even be beneficial for 
detection of lower effect modulators, when the effects of included noise are 
accounted for in subsequent analysis. 

The robust nature of the HeLa background, readily detectable hRluc-EGFP 
reporter expression and its induction by ionomycin, HDAC inhibitors and 
transcription factors known to induce BDNF, make these cell lines well suited 
for initial screening of factors regulating BDNF gene. 
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CONCLUSIONS 

1) Generation and characterisation of BAC transgenic mouse and cell lines 
carrying human or rat BDNF gene loci. 

 BAC transgenic mice and cell lines carrying 168 kb of the human or 
207 kb of the rat BDNF genomic locus were generated and 
characterised. 

 Transgenic BAC cell lines carrying 207 kb of the rat BDNF genomic 
locus were generated and characterised. 

2) Studying BDNF gene regulation using the generated BAC transgenic 
mouse and cell lines. 

 The BDNF BAC transgenic mice developed in this study largely 
recapitulated endogenous BDNF expression pattern in different tissues 
and its regulation by neural activity in the brain. 

 Analysis of reporter expression patterns in transgenic mice generated 
here indicated location of a possible heart-specific regulatory region 
downstream of BDNF gene. 

 Effect of transgene integration site on reporter expression in BAC 
transgenic mouse lines indicated that some insulating regulatory 
elements exist outside of the genomic regions covered by human and rat 
BDNF BACs. 

 Episomal maintenance of BAC transgene in rat BDNF BAC cell lines 
indicated presence of possible S/MAR elements in the genomic region 
included in the studied rat BDNF gene locus. 

 Transgenic BDNF BAC cell lines responded to known regulators of 
BDNF gene transcription. 

 Established cell lines could be used for screening of BDNF regulators in 
vitro and transgenic mouse lines for further studies of BDNF gene 
regulation in vivo. 
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ABSTRACT 

Brain derived neurotrophic factor (BDNF), a member of the neurotrophin 
family, has important functions in development and functioning of the nervous 
system. In early development, BDNF promotes survival and differentiation of 
various neuronal populations in the central and peripheral nervous system. In 
later development and adulthood, it plays important roles in the regulation of 
synaptic plasticity. Given its involvement in several nervous system disorders, 
studying BDNF gene regulation provides insight for developing therapeutics for 
these disorders. 

We generated transgenic mouse lines using large capacity bacterial artificial 
chromosome (BAC) vectors carrying human or rat BDNF genomic loci. Human 
BDNF BAC transgenic mice were generated using a BAC containing 168 kb of 
human BDNF genomic region that was modified to encode the BDNF-EGFP 
fusion reporter gene. Rat BDNF BAC transgenic mice were generated using a 
BAC containing 207 kb of rat BDNF genomic locus that was modified to 
encode the β-galactosidase (lacZ) reporter gene. Reporter mRNA expression 
patterns in established transgenic mouse lines largely recapitulated endogenous 
BDNF expression patterns in the brain and peripheral tissues. Transgenic 
transcripts were also upregulated in response to neural activity similarly to 
endogenous BDNF in different brain regions. These results show that BAC 
transgenes used in generating these transgenic mouse lines contain most of the 
regulatory regions responsible for endogenous BDNF transcription and its 
regulation by neural activity. In addition, transgenic mice containing human 
BDNF BAC open up the possibility to study regulation of the human BDNF 
gene in vivo. The developed transgenic mouse lines are useful for future studies 
of BDNF gene regulation. 

To generate a screening system for regulators of BDNF gene expression, we 
established several BAC transgenic cell lines in HeLa cell background using a 
BAC containing 207 kb of rat BDNF genomic region, where the BDNF protein-
coding sequence was replaced with the hRluc-EGFP fusion reporter gene. These 
cell lines had high episomal transgene copy numbers and displayed increased 
reporter protein expression in response to treatment with known activators of 
BDNF expression. These cell lines are useful for further studies of BDNF gene 
regulation and screening of compounds and transcription factors regulating 
BDNF expression. 

Altogether, mouse and cell lines generated and characterised in this work 
provide useful experimental models for studying BDNF gene regulation and 
screening regulators of its expression both in vivo and in vitro. 
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KOKKUVÕTE 

Neurotrofiinide perekonna liige, ajust pärinev neurotroofne tegur (BDNF), 
omab tähtsat rolli organismi varajases arengus erinevate kesk- ja 
piirdenärvisüsteemi neuronite populatsioonide elulemuses ja diferentseerimises. 
Lisaks osaleb BDNF hilisemas arengus ja täiskasvanud organismis ka 
sünaptilise plastilisusega seotud protsessides. Tulenevalt BDNF valgu tasemete 
häirumisest erinevate neurodegeneratiivsete ja psühhiaatriliste häirete korral, on 
BDNF geeni uurimine oluline nende haiguste mehhanismide väljaselgitamiseks 
ja võimalike ravimeetodite väljatöötamiseks. 

Antud töö käigus loodi transgeensed hiire- ja rakumudelid BDNF geeni 
regulatsiooni uurimiseks. Transgeensed hiireliinid tehti kasutades bakteriaalse 
kunstliku kromosoomi (BAC) konstrukte, mis sisaldasid inimese või roti BDNF 
geeni. Inimese BDNF BAC sisaldas 168 kb BDNF geeni genoomset lookust, 
kus valku kodeeriv osa oli muudetud kodeerimaks BDNF-EGFP liitvalku. Roti 
BDNF BAC sisaldas 207 kb roti BDNF geeni genoomset lookust, kus valku 
kodeeriv osa oli asendatud β-galaktosidaasi kodeeriva järjestusega. Loodud 
transgeensetes hiireliinides oli reporter mRNA-de ekspressioon erinevates 
kudedes suurel määral sarnane endogeensele BDNF geeni 
ekspressioonimustrile. Transgeenide ekspressioon reguleerus ka neuraalse 
aktiivsuse tagajärjel erinevates ajuosades sarnaselt endogeensele BDNF geenile. 
Inimese BDNF BAC-i sisaldavas hiireliinis transgeeni reageerimine neuraalsele 
aktiivsusele näitab, et seda hiireliini on edaspidi võimalik kasutada inimese 
BDNF geeni regulatsiooni uurimiseks in vivo. Kokkuvõtvalt võib öelda, et 
genoomsed regioonid, mis sisaldusid transgeensete hiireliinide loomiseks 
kasutatud BAC konstruktides, sisaldavad enamikke regulatoorseid elemente, 
mis on vajalikud BDNF geeni ekspressiooniks. Väljatöötatud transgeensed 
hiireliinid sobivad BDNF geeni regulatsiooni uurimiseks. 

BDNF geeni reguleerivate tegurite sõeluuringuks sai loodud mitu BAC 
transgeenset HeLa rakuliini, kasutades 207 kb roti BDNF BAC konstrukti, 
milles valku kodeeriv osa oli asendatud hRluc-EGFP reportergeeniga. Kõigis 
saadud rakuliinides esines transgeen kõrge koopianumbrilise episoomina ja 
ekspresseeris reportervalku. Stiimulid, mis teadaolevalt reguleerivad BDNF 
geeni transkriptsiooni, tõstsid reportervalgu tasemeid BAC transgeensetes 
rakuliinides. Seetõttu saab neid rakuliine kasutada edaspidisel BDNF geeni 
regulatsiooni uurimisel ja selle tasemeid reguleerivate ainete otsingul. 

BAC transgeensed hiire- ja rakuliinid on sobivad töövahendid edaspidisteks 
BDNF geeni regulatsiooni uuringuteks nii in vitro kui in vivo tingimustes. 
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