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Abstract

I analyze the structure of law in the countries of the United Kingdom and
Estonia. I study the topological structure of legal acts. In the network of a
legal act, a vertex is a section of the act and an edge is a directed reference
from a section of that legal act to another section of the same legal act. I
observe the topological structure using visualization and statistical network
measures. I look at the degrees of vertices and study the degree distribution.
I calculate the clustering coe�cient for the graph and its vertices. I also
calculate the average shortest path, diameter and radius of the graph. I
observe the robustness of the network by removing nodes from the network
randomly or by targeting important nodes. I observe the degree correlation
of the graph. I conclude that legal acts are scale-free graphs like many other
complex system networks. As an additional interdisciplinary experiment, I
compare the topological structure of the UK law with the measurements of
the impact of law by the World Bank Group in the Doing Business report.

This thesis is written in English and is 52 pages long, including 5 chapters,
23 �gures and 6 tables.



Annotatsioon
Seaduse arvutusliku keerukuse hindamine graa�teooria ja

tekstianalüütika abil

Analüüsin seaduse struktuuri Suurbritannia ja Eesti seadustes. Uurin sea-
dusaktide topoloogilist struktuuri. Seadusakti graa�s on üks tipp seaduseakti
peatükk ja üks kaar on seadusakti-sisene viide peatükilt peatükile. Vaatlen
võrkude topoloogilist struktuuri, kasutades visualiseerimist ja arvutades võr-
gu statistilisi mõõteid. Uurin tippude astmeid ja astmete jaotust. Järeldan,
et astmete jaotus järgib power-law funktsiooni ja võrgud on skaalata (scale-
free) struktuurid. Arvutan klastrikoe�tsiendi (clustering coe�cient) nii graa-
�le kui ka tippudele. Leian keskmise lühima tee, graa� diameetri ja raadiuse.
Järeldan, et Inglismaa seadusi ei saa lugeda väikse-maailma võrkudeks. Vaat-
len graa� vastupidavust vigadele ja rünnakutele, eemaldades tippe, kas ju-
huslikult või tähtsamaid valides. Vastupidavuse analüüsis tuleb samuti välja,
et tegemist on skaalata (scale-free) graa�dega nagu ka muude valdkondade
keerulised graa�d. Uurin tippude naabrite astmeid. Arvutan Suurbritannia
seadustele Andres Kütti keerukusmõõte. Leian, et Eesti seadused on märki-
misväärselt pisemad kui Suurbritannia seadused ja ka natuke hierarhilisemad.
Eraldiseisva interdistsiplinaarse eksperimendina võrdlen minu graa�de topo-
loogilist struktuuri Maailmapanga tehtud mõõdetega seaduse mõjust nende
aruandes Doing Business. Võtan seadused, mida kasutati Doing Business aru-
ande loomiseks ja arvutan nende jaoks topoloogilise struktuuri mõõtmeid.
Seejärel võrdlen ma neid mõõtmeid Doing Business edukuse koondarvuga,
mille Maailmapank välja mõtles. Leian, et ei ilmne selget mustrit võrkude to-
poloogiliste struktuuride ja Doing Business aruande tulemuste vahel. Võrdlen
ka seaduste võrkude topoloogilist struktuuri muude domeenide topoloogiliste
struktuuridega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 52 leheküljel, 5
peatükki, 23 joonist ja 6 tabelit.



Nomenclature

API Application programming interface

DC Detached Component

DSM Design Structure Matrix [1]

GCC Giant Connected Component or Giant Weakly Connected Compo-
nent

GSCC Giant strongly connected component

LZMA Lempel�Ziv�Markov chain algorithm

P2P Peer-to-peer

URL Uniform Resource Locator

XML Extensible Markup Language
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1 Introduction

Networks are a research topic that has been well studied and applied into
many complex systems [2�16]. They are a mathematical tool that allows to
abstract the role of an actor to a simple model and allow the study of the
complex system as a whole. While the study of a single actor is valuable,
study of the system as a whole may reveal other interesting behavior. After
simplifying a domain into a network, one can use visualization tools like
drawing a graph, building an adjacency matrix or constructing a heatmap.
Or one can use statistical methods to condense a behavior of the graph into
a single number or easily visualizable diagram.

Looking at the degree distribution of a network, the network falls into
one of two categories: homogeneous networks and heterogeneous networks.
The degree of a node is the number of its neighbors.

Homogeneous networks are well simulated using completely random net-
works. A homogeneous network will usually have a few nodes with a very
low degree, a few nodes with a very large degree and a lot of nodes having
a somewhat average degree. On a degree distribution this will look like a
Poisson or normal distribution. An example of this network can probably be
seen in humans and their connections.

Heterogeneous networks will have a lot of nodes with low degrees and a
few nodes with a very high degree. On a degree distribution, this network
is characterized by a constantly decaying line. The degree distribution likely
follows a power-law function and if so, is called a scale-free network. Many
complex system networks are scale-free networks, for example the World
Wide Web [9].

There are also other di�erences between homogeneous networks and het-
erogeneous networks that can be observed with statistical measures: robust-
ness simulation behavior, betweenness, clustering coe�cient and more.

This work is exploring the topological structure of complex previously
unstudied networks. There has been other work in the domain of law, but
with a di�erent focus and data set [2�16]. I study the network of references
between sections in the legal acts of the United Kingdom and Estonia. I also
try to compare the topological structure of UK law with the impact of that
law. The source code is online and available on GitHub.1. The main goals
of this thesis are:

1https://github.com/raigoinabox/tallinn-tech-legislation-parser
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• acquisition of the data, that is, examples of the UK and Estonian law;

• parsing of references in the UK and Estonian law;

• a thorough statistical analysis of the network of references;

• as an additional interdisciplinary experiment, a comparison of the topo-
logical structure of UK networks to the results of the Doing Business
report.

In section 2, I describe work done by others. In section 3, I explain how I
obtained the empirical data, give some simple information about the data
and describe the methodologies used in this work. In section 4, I describe the
topological structure of UK and Estonian laws. I also compare the topological
structure of UK law with the results of the Doing Business report. In section
5, I summarize the results and propose possible further work.
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2 Related work

I will �rst present research that has been done in other domains using topo-
logical structure analysis, followed by research done using networks in the
domain of law.

2.1 Topological structure analysis

Bu et al [2] analyzed the topological structure of budding yeast. While
previous research focused on individual proteins or protein pairs, they wished
to study the interaction of proteins as a whole. They used spectral analysis
and clustering coe�cient to discover quasi-cliques and quasi-bipartites in
the network. Then, using a database of known functions of proteins, they
categorized the quasi-components. They were able to con�rm the �ndings
of others, identify proteins whose attributed functions may be incorrect and
identify functions of new proteins that were not yet identi�ed.

Ripeanu, Foster and Iamnitchi [3] studied the topological structure of the
peer-to-peer Gnutella network. They built a crawler to discover the struc-
ture of the P2P network and analyzed it. From the topological structure they
could make conclusions about network performance, reliability and scalabil-
ity. They discovered that the Gnutella P2P structure does not match well
with the underlying internet structure and made suggestions for improve-
ment.

Fagiolo, Reyes and Schiavo [4] analyzed the World Trade Web and its
evolution over time. TheWorld TradeWeb is the network of countries trading
with each other. They applied weighted-network analysis to verify the results
of other research on binary World Trade Web networks. They discovered,
contrary to the results of previous studies, that most links are weak links and
that countries with strong trade relationships are more clustered.

2.2 Legal act interconnection networks

Liiv, Vedeshin and Täks [17] studied the visualization of Estonian law. Sim-
ilar to this work, they used references between sections to transform a legal
act into a network. Natural text parsing was used to �nd these references
and their location within the text. They used conformity analysis to cluster
similar nodes together. Clustering similar nodes together made them easier
to visualize and to visually notice patterns within the network.
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Bourcier and Mazzega [18] studied codi�ed French law. They had gained
access to the codi�ed French Environmental Code (LEC). LEC was divided
into an eight-layered hierarchy: parts, books, titles, chapters, sections, sub-
sections, paragraphs and articles, where each lower-layer object is a part of
the higher-layer object. They used text parsing to discover the topological
structure of LEC: they parsed out every type of object, its location and
references to articles. They discovered that the total number of each type of
object wasn't monotonously increasing, most articles were relatively simple
and there were a few complex articles where complexity seemed to gather.

Instead of using references to create a graph, Täks et al [19] used the words
of laws to create connections. Legislation is normative creation � it creates
mostly compulsory norms for people to live by. They theorized that a norm is
a sentence in the natural language. They then also theorized that the largest
semantic value of the sentence is in the verbs and nouns. They collected
the word pairs in a sentence into a weighted network, where each node is
a word, a noun or a verb, and each edge connects two words. Each edge
has a weight equal to the number of times the two words appeared together.
This novel approach allowed them to study the topological structure of the
language used in law. For evaluation purposes they selected random acts
from Estonian law and compared them to each other using this language
network. They also built a tree of closest-connected Estonian legal acts. The
language network is useful as it reveals a hidden structure within law that
computers have not previously been able to easily access and study in such
a large scale.

This work is di�erent, as this is an empirical study. I focus on UK and
Estonian law and their reference networks. I also make a thorough study of
the topological structure of the legal acts and experimentally compare the
topological structure of UK law with the impact of UK law.
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3 Materials and methods

Legal acts data from the governments of the UK and Estonia was used to
create the networks. I use the inner structure of a legal act to create a
network. We look at the network of references from one section to another
within a legal act. A node is a section and an edge is a reference from one
section to another. We will look at the largest legal acts, that is, the laws
that have the most edges.

A network of law can be de�ned three ways, depending on the direction
of edges and simpli�cation.

The �rst de�nition is the simplest: a directed graph, where each refer-
ence is transformed into a directed link from the referencing section to the
referenced section.

The second de�nition is the same as the �rst, but duplicate edges are
merged and loops are removed. Duplicate edges are two or more edges that
have the same start node and the same end node. Loops are edges that begin
and end at the same node.

The third de�nition is the undirected version of the second de�nition. In
addition, we collapse together directed opposite edges (that is, edges that
connect the same two nodes, but the direction of these edges was opposite in
the directed graph) as they become duplicates after making them undirected.

This work will mostly use the second de�nition for topological structure
analysis. If the direction of edges is ignored, the third de�nition is used.

For UK law, it was possible to scan through the catalogue of law that
the British government has made available online. From those legal acts I
was able to select the largest laws for analysis. This was not possible with
Estonian law. The legal acts had to be manually entered into a database to
select the largest laws for analysis from that sample.

For UK law, I calculated the complexity index developed by Kütt [20].
This measure is described in subsection 3.3.

Also for UK law, I compared the topological structure with the results of
the Doing Business report. Doing Business is a report by the World Bank
Group that tries to characterize the impact of law on making business. It is
described in subsection 3.4.

The acquisition of UK law was done using a C program written by the
author and Estonian law was acquired in cooperation between this program
and Liiv et al's PHP program.
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Title Sections Links

Corporation Tax Act 2010 1930 5200
Income Tax Act 2007 1460 3970
Proceeds of Crime Act 2002 719 3650
Corporation Tax Act 2009 1400 3450
Companies Act 2006 1500 2600
Income Tax (Trading and Other Income) Act 2005 937 2360
Town and Country Planning (Scotland) Act 1997 341 1990
Criminal Procedure (Scotland) Act 1995 746 1840
Financial Services and Markets Act 2000 897 1710
Town and Country Planning Act 1990 455 1690

Table 1: Largest legal acts

3.1 UK law

The British government has made their catalogue of law available on the web
site http://www.legislation.gov.uk. It is possible to browse or search for
most English laws on that web site, using a web browser. The site also has
an API to search and browse laws in formats more easily understandable for
a computer.

The data was acquired in 2018. It contains all the law available on the
website at the time, that is 120 000 legal acts. I attempted to extract the
sections of each legal act. I succeed with 3300 acts and extract 130 000
sections in total.

3% of the legal acts are successfully parsed, but those acts are most likely
either so small, that they do not require their content to be distributed into
sections, or not in the format of the UK Public General Acts. Therefore
those laws are likely not large or not interesting for the general public.

On average each act has 1 section and on average each act with at least
one section has 39 sections.

References from one section to another within a document were extracted
from each section. I extract 260 000 references in total with 2 references per
section on average. 54 000 sections have at least one reference and those
sections have 5 references on average.

In summary, the ten largest legal acts are in table 1.

10

http://www.legislation.gov.uk


3.1.1 Data acquisition

The URL format for legislation.gov.uk is simple. Each legal act has a code
and two numbers associated with it. The code is a classi�er for the type of
document, the �rst number is the year the document was published, and the
second number is a serial number. The UK Public General Acts have the
code ukpga, Church Measures ukcm, UK Statutory Instruments uksi and so
on. The full list can be found at http://www.legislation.gov.uk/browse.

To get the URL of a legal act, these three identi�ers are appended as direc-
tory names. This will, by default, return the whole document. For example
the Data Protection Act 1998 has the URL http://www.legislation.gov.

uk/ukpga/1998/29.
The URL for the API is almost the same, but one also appends /data.

xml. The API URL for the same document is http://www.legislation.

gov.uk/ukpga/1998/29/data.xml. This query returns the contents of that
law document in a custom XML format.

While the previous query will return the current contents of the document,
I will also need to query the past contents of the document by a date. For
this I insert an ISO 8601 formatted date after the document serial code. To
query the Data Protection Act 1998 in the state it was in August 10, 2008
from the API, I create this URL: http://www.legislation.gov.uk/ukpga/
1998/29/2008-08-10/data.xml

I take advantage of this API to query a single whole law document with
my program. All successful queries are cached locally.

The next step is to try to transform the document from the XML format
into a directed graph where each node is a section in that document and each
edge is a reference from one section to another in that document.

The XML document is already slightly structured when we begin. The
contents of each section are in a tag with the attribute id=�section-x �, where
x is the section number. The text of the section is inside that tag and in the
text there may be some presentational tags for list points or subsections.

After parsing the XML document, the document is divided into sections
with each section containing legal text understandable for humans. We will
look for references to sections within that text.

I begin by trying to �nd every word section x or sections x within the
text, where x is a number. I then push the location into the real parser.
Parsing the section number can be complicated as there are many variations.

The section number might appear as a number like �56� or as a number
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and a subsection number or even multiple subsection numbers such as �56(a)�
or �56(a)(b)�. After the section number might come the words and, or or to.
All of them mean that there will be another section reference. With and and
or I merely need to add that second section reference. With to I will also
need add all the implicit references between the �rst and second references to
my list of edges. For example there may be sections 56 or 60 or there may be
sections 56 to 60. The words and, or or to may appear in any combination
and any number of times.

Finally the reference might actually be to another legislative document.
For consistency, references to outside documents were ignored. In that case
the reference will end with the words of The Law of Marriage or some other
legal act. If the word of occurs immediately after the list of references, those
references will be ignored. But sometimes the reference will also end with
the words of this Act. References with that speci�c phrase are not ignored.

After having parsed section references within the text for each section,
we now have a directed graph of sections referencing each other within the
document.

3.2 Estonian law

Liiv et al [17] built a parser of Estonian legal acts. They used it to create
the same network the author has created for UK law: each node is a section
and each link is a directed reference from section to section. This work uses
Liiv's shared parser to create similar networks for a handful of Estonian laws
and pick the largest one.

The largest law turned out to be Law of Obligations Act 2018. It has 384
sections and 492 references.

3.3 Complexity

Sinha [21] has developed a complexity index based on chemistry. He devel-
oped a simple equation where the complexity of a system can be expressed
as

C = C1 + C2 × C3

where C1 is the inner complexities of each component, C2 is the complex-
ities of interactions between each component and C3 is the complexity of the
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architecture of the system. They are each de�ned as

C1 =
n∑
i=1

αi

C2 =
n∑
i=1

n∑
j=1

βijAij

C3 = γE(A)

where n is the number of components, αi is the complexity of the com-
ponent i, βij is the interaction complexity between components i and j, A
is the DSM (Design Structure Matrix) of the system, γ = 1

n
is the scaling

factor and E(A) is the graph energy. The graph energy is de�ned as

E(A) =
n∑
i=1

σi

where σi is the i-th eigenvalue of the matrix. In total

C = C1 + C2 × C3

=
n∑
i=1

αi +

(
n∑
i=1

n∑
j=1

βijAij

)(
E(A)

n

)
(1)

αi and βij are domain-speci�c and are left for the implementer to de�ne.
He also does not de�ne how to construct the network of the system and
therefore, the Design Structure Matrix A.

Andres Kütt [20] has taken Sinha's work and developed de�nitions in the
domain of law for the variables not speci�ed by Sinha: αi, βij and the DSM
A.

�In contrast to both abstract ideas and domain-speci�c solutions,
Sinha provide an approach to complexity rooted in systems engi-
neering, a �eld focused on general socio-technical systems. Bor-
rowing from the �eld of chemistry, a complexity index is derived
that has been validated by further research.� [20]

Kütt constructed a three-layered approach, where each layer uses Sinha's
formula with di�erent components. At the highest layer, Kütt seeks the
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complexity of all of legislation in Estonia. He �nds the connections between
legal acts by laws referencing each other. This will form his network and his
DSM A. He uses text parsing for this. Kütt de�nes βij as

βij = max (αi, αj) cij (2)

where αi and αj are the complexities of legal acts and cij is the number of
references between the legal acts i and j. The challenge is then to obtain
the individual complexities of legal acts. He uses (1) again with the same
βij de�nition (2), but this time the components are sections and connections
are references between sections. To �nd the complexity of the individual
sections, if a section has subsections, he again uses (1) with (2) and with
connections as references between subsections. If a section does not have
subsections, he calculates the individual complexity using the same algorithm
as for subsections. To calculate the individual complexity of subsections, he
uses the subsections' legal text.

For text complexity, Kütt uses a similar approach to Kolmogorov com-
plexity [22]: he compares the existing text with the minimal encoding of
the text. If there is a lot of additional data in the text, it is unnecessarily
complex. He acquires the minimal encoding of the text by using LZMA com-
pression. To achieve more precise complexity calculation, the text should
be normalized to remove variation in di�erent word forms, like �is�, �was�
or �were�, and di�erent word lengths, like �car�, �bicycle� or �compression�.
First the text is lemmatized and then each word is replaced with a random
unicode character. The text complexity is de�ned as

Cm (t) =
|L (Φ (t))|
|Φ (t)|

where t is the text, Φ (t) is the normalized text and the L (x) is the LZMA
compression.

3.4 Doing Business data

World Bank Group has been publishing an annual report �Doing Business�
[23]. The report takes measurements of legislation in a large amount of coun-
tries to measure the impact of legislation on business. Doing Business has
a lot of metrics that have been sorted into categories. The Doing Business
categories are: Starting a Business, Dealing with Construction Permits, Get-
ting Electricity, Registering Property, Getting Credit, Protecting Minority
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Investors, Paying Taxes, Trading Across Borders, Enforcing Contracts, Re-
solving Insolvency.

Each metric also has a Distance to Frontier score.

�The distance to frontier score shows the distance of an economy
to the "frontier," which is derived from the most e�cient practice
or highest score achieved on each indicator.� [24]

The highest score is 100 and the lowest score is 0. The Distance To Frontier
score of a category is the average Distance To Frontier score of its metrics.

World Bank Group has been publishing this information since 2004 [25]
and it is available online.

World Bank Group also publishes online which laws in each country are
used for their measurements [26]. The categories represented there are not
all clearly mapped to Doing Business categories. Included in these results are
six categories that clearly map to earlier Doing Business categories: Starting
a Business, Registering Property, Getting Credit, Paying Taxes, Enforcing
Contracts, Trading across Borders. It was not possible to contact World
Bank Group for the missing information.

In these six categories it was possible to get a list of all the legal documents
pertaining to that category, to compare them to topological structure results.

Each legal document was transformed into a graph and topological struc-
ture measures were calculated, as well as Kütt's complexity index. The
complexity of the graph should also correlate with the di�culty a human
will have in understanding the document.

Five topological structure measures were used for legislation:

1. Average vertex degree

2. Average path length

3. Graph diameter

4. Graph clustering coe�cient

5. Andres Kütt complexity [20]

The measures were saved in a database table for later validation.
Results of each measure for the Doing Business category Starting a Busi-

ness can be seen in table 2. It shows the average measure across all the law
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Average
Path Length

Average
Vertex
Degree

Di-
ame-
ter

Global
Clustering
Coe�cient

Kütt
Complex-

ity
2004 1.57 1.24 4.00 0.09 335.69
2005 1.56 1.24 3.85 0.09 319.47
2006 1.56 1.24 3.85 0.09 319.23
2007 1.77 1.26 4.79 0.10 540.67
2008 1.75 1.25 4.71 0.10 538.17
2009 1.75 1.23 4.79 0.11 533.39
2010 1.74 1.24 4.79 0.10 540.81
2011 1.74 1.23 4.79 0.10 540.11
2012 1.74 1.24 4.79 0.10 543.46
2013 1.74 1.24 4.79 0.10 542.73
2014 1.76 1.25 4.79 0.10 560.38
2015 1.76 1.24 4.79 0.10 559.19
2016 1.76 1.23 4.64 0.10 569.39
2017 1.93 1.23 4.86 0.10 582.28
2018 1.94 1.23 4.86 0.10 585.85

Table 2: Topological structure measures for Starting a Business category
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Average
Path

Length

Average
Vertex
Degree

Di-
am-
eter

Global
Clustering
Coe�cient

Kütt
Com-

plexity
Average Path

Length
1.00 0.62 0.99 −0.32 0.89

Average
Vertex
Degree

0.62 1.00 0.67 0.36 0.58

Diameter 0.99 0.67 1.00 −0.31 0.89
Global

Clustering
Coe�cient

−0.32 0.36 −0.31 1.00 −0.29

Kütt
Complexity

0.89 0.58 0.89 −0.29 1.00

Table 3: Correlation of algorithms to each other

documents as they were in e�ect in that year as calculated by di�erent graph
measures.

I also compare all the algorithms to each other by correlation. The results
can be seen in table 3.
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Figure 1: UK legislation graphs

4 Results

The topological structure analysis and the Doing Business correlation anal-
ysis were done in R [27] and Kütt's complexity index calculation was done
using Python.

For UK law, we will focus on two legal acts that had the most references:
Corporation Tax Act 2010 and Income Tax Act 2007. Corporation Tax Act
2010 had 1930 sections and 5200 references while Income Tax Act 2007 had
1460 sections, 3970 references. Their directed graphs are visible in �gure 1.

The large scale of the networks makes manual analysis impractical, so we
use statistical methods for further analysis.

4.1 Topology structure

A path from one vertex to another is the set of edges that can be used to move
from the �rst vertex to the last (possibly moving through other vertices). In
a directed graph one is allowed to move only in the direction of the edge, in
an undirected graph one may move in both directions along the edge.

The vertices of a graph can be divided into components. A component is
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a set of vertices that have a path from all of them to all the other vertices, i.e.
two vertices are in the same component if there exists both a path from the
�rst vertex to the second and from second to the �rst. In a directed graph, if
edge direction matters, the component is usually called strongly connected,
otherwise it is called weakly connected.

Some components of a graph are more interesting than others. The largest
component of the graph is called a giant component. In a directed graph, it is
named the Giant Strongly Connected Component (GSCC). The vertices that
have a path to the GSCC form the Giant In-Component and vertices that
have a path from the GSCC form the Giant Out-Component. Tendrils are
components that have a path from the Giant In-Component or have a path
to the Giant Out-Component. Detached Components (DC) are components
that are completely separate.

The Giant Weakly Connected Component or the Giant Connected Com-
ponent (GCC) is the largest weakly connected component. It is also the
largest component in any graph. The Giant In-Component, the Giant Out-
Component and the tendrils are part of the GCC.

The components of the networks of the two laws are calculated. The GCC
of the Corporation Tax Act 2010 consists of 1420 nodes. 74% of all nodes
are part of the GCC. The other 26% form 384 DC. The GSCC consists of 94
nodes and forms 5% of the whole network.

The Income Tax Act 2007 has a GCC of 1130 nodes meaning 77% of the
network is part of the GCC. 247 DC are formed by the other 23%. The
GSCC consists of 283 nodes and makes up 19% of the network.

The in-degree of a vertex is the count of edges that begin from the vertex.
The out-degree of a vertex is the count of edges that end at the vertex. The
degree of a vertex is the sum of the in-degree and out-degree of the vertex.

The average degree of a graph is the average of the in-degree or the out-
degree of the vertices:

〈k〉 = 1

n

∑
kd =

1

n

∑
ko =

m

n

where n is the vertex count, m is the edge count, kd is the in-degree of a
vertex and ko is the out-degree of a vertex.

For random networks the links usually follow the Poisson distribution. I
created a random network with the same number of nodes and links as the
Corporation Tax Act 2010 and calculated its degree distribution. Results
can be seen in �gure 2.

19



●

●

●

●

●

●

●

●

●

●

● ● ●

2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20

Degree

R
el

at
iv

e 
de

gr
ee

 d
is

tr
ib

ut
io

n

(a) Linear scaling
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(b) Logarithmic scaling

Figure 2: Random network degree distribution. The points are the dis-
tribution of the network and the line is power-law function �tted to the
distribution.

While random networks tend to follow a Poisson distribution, complex
system network links tend to follow power-law distribution.

Power-law distribution is mathematically de�ned as

P (k) = k−α

where P (k) is the power-law function, k is the degree of the vector and α is
the scaling exponent. System networks that follow a power-law function are
called scale-free networks.

Adamic et al [28] showed that the World Wide Web follows a power-
law distribution and is a scale-free network. Torre et al [8] showed that the
economy of a nation also follows a power-law distribution and therefore is
also a scale-free network.

The average degree of Corporation Tax Act 2010 is:

〈k〉 = 2.04

18% of nodes have no links and 11% of nodes have only one link. The highest
degree in the network is 267. The degree distributions of Corporation Tax
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(b) In-degree distribution
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(c) Out-degree distribution

Figure 3: Corporation Tax Act 2010 degree distributions
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(b) In-degree distribution
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(c) Out-degree distribution

Figure 4: Corporation Tax Act 2010 degree distributions in logarithmic scale

Act 2010 can be seen in �gures 3 and 4. On these �gures there is also the
power-law function �tted to the degree distribution. The power-law is �tted
by �nding the scaling exponent using maximum likelihood estimation.

The total degree distribution follows a power-law (�gures 3a and 4a):

P (k) = k−1.43

the in-degree distribution follows a power-law (�gures 3b and 4b):

P (k) = k−1.55

and the out-degree distribution follows a power-law (�gures 3c and 4c):

P (k) = k−1.51
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(b) In-degree distribution
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(c) Out-degree distribution

Figure 5: Income Tax Act 2007 degree distributions
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(b) In-degree distribution
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(c) Out-degree distribution

Figure 6: Income Tax Act 2007 degree distributions in logarithmic scale

The Income Tax Act 2007 has an average degree of

〈k〉 = 2.15

About 15% of the nodes in the network have no links and about 12% of the
nodes have one link. The highest node degree in the graph is 51. The degree
distribution can be seen in �gures 5 and 6. Again, I �tted a power�law to
the distribution using maximum-likelihood estimation.

From �gures 5a and 6a, the total degree distribution follows a power-law

P (k) = k−1.51
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the in-degree distribution follows a power-law (�gures 5b and 6b)

P (k) = k−1.45

and the out-degree distribution �ts a power-law (�gures 5c and 6c)

P (k) = k−1.45

Since the degree distributions of the networks of both laws follow the
power-law distribution, one can deduce that they are scale-free networks.

The clustering coe�cient of a graph is a measure that will show how
much of a graph is formed into tightly connected clusters. It is also called
transitivity or the global clustering coe�cient:

C =
number of closed triples
number of all triples

A triplet consists of three connected vertices. A triplet is open if the con-
nection is made by two edges and closed if the connection is made by three
edges forming a closed loop. Each triplet is counted for each vertex in total
of three times. Both the direction of the edges and the isolated vertices with
no neighbors or only one neighbor are ignored.

In essence the clustering coe�cient shows the extent to which the graph
forms a small world where everyone knows everyone else. A graph with a
small clustering coe�cient has little redundancy and is more similar to a
tree.

The clustering coe�cient of a vertex is a bit di�erent. It represents how
well the neighbors of a vertex are connected to each other. It is also called
the local clustering coe�cient:

Ci =
existing edges between neighbours
possible edges between neighbours

=
|{ejk : vj, vk ∈ Ni, ejk ∈ E}|

ki (ki − 1)

where Ni is the neighbor vertices of vertex vi, E the set of all edges and ki
the degree of a vertex. Again, both the direction of the edges and isolated
vertices are ignored.
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The average local clustering coe�cient is calculated by �nding the average
of the local clustering coe�cients for all the non-isolated vertices:

〈C〉 = 1

n

∑
Ci

The average local clustering coe�cient is similar, but not the same as the
global clustering coe�cient. The global clustering coe�cient tends to add
more weight towards high degree vertices and the local clustering coe�cient
adds more weight towards smaller degree vertices.

The global clustering coe�cient of Corporation Tax Act 2010 is:

C = 0.0988

I also calculated the local clustering coe�cient for each vertex. Results can
be seen in �gure 7a. The average of the local clustering coe�cients is:

〈C〉 = 0.409

The global clustering coe�cient of Income Tax Act 2007 is:

C = 0.203

and the local clustering coe�cients can be seen in �gure 7b. The average
local clustering coe�cient is:

〈C〉 = 0.377

The global clustering coe�cient of a random graph is

C = 0.00227

and the average local clustering coe�cient is:

〈C〉 = 0.00185

The global clustering coe�cient is about 40 times lower and the average
local clustering coe�cient is about 180 times lower than for the network of
Corporation Tax Act 2010. The law networks are not at all random.

The betweenness of a vertex is a centrality measure of how much tra�c
passes through the vertex. It is calculated by calculating the shortest paths
that cross the vertex compared to all the shortest paths. The formula is:

σ(m) =
∑
i 6=j

B (i,m, j)

B (i, j)
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Type Network Exponent Clustering
coe�cient

Economical Bank of Japan payments [5] γ = 2.1 �
US Federal Reserve
Bank [6]

γout = 2.15 0.53
γin = 2.11

Austrian Interbank Market
payments [7]

γout = 3.1 0.12
γin = 1.7

Estonia Swedbank
payments [8]

γout = 2.39 0.183
γin = 2.49

Technological WWW [9] γout = 2.4 �
γin = 2.1

Peer-to-peer network [3] γ = 2.1 0.012
Digital electronic
circuits [10]

γ = 3 0.03

Social Film actors [11] γ = 2.3 0.78
Email messages [12] γout = 2.0 0.16

γin = 1.5
Telephone calls [13] γ = 2.1 �

Biological Protein interactions
(yeast) [14]

γ = 2.4 0.022

Metabolism reactions [15] γout = 2.2 0.32
γin = 2.2

Energy landscape for a
14-atom cluster [16]

γ = 2.78 0.073

Law (from this
work)

Corporation Tax Act 2010 γout = 1.51 0.409

γin = 1.55
Income Tax Act 2007 γout = 1.45 0.377

γin = 1.45
Law of Obligations Act
2018

γout = 1.37 0.188

γin = 1.5

Table 4: Comparison to other large scale networks.
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(a) Corporation Tax Act 2010
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(b) Income Tax Act 2007

Figure 7: Growth of clustering coe�cient. There are fewer nodes since iso-
lated nodes were ignored.

where B (i,m, j) is the number of shortest paths from vertex i to vertex j
that crosses vertex m, B (i, j) is the total number of shortest paths from i to
j and the sum is over all pairs of vertices that have a path from i to j.

It is assumed that vertices with high betweenness have greater control over
the graph, making them either the strongest part of the graph or the weakest
part. For example, in a network of payments, high centrality means that a
company is vital to many other companies, meaning it probably brings in a
large pro�t. That company would also be the weakest part of the network,
because the shutdown of this company could paralyze a large swath of other
companies.

Corporation Tax Act 2010 has an average betweenness score of 300 and
the Income Tax Act 2007 has an average betweenness score of 1960. This
shows that the Income Tax Act 2007 is more structured, less chaotic and
easier to read.

Edge betweenness is identical to vertex betweenness except that instead
of measuring how much a vertex is in the shortest paths, it measures how
much an edge is in the shortest paths. The formula is identical to the one
above, except m is now an edge instead of a vertex.
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The edge betweenness of Corporation Tax Act 2010 is 172 and the edge
betweenness of Income Tax Act 2007 is 1020.

The average shortest path of a graph is the average of shortest paths
between all the pairs of vertices in the graph:

〈l〉 = 1

n

∑
m6=n

lm,n

where lm,n is the shortest path between vertices m and n.
The average shortest path of Corporation Tax Act 2010 is 7.03 and the

average shortest path of Income Tax Act 2007 is 9.73. On average every node
is about 8 steps away from any other node.

The diameter of a graph is the longest shortest path in the graph:

d = max
m,n

lm,n

Corporation Tax Act 2010 has a diameter of 21 and the diameter of
Income Tax Act 2007 is 27.

The eccentricity of a node is the longest shortest path to any other node
and the radius of a graph is the smallest eccentricity:

r = min
m

max
n

lm,n

One could have also de�ned diameter as having the largest eccentricity of
the graph:

d = max
m

max
n

lm,n

Since the eccentricity of isolated vertices will be 0, the radius of a graph
with isolated vertices will be 0. Since that is not relevant, I measure the
radius of the GCC and the GSCC.

For a directed graph, the eccentricity of a vertex can be calculated in
three ways: ignoring the direction of edges for the shortest paths, calculating
only the shortest paths that are inbound for the vertex and calculating the
shortest paths that are outbound from the vertex.

As there are three types of eccentricities, there are three types of radiuses:
undirected radius r, out-radius rout and in-radius rin. rin and rout are likely
to be the same.
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Figure 8: k-core

The undirected radius of the GCC Corporation Tax Act 2010 is r = 10,
the out-radius is rout = 8 and the in-radius is rin = 8. Income Tax Act 2007
has a undirected radius of r = 8, an out-radius of rout = 11 and an in-radius
of rin = 10. The larger undirected radius comes from the GCC being larger
than GSCC.

The k-core of a graph is the maximal sub graph where each vertex has k
degree. The vertex with the smallest degree is iteratively removed until only
vertices with k degree or more remain.

The k-core of a vertex is de�ned as belonging in the k-core of a graph,
but not in the (k+1)-core of the graph.

Corporation Tax Act 2010 has 9 k-core levels, from 0 to 8. The last 8-core
has 10 elements. The resulting network can be seen in �gure 8a. Income Tax
Act 2007 has also 9 k-core levels, from 0 to 8. The last level has 13 elements.
The 8-core can be seen in �gure 8b.

4.1.1 Robustness simulation

Another interesting aspect of a graph is what would happen if one would
start removing nodes or edges from the graph. It is meant to represent a
malicious attack, accidents or mistakes. It is also interesting to see how
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Statistic Corporation
Tax Act 2010

Income Tax Act
2007

Nodes 1930 1460
References 5200 3970
Undirected links 3940 3140
〈k〉 2.04 2.15
γ 1.43 1.51
γout 1.51 1.45
γin 1.55 1.45
C 0.0988 0.203
〈C〉 0.409 0.377
〈l〉 7.03 9.73
d 21 27
r 10 8
rout 8 11
rin 8 10
〈σ〉(nodes) 300 1960
〈σ〉(links) 172 1020
GCC 1420 1130
DC 384 247
GSCC 94 283
Cutpoints 222 170
Biconnected components 393 286
k-core elements 10 13
Complexity [20] 4860 3770

Table 5: Summary of statistics, where 〈k〉 is the average degree, γ, γout,
γin are the undirected, out-directed and in-directed scale of the power-law
function of the degree distribution, C is the global clustering coe�cient or
global transitivity, 〈C〉 is the average local clustering coe�cient or average
local transitivity, 〈l〉 is the directed average shortest path length, d is the
graph diameter, r is the radius of GCC, rout is the out-radius of the GSCC,
rin is the in-radius of the GSCC, 〈σ〉 is the average betweenness for the
nodes and links respectively, GCC is the Giant Connected Component or
Giant Weakly Connected Component, DC is Detached Components, GSCC
is the Giant Strongly Connected Component.
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Figure 9: Random removal from Corporation Tax Act 2010

many nodes are vital to the structure of the graph and which ones they are.
This is usually called robustness.

One way to measure robustness is to look at the components of a graph.
By removing nodes, a component might split into two or more components.
The removed vertices are called articulation points, cut vertices or cutpoints
and they are interesting as vulnerable or key points. In this case we are
observing the graph as undirected.

The Corporation Tax Act 2010 has 222 articulation points and the Income
Tax Act 2007 has 170 articulation points.

Another way to measure the robustness of a graph is to simulate the re-
moval of nodes. One can select the nodes to remove randomly or by targeting
the highest value nodes. In this measure we are dealing with an undirected
graph as well.

First, let us experiment with removing nodes from the networks randomly.
Figure 9 shows the e�ect on the network of Corporation Tax Act 2010

when I remove random nodes. Figure 10 shows the same experiment on
Income Tax Act 2007.

The networks more or less follow the pattern of scale-free networks. The
average shortest path remains the same until the end when it drops sharply,
the average component size has the same behavior and the GCC size slowly
diminishes [29].

A second experiment is made by not selecting the removed nodes ran-
domly but instead picking nodes with the highest betweenness. This is a
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Figure 10: Random removal from Income Tax Act 2007

good simulation of a targeted attack. Results can be seen in �gure 11 for
Corporation Tax Act 2010 and in �gure 12 for Income Tax Act 2007.

Here the graphs again follow the same pattern as scale-free networks.
The average shortest path rises sharply and then drops, so does the average
component size as the GCC sharply drops.

The plots do not quantify how fast the structure of the network falls apart.
A simple measure is to see how many nodes must be eliminated to destroy
the GCC. This is called the percolation threshold. As the GCC size drop
slows down towards the end, it is interesting to note when most of the GCC
has been destroyed. For that we devise the percolation threshold de�nition:
it is the moment where the size of the GCC is at 10% of the number of
vertices of the network:

GCC (pc) = 0.1n

where n is the number of nodes in the graph and pc is the percolation thresh-
old.

For random node elimination, the Corporation Tax Act 2010 has a per-
colation threshold of 1150. After having eliminated 1150 nodes, the average
shortest path is 6.75 and the average component size is 1.69. The Income Tax
Act 2007 has percolation threshold 920. At that point the average shortest
path is 6.28 and the average component size is 1.6.

When important nodes are targeted for elimination, the percolation thresh-
old of Corporation Tax Act 2010 is 68. At percolation threshold, the average
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Figure 11: Targeted removal from Corporation Tax Act 2010
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Figure 12: Targeted removal from Income Tax Act 2007
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shortest path is 4.87 and the average component size is 3.06. Percolation
threshold for Income Tax Act 2007 is 53 with an average shortest path of
4.72 and an average component size of 3.62.

Another important measure of a graph is the degree a�nity of the nodes:
are the nodes with high degree connected with other nodes with high degree
and vice versa, or are nodes with high degree connected with low degree
nodes and vice versa. A good way to measure this is with the average near-
est neighbor degree function. In this case I am also handling the graph as
undirected.

The average nearest neighbor degree function gives the average degree
of a node's neighbors. It is also de�ned to give the average degree of the
neighbors of nodes for a given degree. We are more interested in the second
de�nition. It is de�ned as:

〈knn〉 (k) =
∑
k′

k′P (k′|k)

where k is a degree, k′ is another degree and P (k′|k) is the conditional
probability that a node with degree k is connected with a node with degree
k′ and

P (k′|k) = P (k′, k)

P (k)

where P (k′, k) is the probability that a node with degree k′ is connected to a
node with degree k and P (k) is the probability distribution of a node having
degree k. P (k) is the same as the degree distribution.

Calculating the average nearest neighbor degree function for every degree
in a graph gives us an a�nity distribution. This was calculated for Corpo-
ration Tax Act 2010 and Income Tax Act 2007 and the results can be seen
in �gure 13.

From the �gures one can see that as the degree of a node gets higher,
it is more likely to be connected to lower degree nodes. If a network's high
degree nodes are more likely to be connected with high degree nodes, the
network exhibits assortative mixing, and if a network's high degree nodes
are more likely to be connected to low degree nodes, the network exhibits
disassortative mixing.

Previous studies [8, 29] have shown that social networks exhibit assor-
tative mixing and other system networks like �nancial, technical or �nan-
cial networks exhibit disassortative mixing. To quantify this, we calculate
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(b) Income Tax Act 2007

Figure 13: Average nearest neighbor degree distribution

the Pearson correlation coe�cient between a degree and its average nearest
neighbor degree for all degrees.

Corporation Tax Act 2010 has a degree correlation of -0.397 and Income
Tax Act 2007 has a degree correlation -0.542. Networks with disassortative
mixing have been shown to be fragile to targeted attacks.

In conclusion, UK legal networks are strong against random mistakes and
fragile to a malicious policymaker. In terms of readability it is easier for a
human to reason about such networks and as a result these legal acts are less
complex when compared to social networks.

4.1.2 Complexity

A recent important topic is the complexity of law and its changes across
time. As our lives get more regulated, the complexity and quantity of law
only seems to increase. It would be interesting to calculate complexity for
UK laws.

Let us use Kütt's algorithm [20] to calculate the complexities of UK laws.
While Kütt used a three-layered scheme to calculate complexity for the en-
tirety of legislation, we only need a single layer. We want to calculate a
complexity for each individual document of law and only use the references

34



between sections and the section's text as information. Therefore we can
more simply calculate the complexity of each section's text and the system
complexity of the legal act. This was done with Corporation Tax Act 2010
and Income Tax Act 2007.

Corporation Tax Act 2010 has a complexity of 4860 and Income Tax Act
2007 has a complexity of 3770.

4.1.3 Estonian law

Law of Obligations Act 2018 is used as the case study of Estonian legal acts
because of its large size. Law of Obligations Act 2018 has been visualized as
a graph in �gure 14a. Law of Obligations Act 2018 has 384 nodes and 492
references. In the simpli�ed graph used for analysis, the references become
390 links. This legal act was run through the same measures used for English
laws.

The GCC of Law of Obligations Act 2018 consists of 149 nodes and the
legal act has 76 DCs. In comparison the GSCC consists of 11 nodes.

The average degree of the graph is 1.02 and the largest degree is 26. The
degree distribution seems to follow a power-law. The degree distributions
are visualized in �gure 15.

The scaling exponents of the power-law function for Law of Obligations
Act 2018 are for the total degree

P (k) = k−1.79

for the out-degree

P (k) = k−1.37

and for the in-degree

P (k) = k−1.5

The global clustering coe�cient for Law of Obligations Act 2018 is 0.12
and the local clustering coe�cient is 0.188. The local clustering coe�cient
distribution is visualized in �gure 16a.

The average shortest path is 2.06 and the diameter is 6. The undirected
radius for Law of Obligations Act 2018 is 7, the out-directed radius is 2 and
the in-directed radius is 2.
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Figure 14: Law of Obligations Act 2018
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Figure 15: Law of Obligations Act 2018 degree distributions
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Figure 16: Law of Obligations Act 2018 clustering coe�cient and degree
correlation

The average node betweenness of the network is 3.04 and the average
edge betweenness is 5.81.

The highest k of the k-core for Law of Obligations Act 2018 is 3 and
its size is 25 nodes. Interestingly enough, the k-core forms two completely
separated components. The �gure can be seen in 14b.

There are 95 articulation points in the graph that when removed will form
a new detached component in the graph and 229 biconnected components.

When run through a robustness simulation, the percolation threshold for
Law of Obligations Act 2018 is 108 nodes for random removal and 8 for
targeted removal by betweenness centrality. I visualized the results of both
removal strategies on �gures 17 and 18.

The degree correlation is -0.262. I visualized the degree correlation in
�gure 16b.

It was not possible to calculate the complexity for Law of Obligations Act
2018 because of the limitations of the Liiv et al's parser.
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Figure 17: Law of Obligations Act 2018 random removal
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Figure 18: Law of Obligations Act 2018 targeted removal
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Algorithm 1 R data analysis of complexity to Distance to Frontier

GetCorrelationsToDtfByAlgorithm <−
function ( c omp l ex i t i e s ) {

c o r r e l a t i o n s <−
t (do . ca l l (
rbind ,
by( complex i t i e s ,

c omp l ex i t i e s$algor ithm ,
function (data )
by(data ,

data$dbu_category ,
GetCorre lat ionToDtf ) )

) )
rbind (

c o r r e l a t i o n s ,
"Total  c o r r e l a t i o n " = by( complex i t i e s ,

c omp l ex i t i e s$algor ithm ,
GetCorre lat ionToDtf )

)
}

GetCorre lat ionToDtf <− function (data ) {
cor (data$complexity , data$dt f )

}

4.2 Comparison to Doing Business

As an additional interdisciplinary experiment, the impact of law and the
topological structure of law is compared. Using the legal acts that the World
Bank Group utilized for their Doing Business report, I calculated some sta-
tistical network metrics for the networks of these laws and compared these
metrics with the Distance To Frontier numbers in the Doing Business report,
with the goal to explore whether Kütt's complexity [20] correlates in some
form to the Distance To Frontier numbers.

A small program in R was written for analysis. The Distance To Frontier
correlation analysis can be seen in algorithm 1.

39



Average
Path

Length

Average
Vertex
Degree

Di-
am-
eter

Global
Clustering
Coe�cient

Kütt
Com-

plexity
Enforcing
Contracts

−0.40

Getting
Credit

−0.49 0.57 −0.20 −0.20 −0.56

Paying
Taxes

−0.71 −0.43 −0.69 0.56 −0.63

Registering
Property

−0.29 −0.44 −0.33 −0.63 −0.49

Starting a
Business

0.72 −0.57 0.36 0.39 0.49

Trading
across

Borders

−0.77 −0.85 −0.77 −0.75 −0.88

Total
correlation

0.42 0.72 0.45 0.12 0.52

Table 6: Correlation by category. The correlation of Enforcing Contracts
for most algorithms is empty because the topological structure of the law
doesn't change in the time period and therefore correlation calculations has
no meaning.

The program queries the results coupled to previous complexity results.
They were split by algorithm and Doing Business category. Finally we �nd
the correlation between the two variables. As a �nal test, the data is split
only by algorithm before scaling and calculating correlation. The result can
be seen in table 6.

Surprisingly the total correlation is completely di�erent from the mean
across categories. The reason for this is that while the used algorithms some-
what agree with Distance To Frontier about changes in time, they don't agree
with Distance To Frontier changes across categories.

These results are inconclusive � no clear pattern emerges. The Distance
To Frontier represents whether the e�ect of the law is successful while the
topological structure measures represent the complexities of law. A negative
correlation was expected to show that as the e�ect of a law gets better, it also
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Figure 19: Distance To Frontier comparison to average vertex degree
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Figure 20: Distance To Frontier comparison to average path length
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Figure 21: Distance To Frontier comparison to graph diameter
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Figure 22: Distance To Frontier comparison to graph clustering coe�cient

42



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

65
70

75
80

85
90

95
10

0

Complexities

D
is

ta
nc

e 
To

 F
ro

nt
ie

r

Figure 23: Distance to Frontier to Andres Kütt complexity

becomes less complex. This result can be explained by the fact that the Doing
Business report only measures the impact of law and not the document of
law itself and there is no correlation between the two or that as the impact
of law gets better over time, the law itself seems to be only getting more
complex. But even the second hypothesis is hard to con�rm, as no such clear
pattern emerges.

4.3 Discussion

This work compared the reference networks of two UK legal acts and one
Estonian legal act. First we will discuss the di�erences and similarities be-
tween the UK legal acts. Then we will compare the topological structure of
the domain of law to other domains. Finally we will compare Estonian and
UK law.

The results are summarized in table 5. The laws were mostly similar,
but surprisingly there were a few notable di�erences. While Corporation
Tax Act 2010 was bigger and Income Tax Act 2007 was smaller, Income Tax
Act 2007 has a larger GCC and GSCC. There are less DCs, cutpoints and
biconnected components for Income Tax Act 2007 as well. It's betweenness
is a lot larger with 1960 compared to Corporation Tax Act 2010 betweenness
of 300. There seems to be a larger di�erence between the global clustering
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coe�cient and the average local clustering coe�cient for Corporation Tax
Act 2010. As the global clustering coe�cient seems to give stronger weight
for nodes with high degrees and with the previously mentioned statistics,
this leads to the conclusion that Corporation Tax Act 2010 has a stronger
core, while Income Tax Act 2007 has its connections more spread out. In
light of this it is surprising that Kütt's complexity gives a higher score for
Corporation Tax Act 2010 as structures that are more focused with more
independent pieces are easier for humans to read and understand.

The two UK legal acts are similar in that they both follow a power-law
function with their degree distribution and are similar in other ways to scale-
free networks. They have a fairly small average shortest path. When com-
pared by removing nodes with targeted removal or random removal, targeted
removal is noticeably more e�cient in breaking apart the network. While the
average shortest path is fairly small, it does not seem small enough for this
network to be a small world network.

It makes sense that this network is scale-free. Older sections are used as
references in newer sections. As previously noted, it is also easier for humans
to understand text if it references either well known independent material or
no material. This tendency probably brings about a scale-free, hierarchical
and tree-like structure.

What is also interesting is that for both laws the global clustering co-
e�cient was smaller than the average local clustering coe�cient. We can
conclude that the highly connected nodes are separated from each other.
This is also logical, as it improves the readability of law.

One can see power-law scaling exponents and clustering coe�cients in
other domains in table 4. The domain of law di�ers from other domains
in that law is both organically growing as well as made and organized by
humans. Recently there has been more e�ort in reducing the complexity of
law by codi�cation and simpli�cation. However, statistics show that law is
still fairly complex. A fairly large clustering coe�cient, large shortest path
and a small power-law scaling exponent demonstrate that there is still a
long way to go. When looking at table 4, every other domain has a scaling
exponent that is clearly larger and only two other domains, �lm actors [11]
and inter-bank payments in US [6], have a larger clustering coe�cient. Those
two domains are organic.

Comparing Estonian law to British law, the �rst thing to notice is that
Estonian law is a lot smaller. This may have been caused by di�erences
in the amount of selectable law for UK and Estonia. Note that selectable
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Estonia law is small because of the de�cincies in the parser. There may be
other large Estonian laws that could not be found manually.

It is also clear that Law of Obligations Act 2018, like Income Tax Act
2007 and Corporation Tax Act 2010, is a scale-free network. It has a degree
distribution following a power-law. It also behaves similarly under robustness
simulation. Law of Obligations Act 2018 is also disassortative, like the UK
law.

Interestingly, the k-core of Law of Obligations Act 2018 separates into
two clusters. This may mean that there are two complicated topics in Law of
Obligations Act 2018. Another measure that is di�erent about Estonian law
is the clustering coe�cient. The global clustering coe�cient and the average
local clustering coe�cient are very small compared to Income Tax Act 2007
and Corporation Tax Act 2010. That may mean that Estonian law is more
structured or hierarchical.

The average node and edge betweenness is also smaller for the Estonian
law document. So is the average shortest path and diameter. These numbers
may result from Law of Obligations Act 2018 being smaller than its English
counterparts.
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5 Conclusion

This work measured the topological structure of UK and Estonian legisla-
tion, using the law that the government of the United Kingdom and Estonia
published online. After obtaining a list of all legislation online and gathering
the contents of every legal act, we calculated the network for each legal act,
followed by statistical measures for the two UK legal acts and one Estonian
legal act with the largest networks. We �rst analyzed the UK legal acts and
then the Estonian act.

The average degree for Corporation Tax Act 2010 and Income Tax Act
2007 are 2.04 and 2.15 respectively. The degree distribution of the two net-
works were visualized, concluding that they follow a power-law function.
We calculated the scale of the power-law function for both legal acts. The
undirected power-law scaling exponent for Corporation Tax Act 2010 is 1.43
and for Income Tax Act 2007 is 1.51. We concluded that the legal acts are
scale-free networks.

We calculated the average shortest path, diameter and clustering coe�-
cient for the legal documents. The diameter for Corporation Tax Act 2010
and Income Tax Act 2007 is 21 and 27 respectively. The clustering coe�-
cient is 0.0988 for Corporation Tax Act 2010 and 0.203 for Income Tax Act
2007. The average shortest path for Corporation Tax Act 2010 is 7.03 and
for Income Tax Act 2007 is 9.73.

Kütt's [20] algorithm was used to calculate the complexity of law. Cor-
poration Tax Act 2010 has a complexity of 4860 and Income Tax Act 2007
has a complexity of 3770.

The robustness of a network, i.e. its ability to stay intact, was measured
with simulation. We simulated attacks on the network by either randomly
removing nodes or selectively removing nodes with the highest betweenness
centrality measure. We calculated the percolation threshold after which the
GCC can be considered destroyed. The percolation threshold of a random
attack for Corporation Tax Act 2010 is 1150 nodes removed and for Income
Tax Act 2007 is 920 nodes removed while for a targeted attack, the perco-
lation threshold is 68 nodes removed for Corporation Tax Act 2010 and 53
nodes removed for Income Tax Act 2007. It can be concluded that network
laws are durable to random attacks or mistakes, but weak to malicious actors.

We visualized the degree correlation between neighbor nodes and calcu-
lated the correlation using Pearson correlation coe�cient. For Corporation
Tax Act 2010 and Income Tax Act 2007, the correlation was -0.397 and -0.542
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respectively. I concluded that the networks are disassortative.
We then made the same network of references for one large Estonian law

using Liiv et al's [17] parser. We found that the Estonian law is also scale-
free and disassortative. The Estonian law was however much smaller and
possibly more structured with a smaller clustering coe�cient of 0.12.

We then tried to compare the UK networks with the results of the World
Bank Doing Business report. The overall correlations between the topologi-
cal structure results and the Doing Business results were 0.72 for the average
degree, 0.42 for the average shortest path, 0.45 for the graph diameter, 0.12
for the the graph clustering coe�cient and 0.52 for Kütt's complexity. In gen-
eral no clear pattern seemed to form between the statistical network measures
and the Doing Business results.

The main contributions of this thesis were:

• acquisition of the data, that is, examples of the UK and Estonian law;

• parsing of references in the UK and Estonian law;

• a thorough statistical analysis of the network of references;

• as an additional interdisciplinary experiment, a comparison of the topo-
logical structure of UK networks to the results of the Doing Business
report.

5.1 Limitations and future research

The parser of UK documents and the online database http://www.legislation.
gov.uk/ had some limitations. Not all documents were current. Nor were
all documents in the same format. Some documents were only pdf format,
which was unreadable for my parser. Therefore some legal acts were left out.
The reference parser was not completely accurate. Sometimes the language
used was confusing for the parser and the author. Some false references may
have been put in the network.

Liiv et al's Estonian law parser was limited in that it left out sections that
had no references and didn't return the section texts. This may have skewed
the statistical measurements and calculation of Kütt's complexity index [20]
was impractical. This may have in�uenced the comparison between Estonian
and UK law.
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These are previously unstudied complex networks. As the parser is open-
source, the experiments can be easily reproduced after re�nement.

The UK and Estonian parser could be modi�ed to recognize only refer-
ences between documents. This would produce a single network of the whole
UK law or the whole Estonian law that could then be analyzed.

By modifying the UK parser, one could study the change of topological
structure in time.
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