
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Mikk Margus Möll 192893IVSB

Improving compatibility between
Shodan Stream and IntelMQ

Bachelor's thesis

Supervisor: Toomas Lepik

MSc Cybersecurity

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Mikk Margus Möll 192893IVSB

SHODAN STREAMI JA INTELMQ
TURVATEABEVOO ÜHILDUVUSE

TÄIUSTAMINE

Bakalaureusetöö

Juhendaja: Toomas Lepik

MSc

Tallinn 2021

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mikk Margus Möll

17.05.2021

3

Abstract

The work mostly focuses on Shodan and IntelMQ, the former being a source of intel on

internet-facing services, and the latter being a solution for processing data from feeds

such as Shodan.

The first half of this thesis covers mapping a schema for the data format given by

Shodan Stream, a security feed, and the difficulties in doing that. Based on the schema,

the code for processing this data in IntelMQ is significantly improved and a working

proof-of-concept schema generator is given. This can also be used to improve other

projects making use of data from Shodan, which currently do not make use of much of

the data due to the schema being mostly unknown.

The second half covers improving data filtering methods within IntelMQ. With

Shodan’s wide range of scanning capabilities, there are many results which do not have

any security applications. At the same time, filtering goals can change over time. Due to

this, a dynamic solution is beneficial. a Sieve-based DSL was extended with with new

features, permitting for a solution that can be dynamically updated via changes to a

script to match changing requirements. This allows users of IntelMQ to filter and

perform some simple data processing on data from Shodan, but also other security

feeds, within IntelMQ, with less complexity.

Keywords: Shodan, IntelMQ, data processing, DSL

The thesis is in English and contains 30 pages of text, 6 chapters and 2 figures.

4

Annotatsioon

Töö keskendub peamiselt Shodanil ja IntelMQ’l. Esimene neist on infoallikas

internetiga ühendatud teenuste jaoks, teine on tarkvaraline lahendus erinevate

turbeandmeallikate, näiteks Shodani, töötlemiseks.

Töö esimene pool hõlmab Shodan Stream’i antud andmete skeemi kaardistamist ning

tõkkeid selle tegemises. Skeemi põhjal täiendatakse ka IntelMQ’s Shodani andmete

töötlemise koodi ning avalikustatakse ka näidisrakendus skeemi genereerimiseks. Seda

saab kasutada ka teistes projektides, milles tarbitakse Shodanist pärinevaid andmeid,

mis ei kasuta seda oma täies ulatuses skeemi üldise tundmatuse tõttu.

Töö teine pool hõlmab andmete filtreerimise parendamist. Arvestades Shodani

skaneerimisvõimete laia ulatust ei ole kõigile antud andmetele võimalik leida turbealast

rakendust. Teisalt võivad filtreerimisnõuded ajas muutuda. Seetõttu on dünaamiline

lahendus soodne. Selle jaoks laiendati Sieve’il põhinevat valdkonnapõhist

programmeerimiskeelt uue funktsionaalsusega, mis lubab, kasutades lisatud

funktsionaalsust, reegleid dünaamiliselt muuta vastavalt muutuvatele nõuetele. See

võimaldab IntelMQ kasutajatel andmeid filtreerida ning mõningaid lihtsamaid

andmetöötlusprotseduure teostada vähema komplekssusega.

Võtmesõnad: Shodan, IntelMQ, andmetöötlus, DSL.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 30 leheküljel, 6 peatükki ja 2

joonist.

5

List of abbreviations and terms

API Application Programming Interface

AS Autonomous System

ASN Autonomous System Number

AST Abstract Syntax Tree

CERT Computer Emergency Response Team

CSIRT Computer Security Incident Response Team

CTIP Cyber Threat Intelligence Program

DNS Domain Name System

DSL Domain-Specific Language

ELK Elasticsearch, Logstash, Kibana

FQDN Fully Qualified Domain Name

HTTP Hypertext Transfer Protocol

ICS Industrial Control System

ISP Internet Service Provider

JSON JavaScript Object Notation

MAC Media Access Control

PoC Proof of Concept

RDP Remote Desktop Protocol

URL Uniform Resource Locator

VNC Virtual Network Computing

XMPP Extensible Messaging and Presence Protocol

6

Table of Contents

1 Introduction...10

1.1 Introduction...10

1.2 Methodology...11

2 Background..12

2.1 IntelMQ...12

2.2 Use of IntelMQ for cyber intelligence..13

2.3 AbuseHelper...14

2.4 Shodan..14

2.5 Use of Shodan for cyber intelligence..15

2.6 Problem setup...16

3 Previous work..18

3.1 Shodan schema mapping..18

4 Format of Shodan banner data...20

4.1 General format..20

4.2 How IntelMQ parses Shodan banners..21

4.3 Automatically mapping the Shodan Stream schema..22

4.3.1 Collecting a dataset..23

4.3.2 Merging the banners..24

4.3.3 Generating a template..25

4.3.4 Issues identified in the schema..28

4.4 Mapping the Shodan banner schema to the IntelMQ format................................31

5 Filtering Shodan banners...33

5.1 Attempt one – specialized Shodan expert bot...34

5.2 Attempt two – Sieve bot DSL improvements...35

6 Summary..38

 References..40

 Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis..41

7

 Appendix 2 – Data flow graph...42

 Appendix 3.1 – Figure with an example of Shodan banner data collection...................43

 Appendix 3.2 – Textual example of Shodan banner schema collection.........................44

 Appendix 4 – Sieve ruleset example..45

 Appendix 5 – Snippets of the schema..46

8

List of Figures

Figure 1: A visualization of the flow of data from Shodan through IntelMQ.................42

Figure 2: Visual representation of a set of input data and the desired output data..........43

9

1 Introduction

1.1 Introduction

A big part of the work of CSIRTs around the world is monitoring systems under their

jurisdiction. There are now many commercial services that monitor the internet and

provide access, in some form, to a feed of the data they have gathered as a service.

CSIRTs may also have their own private feeds of data to keep track of. Almost all of

these feeds will, however, vary vastly in the channel the data is passed through, its

format, and the amount and kinds of data they provide. There are, however, tools to

automate the collection and processing of data from these feeds. Abusehelper and

IntelMQ are examples of such tools, with IntelMQ being the preferred tool of the two in

recent years, with Abusehelper being essentially abandoned and IntelMQ seeing active

development and improvement along with a wider range of supported security feeds.

One of the services an organization, CSIRT or otherwise, may use to keep track of

internet-connected devices, is Shodan. While they are primarily known for their search

engine service, they also provide a service known as Shodan Stream (or Shodan

Firehose), which offers real-time access to the latest data added to the Shodan databases

accessible via the Shodan search engine.

There is existing work on bringing the data from Shodan to IntelMQ, however, it is far

from perfect [1], [2]. This is mainly due to the relatively small amount of data mapped

from Shodan’s data representation to IntelMQ’s, leaving much useful data with no

chance of being processed within IntelMQ or outside of it. Aside from that, there are

issues with the Sieve bot, the primary method of general-purpose filtering data filtering

within IntelMQ. Those are some limitations within the control flow of the code, and

limitations in functionality, such as for working with booleans or lists of values. This

thesis will explore methods of improving this integration and list some of the many

unexpected obstacles in doing so.

10

The goal of this work is to significantly improve the usability of the Shodan Stream

security feed with the IntelMQ feed processor. The motivation for this is that there is a

gap between Shodan Stream’s abundance of information and how much of it can be

processed in practice. There is currently no good way to make use of it, within IntelMQ

or otherwise. Making it usable within IntelMQ is a practical application of the results of

the work done, in a system which is used by many organisations for processing similar

security feeds.

In order to accomplish this, a dataset must be collected from Shodan Stream, which can

then be analysed. For the analysis, a schema of the data will be generated, along with a

deduplicated set of values corresponding to each data field. Following this, a method of

filtering the data, flexible enough to be modified quickly with changing data filtering

requirements, will have to be implemented.

For the data collection and analysis steps, custom stand-alone Python code will be used.

For the filtering step, IntelMQ will be extended to improve filtering capabilities, with an

emphasis on flexibility.

1.2 Methodology

Previous work within this area was analysed, within IntelMQ and in other projects, in

order to assess the existing progress in parsing Shodan data in general and filtering it

specifically within IntelMQ. An assessment was made that it was not sufficient, and

more work was left to be done. From there, solutions for generating a schema for the

Shodan data, and from there improving the parser within IntelMQ, and filtering data

within IntelMQ were devised.

The code written for use within IntelMQ was submitted and accepted by the upstream

developers, planned for release soon, and the standalone code for schema generation

was published publicly on Github.

11

2 Background

2.1 IntelMQ

IntelMQ is a software project which has the goal of simplifying the automated

collection and processing of various security feeds [3]. To do this, IntelMQ uses a

network of connected “bots” called a “botnet”. These bots each have a specific task

within the botnet and communicate with each other over a message queue protocol.

The bots may each have bot may have zero, one, or many inputs and outputs. For

transferring data over these connections, the bots work with “events”, which are key-

value maps (internally JSON at the time of writing, with plans to move to

MessagePack).

For parsers and experts, there is no requirement that one input event maps to one output

event. This is useful for parsers as one data piece of data from a feed may encompass

the data for many events, such as in the case of CSV-based reports with multiple rows

of data, and experts may wish to perform filtering on the events alongside modification.

Most bots can also be configured with some parameters, which can specify things such

as operation procedures or credentials for authenticating with 3rd-party services.

The bots are divided into four different classes by their purpose:

• Collectors: These bots connect to different public and private security feeds to

fetch raw data, such as Microsoft CTIP and Shadowserver as well as some

generic collectors applicable to different feeds, and only produce output, taking

no input

• Parsers: These bots are passed raw data collected by collector bots and they

parse it into the IntelMQ format, often in feed-specific ways, taking input from

collectors and producing parsed output

12

• Experts: These bots generally perform transformations on the data which do not

fall under any of the other categories, such as deduplication, filtering, data

enrichment (such as decoding the FQDN from an URL)

• Outputs: These bots take processed events and output them in some way, such as

by adding them to a database or a file, and take input events, but do not produce

output events within the IntelMQ network

A typical IntelMQ network is, composed of a series of collector-parser pairs (with some

parsers potentially being shared by some collectors), feeding into a chain of experts,

finally leading to output bots which pass the data out of the botnet.

One of the expert bots provided in IntelMQ is the Sieve bot. It is an expert bot which is

configured using a file written in a DSL based on the Sieve language, which is used for

filtering emails. It can match events based on a combination of matches on string,

numeric and IP range based matches, and perform actions such as dropping the event,

passing it on without further modification, passing it on through a specific output

connected to the bot, and modifying the event. A graph demonstrating the data flow

through IntelMQ is given in appendix 2.

2.2 Use of IntelMQ for cyber intelligence

As a project of ENISA, the European Union Agency for Cybersecurity [4], it is both

developed and used by a number CERTs within the European Union. Though they may

not advertise the tools they use publicly, the project has a number of contributors

associated with CERTs on the Github page. Aside from that, it is remarkably useful in

its capability to process many disparate formats of data from different data feeds that

CERTs make use of into a common format.

IntelMQ is generally used alongside various other tools, for which it provides processed

data as input. It collects, processes, potentially filters and then outputs data from many

sources, but past that, the data needs to be made use of. For instane, CSIRT-KIT [5], a

ready-made toolkit for data processing within a CSIRT, contains an instance of what a

CSIRT may use. Within it, IntelMQ collects data from a variety of feeds, processes it

13

and passes it on to the ELK stack, from where it can be analyzed and made use of

elsewhere, such as directly through Kibana by an analyst or by other software fetching

the data from Elastic.

2.3 AbuseHelper

AbuseHelper served as an automation tool similar to IntelMQ and was its predecessor

and primary inspiration. It was created at a time when no other tool like it was available.

At its core, it also uses discrete “bots”, which pass discrete data messages along pre-

specified paths to each other. And, like IntelMQ, it has the concept of sources

(collectors/parsers), data processors (experts) and outputs. For the data, it has a

harmonization format as well, making automated processing possible.

Where it diverges, however, is in some finer details. For instance, instead of a message

queue protocol, it uses XMPP, a chatroom protocol, to connect the bots. And unlike

IntelMQ, the collection and parsing steps are combined, while IntelMQ has them as

seperate bots. It is also less simple to extend and loses much of its state during

unexpected shutdowns/crashes.

At its core, AbuseHelper’s design was superb. However, some issues in its

implementation, some due to it being one of the first tools of its kind, it has been

replaced with other similar tools like IntelMQ.

2.4 Shodan

Shodan is primarily known as a search engine offering searches to be performed on its

large database of network scans around the world with, indexing millions of devices

with publicly accessible services ranging from common web server software such as

nginx or Apache HTTP Server to control system protocols such as Fox, Ethernet/IP and

BACnet. It allows for hosts with known vulnerabilities to be found, either indirectly by

allowing for services with certain versions to be searched for, or directly by allowing

premium members to search for hosts that have vulnerabilities detected by Shodan

14

itself, either actively through benign exploitation by Shodan, or, in certain cases,

passively, based on metadata such as software versions.

Shodan Stream is an alternative to the search engine based service for premium users. It

allows them to run software which passively queries an HTTP API endpoint to “listen”

to the stream and get results based on a user-specified filter from Shodan as soon as the

scans are finished. The data comes in the form of JSON objects called banners, with

each banner corresponding to one service scanned on one host. Altogether, this provides

a passive real-time stream of useful data from Shodan, without the need to actively poll

for data from Shodan’s search engine.

Shodan Stream allows users to specify the banners they get in six different ways: all of

them globally, banners from specific ASNs, from specific countries, from services on

specific ports, from all subnets marked by the user for monitoring, and from specific

subnet. The latter two depend on the user having specified a subnet or set thereof

beforehand.

There are a selection of libraries for accessing the Shodan API, including Shodan

Stream. Of particular note is the Python library, which is the only Shodan API library

officially supported and developed by Shodan LLC. Though due to the simplicity of the

API, all that is needed to implement a client is a TLS-capable HTTP(S) library and a

JSON decoding library for parsing the response data.

2.5 Use of Shodan for cyber intelligence

As Shodan is a large repository of cyber intelligence data, it can be effectively used for

identifying a large number of hosts with serious vulnerabilities. This can be done with

both publicly known vulnerabilities indexed online, as well as in the case of zero-day

vulnerabilities. Previous work focusing on a specific service confirmed that a number of

vulnerable hosts could be enumerated, with 71.85%, a majority, of hosts checked having

three year old firmware with a known vulnerability [7].

However, this also also shows that many hosts with known vulnerabilities can lie

dormant on the public internet for years, long after news coverage on them has died out.

15

Botnets have been known to be formed using widespread unpatched vulnerabilities from

years ago [8], [9]. Likewise, a service being indexed by Shodan has been demonstrated

to not affect the volume of attacks, under some circumstances [10]. As such, Shodan

and tools like it can be useful in identifying problematic or vulnerable hosts, such as on

networks under one’s jurisdiction.

In larger networks with millions of hosts, such as those under the jurisdiction of major

national/governmental CERTs, there tend to be a large variety of network services.

Searching for or even implementing software capable of collecting data on dozens or

hundreds of different protocols, as well as performing tests for an ever-growing list of

vulnerabilities, would be a major undertaking and resource drain for any organization.

As such, using Shodan or tools like can be an attractive alternative to developing,

maintaining and running software with similar capabilities.

There is already a variety of tools which make use of Shodan, either alone or alongside

other feeds, and either using the search functionality, the stream, or both. A list of a

selection of them is given in section 3. These range from simple libraries to fetch data

from the Shodan APIs, such as the official Python library and some 3rd-party libraries in

other languages, to full-fledged analysis frameworks such as Mihari and IntelMQ,

which integrate with many feeds including Shodan.

2.6 Problem setup

Shodan stands out among the other security feeds handled by IntelMQ with how its data

is given. Though it is, at first glance, possible to collect and parse data from Shodan

within IntelMQ, it suffers from two major issues.

First, the Shodan data format schema is mostly undocumented. Very little of the

schema of is documented by Shodan LLC [6], and not much more is documented by

any 3rd party. Hence, not all of the data is fully processed in automated systems like the

IntelMQ Shodan parser, or other similar software. This may increase costs and latency

if collected data is processed manually (even partially), or reduce efficiency if much of

the potentially useful data is left unprocessed by automated systems.

16

Second, while most of the feeds handled by IntelMQ or other such software provide

only security-sensitive data, Shodan Stream is an exception to that rule. For instance,

there is a large quantity of web and game servers on the internet running on versions

with no known vulnerabilities. Until a point at which the software at that version is

discovered to contain vulnerabilities, this data is noise. It could be stored separately in

anticipation of a vulnerability disclosure in order to expedite alerts to the relevant

administrators. However, at such a point, Shodan’s search engine capabilities would

provide equivalent or even better results, with no need to reserve storage space.

Two solutions, one which solves the first partially solving the first issue, and the second

providing tools to solve the second issue, will be provided.

For the first problem, the schema of the Shodan banners needs to be mapped. Based on

that, the Shodan parser within IntelMQ can be improved to process more of the data

included in each banner.

For the second problem, a sufficiently powerful and extensible method of filtering out

useful Shodan banners within IntelMQ will be needed.

In order to improve integration between these two tools, I will explore methods to

implement these two solutions and improve the integration between these two pieces of

software.

17

3 Previous work

3.1 Shodan schema mapping

To see if there was significant work on mapping the Shodan schema, I examined the

selection of Shodan API libraries listed by Shodan [2]. Some additional projects were

also discovered on Github. However, for the purposes of this work, they were not

useful. Not all of them included any banner format mappings, and those that did have it

did not have many more parts of the banner format which had not already been mapped

within the IntelMQ parser, and were vastly lesser than the schema mapped by my later

work.

The following projects included no mapping of the Shodan banner format which could

provide information on the schema:

• https://github.com/ScadaExposure/Shodan-PHP-REST-API,

• https://github.com/femiagbabiaka/shodan-rust

• https://github.com/picatz/shodanz

• https://github.com/tanprathan/Shomon

• https://github.com/Dudley5000/WWW-Shodan-API

• https://github.com/jesusprubio/shodan-client

• https://github.com/B-V-R/shodan

• https://github.com/ninoseki/mihari

18

https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/x/y

The following projects included a similar or lesser mapping to that included in the

IntelMQ parser:

• https://github.com/fooock/jshodan

• https://github.com/PercussiveElbow/Shodan

• https://github.com/achillean/shodan-python

• https://github.com/TerribleDev/Shodan.Net

• https://github.com/darkoperator/Posh-Shodan

• https://github.com/shadowscatcher/shodan

• https://github.com/ASRagab/scodan

• https://github.com/ns3777k/go-shodan

• https://github.com/cudeso/tools

Further attempts to find code that may have a significantly improved schema proved

ineffective. In the absence of any such schema, I have decided to devise my own

method of mapping it.

19

https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/x/y
https://github.com/fooock/jshodan
https://github.com/x/y

4 Format of Shodan banner data

4.1 General format

Each Shodan banner received through the Shodan Stream is JSON-encoded. The root

object of a banner is a JSON object, a key-value map. All JSON-encodable value types

(floating-point numbers, integers, booleans, strings, lists, objects and null) appear in

different banners. Most of the data in banners is given as attributes of objects under the

root object, meaning most data on services as FTP, HTTP, iSCSI or MongoDB is

located in a objects located in the root object with the key “ftp”, “http”, “iscsi” or

“mongodb” respectively. Some attributes, meanwhile, are given directly in the root

object, such as the ASN, operating system, port of the given service and MAC addresses

belonging to the scanned host which may be leaked by some services.

Some parts of the banner are always present. Examples of this are the IP address and

port of the host and service scanned, and some metadata based on the IP address such as

GeoIP data, ASN, AS name and ISP. Some metadata specific to Shodan rather than the

target that was scanned is also always included.

Some sections of the banner may appear alongside many different scanned services.

Examples of this are

• “ssl”, a section with info on the parameters of the SSL/TLS tunnel encapsulating

another protocol (such as HTTPS, IMAPS or FTPS),

• “mac”, which contains info on MAC addresses found to belong to the host via

data leaked from the scanned service,

• “vulns”, a list of vulnerabilities either suspected or confirmed to affect the

service that was scanned (this is specified in the “verified” attribute)

20

Lastly, the vast majority of sections are specific to the type of service being scanned.

These may provide varying levels of information, depending on the service and

potentially on specific configuration settings.

One issue that came up during this work was that a variety of values may have very

different types. For instance, the key in the chain “ssl” → “dhparams” → “generator”,

which holds the generator parameter included in the Diffie-Hellman key exchange

parameters sent by the server, can hold both integer and string values, depending on the

size of the generator. Around 29 such occurrences were found.

4.2 How IntelMQ parses Shodan banners

The pipeline a Shodan banner ordinarily takes in an IntelMQ botnet is to get collected

by the Shodan parser, then passed on to the Shodan parser. Within the parser, there are

two methods of parsing the banner: with a regular mapping and a minimal mapping

with less information. They work similarly enough that they will not be covered

separately.

As the banner can have multiple levels of nesting, a recursive approach is used. The

parser has a Python dictionary object, a key-value store similar to a JSON object, called

“MAPPING”. This dictionary’s format mirrors that of Shodan banners, and it contains

two types of values: nested dictionaries and strings.

Dictionary values are for subsections of the Shodan banner through which to traverse in

parallel with the MAPPING dictionary. String values indicate that data stored under the

same key as that of the string value in the MAPPING dictionary should be added to the

output dictionary, with the key being the value from the MAPPING dictionary and

value being the value from the banner.

The parsing of a Shodan banner begins with an event being received, followed by the

raw JSON being converted into a Python dictionary. Following this, the two dictionaries

are iterated over, with common subsections (dictionary values) being recursively

iterated into, and common values being added to the output event as described above.

21

As some values may not be suitable for addition without extra manipulation, there is a

“CONVERSIONS” dictionary, for mapping a selection of keys to be inserted into the

event to functions to be applied to the data. For instance, within IntelMQ, the

“source.fqdn” field is expected to hold a value of a single string (as well as a valid

FQDN). However, Shodan gives a list of strings, as one host may have many hostnames

associated with it. As a workaround, the first hostname given is used.

A problem that comes up later and which I address is that the keys are only one level

deep, meaning the field “domains” within a subsection of the banner would be subject

to the same conversions as the field “domains” within the root object.

4.3 Automatically mapping the Shodan Stream schema

A problem with trying to understand the full format of any single section of data given

by Shodan is that many parts of it are given piecemeal, depending on what data could or

could not be gathered from the service. The simplest example of this comes from DNS

servers. A DNS server can be configured to display or hide the hostname of the server it

is running on, as well as the version of the DNS server software being used.

Additionally, whether or not the service recursively resolves arbitrary domain names

can be examined for any DNS server.

Given a number of banners for DNS services, some with neither, one or both of the

optional data points included, a mapping with all would be desired. This is illustrated in

diagram 1. Aside from getting a collection of keys to which values are mapped within

the banners, the values themselves should also be collected. One reason is to be able to

decide on the usefulness of the data. Another is to be able to record which values may

be represented by different types in different banners, in order to be able to unify them

to a common type, such as a floating-point number if floating-point numbers and

integers appear under the same key, or a string if a string and any other type appear

together.

Initially, an attempt was made to perform this mapping using the automatic schema

discovery existing in Elasticsearch. However, due to issues with the data which are

22

discussed later, this was scrapped in its early stages, and a custom method was used in

its stead.

I used a three-stage process. The first stage is simply collecting a dataset of fresh

banners into a plaintext file. The second is merging and deduplicating the data from the

banners into a single object, alongside deduplicating the data. Finally, to give a concise

representation of the schema, the single merged object is transformed into a Python

Elasticsearch document class.

4.3.1 Collecting a dataset

The first part of the process is the simplest and least significant. A simple Python script

which, using the official Shodan Python library, is used to write out each collected

Shodan banner to a file with no modifications, one per line. This can be a time-

consuming process, depending on the scope of the Stream being collected (defined alert

subnets, countries or global). Later, some preprocessing steps, which are discussed later,

were added to this step.

A total of 26GB of data was collected sporadically over the course of 3 months. In the

beginning, only a small selection of subnets was checked, with all of Estonia being

added later and, at the very end, accounting for the majority of the dataset, the global

stream was used.

Later analysis showed that the size was inflated by some disproportionately large

banners. For instance, each banner contains some raw data from the connection made,

which was unnecessarily large in some cases. For instance, some servers were streaming

public television channels as raw MPEG video data. The stream collection likely

eventually reached some sort of size limit on Shodan’s side. Similarly, when the index

of a website serves an image directly rather than by embedding it in HTML, several

kilobytes or even megabytes of compressed image data was featured in the “html” field.

For concrete figures, the top 1% of elements by size accounted for 25% of the total size

of the dataset, and the top 4.2% of elements accounted for 50% of the size. The 10

smallest banners were in the range of 598 to 605 bytes, while the 10 largest were in the

23

range of 3.1 to 7.2 megabytes. The bottom 50% of banners by size were 1836 bytes or

less.

4.3.2 Merging the banners

For this process, the banners from the dataset file from before are iterated over and

merged together recursively. Python’s immutable data types are used to help with

deduplication, as they can be included in set objects. Integers, floating-point numbers,

strings, booleans and null elements are kept as-is since they are immutable, while “leaf”

dictionaries are converted into immutable dictionaries (provided by the immutabledict

3rd-party Python library) and lists are transformed into tuples.

Here, “leaf” dictionaries refer to dictionaries which appear as values within lists of

objects, as opposed to “trunk” dictionaries which are directly attributes of other

dictionaries down to the root dictionary. The choice was made to not merge leaf

dictionaries and at this stage and leave it for the next one, so as to preserve the relations

between fields within a single dictionary for ease of analysis. Dictionaries containing

the same exact data will, none the less, be deduplicated.

The reason for making the objects immutable was that then, sets could be used for value

deduplication. Objects which can be mutated after creation may not be added to sets in

Python, and hence would make data deduplication trickier or less performant.

The goal of this is to have a clear representation of all of the possible sections of data

that could be represented within a single banner, similar to the MAPPING dictionary

within the Shodan parser in IntelMQ. Deduplication helps with reducing noise from the

data, as analysing the frequency of any configuration option or the like is not within the

scope of this project. Preserving the possible values for any field helps with evaluating

the usefulness of the data as well as to discover a variety of quirks within the data.

A recursive merging function is used, which iterates over both the already-merged

“super-object” and the next object to be merged with it. Along with this, a second

recursive function for converting mutable objects to immutable variants is used for

some cases. Three different cases are considered for the merging function: the value is a

single immutable value, a list of values, or a dictionary.

24

For single values of immutable types, they are all added together into Python set

objects, which eliminates duplicate values.

Lists, are converted into tuples, with each of the list’s elements being processed to be

immutable. This is due to the fact that they may contain mutable objects, namely lists or

objects, which would make every object containing them considered mutable as a

whole, preventing the usage of sets for deduplication. For this purpose, the recursive

immutability function is used to convert the list’s elements to immutable types. The

reason it is recursive is that the lists may contain “leaf” dictionaries, which may

themselves contain other mutable objects.

Lastly, for dictionaries, the process is to merge the dictionary and its contained key-

value pairs into the merged object, recursively calling the same merging function on the

subdictionary. They are left mutable as, they’re considered “trunk” dictionaries.

After the objects have been merged into one, this super-object is written out to a JSON

file. Since the JSON format does not support sets or tuple types, those are converted

into lists. This file then contains info on the full structure of the banner data format,

along with all the possible values encountered throughout.

A diagram visualizing this process and the equivalent JSON objects matching those

objects are given in appendices 3.1 and 3.2

4.3.3 Generating a template

For the final step of data processing, an Elasticsearch document class from the

Elasticsearch DSL Python library is generated, based on the merged super-object. This

is primarily, however, used to further help with manual analysis of the format for the

use of improving the IntelMQ Shodan parser’s MAPPING. This offers a simple view of

the structure of the banners, as the possible values for each field stored in the results

from the previous step account for gigabytes of data, compared to the kilobytes taken up

by the template. Where needed, the previous results can be referred to for info on the

possible values.

Some extra steps on the values are also performed at this stage, such as:

25

• enumerating what data types may appear together in a single field,

• enumerating fields which may contain null,

• enumerating fields in which the value can sometimes be a single value of some

type, sometimes a lists of values of the same type, rather than containing a list

of values even if the list would have less than two values,

• enumerating integer value fields which would overflow a signed 64-bit number,

• merging lists of dictionaries together,

The first three steps help to tag fields for which parsing may cause type safety issues

unless properly handled, either explicitly with those fields or with a more robust scheme

of parsing. Examples of potential issues would be type confusion in weakly and

dynamically typed languages, such as PHP and JavaScript, when a value is not of the

type it is expected to be, or a null pointer exception if a JSON parser in, for instance,

Java, assigns the JSON null type to a Java null pointer and the field is accessed, with the

expectation of it being of a non-null type.

The fourth step, checking for integer values beyond a signed 64-bit integer’s range, is an

example of another possible source of issues for parsing of the values. This is not an

issue for IntelMQ, as the Python int class supports arbitrarily large integers, however

parsers expecting integers to fit within a 64-bit signed integers would run into issues

with this.

The merging of the dictionaries is useful as they typically have the same or similar

format of data. For confirmation of this, they were deduplicated, but not merged, at the

previous step.

To actually do all of this, yet another recursive function is used for converting the super-

object into an Elasticsearch document class file. To simplify things, there is a helper

class, “Nested”, which is used for dictionary values.

For the template format, for each line, two main factors are considered: the types

represented in a field, and whether the field can contain multiple values (such as a list of

hostnames rather than one hostname). Some fields may also be tagged, in the form of

26

appended comment strings after the field name, as well as with its path being placed in a

list after the template.

The class comes with a custom __str__ method (used when converting an object into a

string), which converts its contained data to text to the template’s format, and the

attributes “multi”, “properties“ and “level”. “multi” specifies whether the value is a

single object or a list of objects, “properties” is a dictionary containing the properties of

the wrapped dictionary, and “level” is the indentation level the dictionary will be written

at.

The recursive function is passed the root of the super-object, and it iterates through its

keys and values. In case of dictionary values, indentation is incremented and they are

recursed into, with a “Nested” element being returned. In the case of lists, a string is

returned, with results varying depending on the values in the list.

First, a set of all types occurring within the list is calculated. From there, three cases are

first considered. If there is a null value within the set of types, the field is marked as

nullable. Second, if the set of types is just integers and floating-point numbers, the

values are marked as such and set to be “upgraded” to floating-point numbers. If no

float upgrade is performed and integers are included in the types, a check is performed

to see if any of the integers are beyond the range of signed 64-bit integers.

Next, a return value is chosen, depending on the types contained within the input list. If

only list elements exist within, a new list with all of the elements within the sublists is

generated and the function calls itself recursively, with the field being marked as

containing multiple values. If only dictionaries are contained, they are merged together

and the function is called recursively on it. In case there are only two (non-null) types,

with one of them being the list type, the type is marked as containing both single and

multi-values and a type is taken based on the non-list type. For a single (non-null) type,

the template type string matching that type is returned. Finally, for an empty set of (non-

null) types, it is marked as a generic “object”.

The result, based on this dataset and with a number of measures taken to reduce the end

result’s size, was a template with 3476 fields, including 88 directly in the root object,

27

567 containing objects/subsections, and 2910 containing other types of values. A

snippet of the schema is given in appendix 4, and in template.py within the repository.

4.3.4 Issues identified in the schema

Having collected all of this data, a collection of issues with the automated processing of

the format, making automated processing of the data an issue.

Some info on fields with type issues:

• 29 fields were found to be strings in some banners and numeric types (integer or

float) in others,

• 28 fields were found to contain integer values in some banners and floating-

point values in others,

• 5 fields were found to contain integers that would overflow a 64-bit signed

integer,

• 65 fields were found to occasionally contain null values,

• 14 fields were found to occasionally contain subsections, occasionally some

other value (usually null),

• 13 fields were found to have both single value types (e.g a string) and list value

types (e.g list of strings),

• 11 sections were determined to be better served being converted from key-value

pairs into lists of objects with the key being a field of the associated object

Several workarounds for type issues had to be implemented within the code. First, as a

general issue, the same field holding different types of data can cause type safety issues

in some setups (as was extrapolated in 4.2.3) unless special care is taken to handle this.

The only solution to this is to not trust most fields to hold predictable types.

Aside from “leaf” fields only ever containing terminal values (integer, floating-point

number, string null, list), some fields which usually contained subsections were

occasionally found to be marked with null or even completely different types. Instances

28

of possible null values are “ssl” → “cipher” and “ssl” → “dhparams”. An example of a

completely different type is “redis” → “clients”, which can be a subsection with 4-6

attributes giving some metadata or a list of objects, each with 18-23 attributes detailing

info on each client.

A number of subsections had an unfortunate format where one piece of information

unique to the a discrete data point was set as the key, and the rest of the data was set as

the value. An example of this is the “vulns” section directly under the root object. The

info for one vulnerability exists in two pieces within one key-value pair: an identifier,

such as a CVE ID like CVE-2013-1643, as the key, and a selection of other info on the

vulnerability, such as the CVSS score, a short summary and references like security

advisories and exploit PoCs, as the value. This splitting of values may significantly

increases the number of fields perceived to exist within the Shodan banner, especially in

cases where the value considered as the key is entirely service-configurable and likely

to differ from host to host, such as the names of database tables and indices. This

increase in perceived field count may cause issues in some setups, such as if the banners

were to be directly fed into a NoSQL database with automatic schema discovery. In

Elasticsearch, this significant increase in field names can cause a problem known as a

mapping explosion, which significantly decreases the performance of the database or

may even crash it. A solution to this for users of Shodan Stream would be to identify

these problematic sections and handle them through means such as converting the

dictionary’s key-value pairs into a list of the values with the data present in the key

expressed within the value section it was assigned to. As an example, by converting the

vulnerability identifier → vulnerability info mapping in “vulns” to a list of vulnerability

info objects, each with a “identifier” attribute with the value coming from the key (e.g

CVE-2013-1643).

At the very least the “ntp” and “rsync” sections consistently produced junk fields. For

“ntp”, these were identifiable by their names, consisting of only digits and the string

“refid”, or the string “refid” followed by numbers. For “rsync”, a variety of strings were

identified as modules, with most of their names indicating they are greeting messages or

chunks thereof. Examples of this are “This is stage.opensuse.org, restricted rsync server

of openSUSE.org.” and “questions should be addressed to [...].“ (email address

29

redacted). Besides this, some keys within banners were simply empty strings, which

may cause errors or confusion.

Other small quirks that anyone making use of the data should also be wary of also exist.

One example is the Redis client addresses being a list of two values, with the options

being a hostname and port, or an absolute filesystem path and 0, or a question mark and

zero. Another is that a number of integer fields contain values beyond the range of a 64-

bit signed integer, which may be a reasonable type to assume to be able to fit integer

values. Using unsigned 64-bit integers instead would cause issues in places where

negative numbers may appear, and hence would not be an appropriate alternative.

Widespread use of bigint types is also hampered by the existence of mixed integer/float

valued fields.

For human parsing, the data expressed in a banner clear enough. However, all the issues

above result in the Shodan banners being tricky to automatically parse on a large scale.

Manually parsing the format in a comprehensive manner is near-impossible due to the

quantity of and variance in the banner data, and automatically generated schemas would

become massive off the top of the number of objects with automatically generated

field/section names. They may also have issues with the field type quirks. As such,

custom software, with iterative tweaking to handle any newly discovered issues, as was

done here, appears to be a good solution. Due to the issues listed, the template contains

lists of fields which are known to need different types of special handling. Instances of

special handling would be type conversions, converting key-value mappings into lists of

values, converting single elements into lists, potentially converting overflowing integers

into strings, or explicitly avoiding null values for some fields.

The data within the template is very likely not conclusive and as these issues are

pervasive, any parser would require highly robust handling of data issues and would

work better with known data types.

In order to reduce noise in the output template, code for preprocessing the data to

remove some of the above issues was implemented. This is visible in transformations.py

in the repository.

30

4.4 Mapping the Shodan banner schema to the IntelMQ format

This is the first step which produces practical results. For this, the template and super-

object can be analysed together to determine fields which IntelMQ users would benefit

from having. In particular, this means:

• The data in the fields extracted from the banner should be useful in security-

related analysis and data processing,

• The values and types thereof of the fields should be relatively stable

A description of how the Shodan parser works is given in section 4.1. There, a problem

is stated: there is a method of performing specific conversions on some fields, though

this only considers the key of the attribute within the deepest object it is at and not the

path to it.

When recursively walking through the “MAPPING” object and the banner, the values in

some fields may for some reason need to be converted in some way. As an example, the

character sequence “+00” is appended to a timestamp in the root object in order to make

it clear its timezone is UTC and it can be automatically converted into an IntelMQ-

compatible timestamp. However, in order to perform this conversion, only the key of

the field is considered, while the location of the field in relation to the rest of the banner

is not, which could become problematic.

 For instance, besides the “timestamp” attribute within the root object, there is also a

timestamp attribute at “elasticsearch” → “cluster” → “timestamp”. If both of them were

to be included in the IntelMQ event and the latter field already had the “+00” suffix, the

conversion would break that value. Similarly, if some field inside a subsection, e.g

“section” → “subsection” → “foo” were to be converted, a comment explaining the

location of “foo” would be necessary, as the full path would not be known from the

field name “foo” alone.

In order to do this, each recursive call from within the recursive mapping application

function keeps track of a sequence of key values, leading all the way to the current

object being worked on. This is used as the key and the keys are joined together with

dots as separators, leading to “timestamp” still being identified by “timestamp” and

31

“section” → “subsection” → “foo” being identified by “section.subsection.foo” rather

than “foo”.

After this, a selection of the mapping which matched the requirements on the data fields

given above were added to the mapping. The results of these changes are visible within

the git history of the IntelMQ Github, with a majority of the existing mappings (as of

the time of writing) being provided by the results of this work. A link of these results

from the time of writing are provided here.

The code used for generating the mapping, described above, is available in full here:

https://github.com/monoidic/shodan-schema

The results of the changes, as of the time of writing, are visible here.

https://github.com/certtools/intelmq/blame/

5c90ed4591b2f450b7761f32e71095c821fe7d35/intelmq/bots/parsers/shodan/parser.py

32

https://github.com/monoidic/shodan-schema

5 Filtering Shodan banners

Due to the far-reaching nature of Shodan’s scans, much of what it captures may not be

useful in identifying services of interest. Examples of what would make a service

interesting are that it is (potentially) vulnerable, or that it is generally accepted not

considered acceptable to be on the public internet for other reasons. A banner which

does not match any of the filters would be discarded.

Using the mapping and data from before, some common issues with services which

Shodan provides info on can be mapped out. As a starting point, the following 5 filters

were considered:

• The scanned service is from an explicitly created set of services which should

not be exposed to the internet (databases, ICS devices, remote control protocols

like RDP or VNC etc.)

• The service was marked by Shodan as being a database, already compromised,

or an ICS service

• The service provides open DNS resolution over UDP (potentially opening itself

to being used in DNS-based DDoS amplification attacks)

• The service is marked with one or more vulnerabilities, with options to match

any vulnerabilities or only those confirmed by Shodan to exist on the service

• The service’s TLS certificate has expired

Though this list could be expanded, a more important consideration is to make the

system performing this filtering expandable. That is, it should be simple to add new

filtering methods or discard ones that are no longer relevant. Aside from that, any and

all filtering methods matching the banner to should be marked in the output, as the

reason for a banner having passed through the filter may become more difficult to

distinguish as more filtering methods are implemented down the road.

33

5.1 Attempt one – specialized Shodan expert bot

My first approach was to introduce a new bot with the specific goal of performing

filtering on IntelMQ events coming from Shodan. Considering the importance of

configurability, the goal was that a developer could, with minimal effort, introduce a

new filter.

For this, a class was designed which would have a number of class methods, each taking

an IntelMQ event containing the Shodan banner data and returning a boolean value

representing whether, according to that filtering method, the event should be passed on

or not. These methods would represent the filtering methods described above. The

relatively simple interface would make this easy to extend. To ensure a filtering method

is checked, the method would have to be added to a list of methods, existing as an

attribute of the list. For simplicity, filters that are always enabled could be enabled by

adding the “@add_filter” decorator on the method. Finally, a method would, given an

event, apply all given filters to the input event and return a list of strings representing

the names of methods which were matched so they could be added to the event.

For the IntelMQ bot class, there would be a standard bot initialization method which

would take care of configuring the filter with any admin-defined configuration options.

Examples of where extra configurations could exist would be for enabling or disabling

optional filters or, for instance, specifying the list of services that should be matched by

the first filtering method described.

This bot was fully implemented1. However, a core developer pointed out2 that this bot

may not be very useful to IntelMQ in general due to the how specific to Shodan it is. An

alternative tool for doing this was named: the Sieve expert bot. It was also mentioned,

however, that some of what the Shodan expert bot implemented would not work

without improvements to the Sieve expert bot.

Though there was some time put into this bot, it was clear that a more general solution

to this filtering problem would prove far more beneficial than a solution only benefitting

Shodan Stream.

1 https://github.com/certtools/intelmq/commit/ea7a1f75157cc8b89bb4ab109a0b418fb4fd9073
2 https://github.com/certtools/intelmq/pull/1835

34

https://github.com/certtools/intelmq/pull/1835
https://github.com/certtools/intelmq/commit/ea7a1f75157cc8b89bb4ab109a0b418fb4fd9073

5.2 Attempt two – Sieve bot DSL improvements

While I had not considered it earlier, IntelMQ offers a powerful bot: the Sieve bot. It

implements a language reminiscent of the Sieve language, specified in RFC 5228,

modified for use within IntelMQ. The language consists of match expressions and

statements. Match expressions are checks on the data in the banner, which may be

composed together using the logic operators && and || as well as parentheses.

Statements are actions performed on the data, such as adding, overwriting or deleting

key-value pairs from the event.

Improving this tool would more closely align with the goal of making an extensible

tool. The end result would be that an existing fairly flexible tool being more useful for a

variety of uses, including for Shodan Stream events, rather than that there is a new tool

only useful for Shodan, and even then only after heavy changes to it.

Upon closer look, however, the DSL was missing some vital features. I would not even

be able to implement any of the original 5 filtering methods described above without

first extending the DSL. This would come in two main parts: matches and actions.

There were matches for string-valued fields (exact or regex match of the value),

number-valued fields (comparison of numeric values) IP addresses (checks if an address

is located within some range) and existential checks on the fields. The matches I

described, however, used list- and boolean-valued fields. As such, matches for those

fields would have to be implemented.

As for actions, there are some for manipulating string-based values into field, removing

fields, and stopping further execution of the sieve file while still passing the event on or

dropping it entirely. Actions for creating and appending to lists of values in fields of the

event (and not just strings) would be useful. This would allow for strings identifying all

filter methods which were applied to be collected into a field.

The DSL within the Sieve bot is implemented using the TextX Python library, and it

exists in two parts. The first part is a grammar file describing the syntax of the DSL.

Based on this, the sieve file used to configure the bot is parsed into an AST. This AST

describes the structure of the code given in the user-written sieve file in a tree structure.

35

This AST is then walked through whenever an event is passed in, with conditional paths

followed and actions taken in the code depending on the data.

In the grammar file, a total of 7 new operators were added, those

being :equals, :setequals, :overlaps, :subsetof and :supersetof for list values, and ==

and != for booleans (== and != appear for other types as well). The types TypedValue

and ListValue were also added, representing a single value of either a floating-point,

integer, boolean or string value for the former, and a list of such values for the latter.

These are used for all of the matches and actions besides the boolean matches.

The new list-based matches are:

• :equals, which compares for exact equality of all types and values in the list in

the field and the one passed as an argument,

• :setequals tests for the set of all values, ignoring duplicates and order, between

the field value and the argument being equal,

• :overlaps tests if there are any elements occurring both within the field value and

the argument list,

• :subsetof tests if the field value contains a subset of the values within the

argument,

• :supersetof tests if the field value contains a superset of the values within the

argument

The boolean matches are comparatively simpler, with the operators == and != testing

for equality and inequality between a boolean in a field value, with the possible

arguments true and false.

The actions append and append! actions were added. The former appends to list values,

creates new lists if the the the key is not defined in the event, and silently ignores non-

list values. append! works similarly, but in the case of an existing non-list value, it

replaces the field with a list of two values: the original value, and the appended value.

36

The add, add! and update actions were updated to be able to allow non-string values,

namely booleans, integers and floating-point values, to be set in each banner.

Finally, some bigger changes to the syntax were implemented. First off, any expression

(or collection thereof enclosed in brackets) can be negated by prepending it with an

exclamation mark (!), allowing for more expressive rules than before and removing the

need for negated variants of each operator, such as :contains and its

negated :notcontains variant. This was accomplished through changes in the grammar

file, adding an optional negation token to expressions, and negating the results of the

expression if it exists.

Second, conditions (if/elif/else) and actions can be mixed more freely. Previously, the

main scope of the script could either only contain actions, or conditionals which contain

actions, but no nested conditions. Now, however, conditionals can be nested to arbitrary

depths, and actions and conditions may appear in the same scope. This was done by

categorizing both conditionals and actions as statements in the grammar file and

modifying the control flow in the code to handle the changes in the AST.

With these changes implemented in the Sieve bot1, it is, in turn, possible to use the 5

example filter methods within IntelMQ, as seen in appendix 5. More importantly,

however, it is now much more capable of filtering non-string data, being able to match

on numeric types (integers and floating-point numbers), strings, IP addresses, lists and

booleans, more than the full range of types given within a JSON object. Complex rules,

which would previously have required workarounds such as the use of multiple Sieve

bots conditionally passing messages to each other, and rules which always match true in

order to introduce invariant actions alongside variant actions, are now unnecessary as

well.

1 https://github.com/certtools/intelmq/pull/1895, https://github.com/certtools/intelmq/pull/1923

37

https://github.com/certtools/intelmq/pull/1895

6 Summary

I started off with one problem: the integration between Shodan Stream and IntelMQ was

far from as good as it could be. From there, I divided the issue into two parts, and set

out to make them as useful for issues not directly relating to the integration between

Shodan and IntelMQ. This involved exploratory research into how best to process and

describe JSON-based data structures with a variety of irregularities between different

samples, and was in part a case study on how data filtering and Shodan data parsing is

done in IntelMQ and how it could be improved, with this work being submitted to the

upstream.

For both tasks, initial attempts were made at using different tools than what was

eventually decided upon. For mapping the schema, using just the existing schema

mapping functionality of Elasticsearch was deemed insufficient and ineffective. And for

filtering the Shodan data flowing through IntelMQ, a specialized bot was deemed both

ineffective, as to deliver on the requirements of flexibility, it would be no more than a

template for a bot, to be modified actively, and modifying the bot itself could cause

unexpected issues, such as if two or more are expected to have differing configurations.

Finally, better solutions to both issues were developed. A proof-of-concept solution for

collecting feed data, processing it to receive a usable schema and analyse the data to

determine fields with some inconsistencies. This was used to improve the Shodan parser

within IntelMQ, as a practical usable example of its usefulness and a result of this work.

For filtering the data within IntelMQ specifically, a DSL within it capable of

performing filtering duties was improved significantly, allowing for more functionality

and ease of use, through better flow control capabilities.

A number of issues in the Shodan data format were documented, such as type safety or

null values in unexpected places. To counter these issues, a number of preprocessing

methods were also given, which remove or mitigate these issues.

38

In total, the IntelMQ Shodan parser’s support for data fields rose dramatically, with 58

fields supported before and 379 after this work, alongside an update from 3 to 26

defined protocols and some code quality changes.

This work could still, however, be continued. The 26GB dataset collected over the

course of this work likely did not contain the full range of the schema, and it could also

be updated as Shodan adds support for new services or returns more data on existing

ones in the future. Hence, a piece of software continuously taking data from the feed to

update a generated schema, based on this work, could be made. Based on the schema,

work could also be done to improve other software to make more/better use of the data

received from Shodan.

Besides that, as this work was in part explorative, not much care was put into

optimization. Storing all of the data in data structures within memory was convenient

for testing new ideas, though increasingly memory-expensive as more data was

collected. A solution offloading storage to a database, while taking care to handle issues

in the data similar to those discovered in this work, would likely be more performant

and less resource-expensive.

39

References

[1] S. Wagner and B. Schacht, IntelMQ Shodan parser.
https://github.com/certtools/intelmq/blob/2255206ffd2f8559983fc5f4ae96c8a867216915/
intelmq/bots/parsers/shodan/parser.py . Accessed: 2021-05-01

[2] Various contributors, IntelMQ Sieve expert.
https://github.com/certtools/intelmq/tree/9d224f90debc08fec705691d65fc59940d18daa1/
intelmq/bots/experts/sieve . Accessed: 2021-05-01

[3] S. Wagner, README of IntelMQ.
https://github.com/certtools/intelmq/blob/82b174fe6c5587a17c0333c7e984770c9e8507c5
/README.rst . Accessed: 2021-05-01

[4] European Union Agency for Cybersecurity, “Incident Handling Automation”.
https://www.enisa.europa.eu/topics/csirt-cert-services/community-projects/incident-
handling-automation . Accessed: 2021-05-01

[5] CSIRT-KIT website. https://csirt-kit.org/ . Accessed: 2021-05-01

[6] Shodan Inc, “API Reference – Clients/Libraries” https://developer.shodan.io/api/clients .
Accessed: 2021-05-01

[7] F. Hellmann, P. Hellmann, “Implications of vulnerable internetconnected smart home
devices”, BsC thesis, Faculty of Computing, Blekinge Institute of Technology,
Karlskrona, Sweden, 2017

[8] H. Wang & Rootkiter, “BCMPUPnP_Hunter: A 100k Botnet Turns Home Routers to
Email Spammers”, https://blog.netlab.360.com/bcmpupnp_hunter-a-100k-botnet-turns-
home-routers-to-email-spammers-en/ . Accessed: 2021-05-01

[9] S. Yerushalmi & O. Shaty, “CrimeOps of the KashmirBlack Botnet – Part II”,
https://www.imperva.com/blog/crimeops-of-the-kashmirblack-botnet-part-ii/ . Accessed:
2021-05-01

[10] R. C. Bodenheim, “Impact of the Shodan Computer Search Engine on Internet-facing
Industrial Control System Devices”, thesis, Dept. of Electrical and Computer
Engineering, Air Force Institute of Technology, Ohio, USA, 2014

40

https://www.imperva.com/blog/crimeops-of-the-kashmirblack-botnet-part-ii/
https://blog.netlab.360.com/bcmpupnp_hunter-a-100k-botnet-turns-home-routers-to-email-spammers-en/
https://blog.netlab.360.com/bcmpupnp_hunter-a-100k-botnet-turns-home-routers-to-email-spammers-en/
https://developer.shodan.io/api/clients
https://csirt-kit.org/
https://www.enisa.europa.eu/topics/csirt-cert-services/community-projects/incident-handling-automation
https://www.enisa.europa.eu/topics/csirt-cert-services/community-projects/incident-handling-automation
https://github.com/certtools/intelmq/blob/82b174fe6c5587a17c0333c7e984770c9e8507c5/README.rst
https://github.com/certtools/intelmq/blob/82b174fe6c5587a17c0333c7e984770c9e8507c5/README.rst
https://github.com/certtools/intelmq/tree/9d224f90debc08fec705691d65fc59940d18daa1/intelmq/bots/experts/sieve
https://github.com/certtools/intelmq/tree/9d224f90debc08fec705691d65fc59940d18daa1/intelmq/bots/experts/sieve
https://github.com/certtools/intelmq/blob/2255206ffd2f8559983fc5f4ae96c8a867216915/intelmq/bots/parsers/shodan/parser.py
https://github.com/certtools/intelmq/blob/2255206ffd2f8559983fc5f4ae96c8a867216915/intelmq/bots/parsers/shodan/parser.py

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I, Mikk Margus Möll,

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Improving compatibility between Shodan Stream and IntelMQ”, supervised

by Toomas Lepik

1.1 to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

17.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean,
except in case of the university's right to reproduce the thesis for preservation purposes only. If a
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s)
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

41

Appendix 2 – Data flow graph

42

Figure 1: A visualization of the
flow of data from Shodan through

IntelMQ

Appendix 3.1 – Figure with an example of Shodan banner

data collection

43

Figure 2: Visual representation of a set of input data and the desired output data

Appendix 3.2 – Textual example of Shodan banner schema

collection

Inputs

{

“dns”: {

“recursive”: true

}

}

{

“dns”: {

“hostname”: “ns1.example.com”,

“recursive”: false

}

}

{

“dns”: {

“version”: “NSD 4.3.6”,

“recursive”: false

}

}

{

“dns”: {

“version”: “NSD 4.3.4”,

“recursive”: false

}

}

Output

{

“dns”: {

“hostname”: [“ns1.example.com”],

“version”: [“NSD 4.3.4”, “NSD 4.3.6”],

“recursive”: [false, true]

}

}

44

Appendix 4 – Sieve ruleset example

if extra.shodan.unique_keys :overlaps [

 'coap', 'elastic', 'etcd', 'ethernetip', 'influxdb', 'iscsi',
'msrpc',

 'mssql', 'netbios', 'redis', 'rsync', 'smb', 'snmp',
'unitronics_pcom', 'upnp'

] {

 append extra.shodan_filter.matched_filters 'has_filtered_section'

}

if extra.tags :overlaps ['database', 'compromised', 'ics'] {

 append extra.shodan_filter.matched_filters 'has_filtered_tag'

}

if extra.dns.recursive == true && protocol.transport == 'udp' {

 append extra.shodan_filter.matched_filters 'open_recursive_dns'

}

if :exists extra.verified_vulns && ! extra.verified_vulns :equals [] {

 append extra.shodan_filter.matched_filters 'has_verified_vulns'

}

if :exists extra.vulns && ! extra.vulns :equals [] {

 append extra.shodan_filter.matched_filters 'has_vulns'

}

if extra.ssl.cert.expired == true {

 append extra.shodan_filter.matched_filters 'expired_cert'

}

45

Appendix 5 – Snippets of the schema

 ripple = Nested(properties={

 "peers": Nested(multi=True, properties={

 "ip": Text(),

 "public_key": Text(),

 "type": Text(),

 "uptime": Long(),

 "version": Text(),

 "complete_ledgers": Text(),

 "port": Text(), #multiple types: int, str

 })

 })

...

 snmp = Nested(properties={

 "contact": Text(), #nullable,

 "description": Text(), #nullable,

 "location": Text(), #nullable,

 "name": Text(), #nullable,

 "objectid": Text(), #nullable,

 "ordescr": Text(),

 "orid": Text(),

 "orindex": Text(),

 "orlastchange": Text(),

 "oruptime": Text(),

 "services": Text(), #nullable,

 "uptime": Text(), #nullable

 })

46

	1 Introduction 10
	1.1 Introduction 10
	1.2 Methodology 11

	2 Background 12
	2.1 IntelMQ 12
	2.2 Use of IntelMQ for cyber intelligence 13
	2.3 AbuseHelper 14
	2.4 Shodan 14
	2.5 Use of Shodan for cyber intelligence 15
	2.6 Problem setup 16

	3 Previous work 18
	3.1 Shodan schema mapping 18

	4 Format of Shodan banner data 20
	4.1 General format 20
	4.2 How IntelMQ parses Shodan banners 21
	4.3 Automatically mapping the Shodan Stream schema 22
	4.4 Mapping the Shodan banner schema to the IntelMQ format 31

	5 Filtering Shodan banners 33
	5.1 Attempt one – specialized Shodan expert bot 34
	5.2 Attempt two – Sieve bot DSL improvements 35

	6 Summary 38
	References 40
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis 41
	Appendix 2 – Data flow graph 42
	Appendix 3.1 – Figure with an example of Shodan banner data collection 43
	Appendix 3.2 – Textual example of Shodan banner schema collection 44
	Appendix 4 – Sieve ruleset example 45
	Appendix 5 – Snippets of the schema 46
	1 Introduction
	1.1 Introduction
	1.2 Methodology

	2 Background
	2.1 IntelMQ
	2.2 Use of IntelMQ for cyber intelligence
	2.3 AbuseHelper
	2.4 Shodan
	2.5 Use of Shodan for cyber intelligence
	2.6 Problem setup

	3 Previous work
	3.1 Shodan schema mapping

	4 Format of Shodan banner data
	4.1 General format
	4.2 How IntelMQ parses Shodan banners
	4.3 Automatically mapping the Shodan Stream schema
	4.3.1 Collecting a dataset
	4.3.2 Merging the banners
	4.3.3 Generating a template
	4.3.4 Issues identified in the schema

	4.4 Mapping the Shodan banner schema to the IntelMQ format

	5 Filtering Shodan banners
	5.1 Attempt one – specialized Shodan expert bot
	5.2 Attempt two – Sieve bot DSL improvements

	6 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Data flow graph
	Appendix 3.1 – Figure with an example of Shodan banner data collection
	Appendix 3.2 – Textual example of Shodan banner schema collection
	Appendix 4 – Sieve ruleset example
	Appendix 5 – Snippets of the schema

