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Abstract

Online voting has been used in Estonia for politically binding elections since 2005. The
Estonian voting scheme (IVXV) uses a re-encryption mix-net for anonymising digital
encrypted ballots before their decryption. While zero-knowledge proofs of vote correctness
are common for online voting schemes based on homomorphic aggregation, they are less
prevalent among schemes using mix-nets like IVXV. If a ballot does not contain a well-
formed vote for a valid candidate, its arbitrary content might identify a voter even after
ballots have been anonymised through cryptographic mixing. The zero-knowledge proofs
of correct decryption issued by the decryption application cannot therefore be published
for invalid votes due to the risk of leaking voter-identifying information. As a result,
the public must trust an auditor with verifying that the decryption application has not
arbitrarily declared ballots as invalid. This contrasts with valid votes, for which observers
can request decryption proofs to verify them themselves. This work proposes a scheme for
IVXV where a voter must prove that their ballot contains a vote for an eligible candidate,
without revealing who the vote is for. After analysing multiple zero-knowledge proof
systems, an approach based on the Bulletproofs range proofs was chosen. In addition, a
prototype was developed and was used to benchmark IVXV with the proof verification
added in. The results show that for well-chosen parameters, the proofs of vote correctness
only have a small impact on the performance of IVXV, and the proposed approach is
therefore practical. By using zero-knowledge proofs of vote correctness in IVXV, ballots
for invalid candidates can be rejected during the voting phase, and therefore cannot reach
the decryption stage. As a result, all zero-knowledge proofs of correct decryption can be
made publicly available, e.g. published online for anyone to verify, therefore increasing
the transparency and auditability of the system.

The thesis is written in English and is 73 pages long, including 9 chapters, 1 figure and 2
tables.
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Annotatsioon
E-hääle korrektsuse tõestamine Eesti e-valimistel

Eestis on valimistel e-hääletamist kasutatud alates 2005. aastast. Eesti e-hääletamissüsteemis
(IVXV) kasutatakse selleks, et krüptitud e-hääli enne dekrüptimist anonüümida, ümberkrüp-
timisel põhinevat miksnetti. Kuigi hääle korrektsuse nullteadmustõestuste kasutamine on
homomorfsel agregeerimisel põhinevate e-hääletamissüsteemide puhul tavapärane, on
miksnetil põhinevate skeemide puhul, nagu IVXV, nende kasutamine vähem levinud. Kui
e-hääl ei sisalda nimekirjas oleva kandidaadi kohta korralikult vormistatud valikut, siis
selle suvalise sisu põhjal võib hääletaja olla tuvastatav ka pärast häälte anonüümimist
miksnetiga. Dekrüptimisrakenduse poolt genereeritud dekrüptimise korrektsust tõestavaid
nullteadmustõestusi ei saa seega avaldada, sest sellega võib kaasneda valijaid identifit-
seeriva info leke. Seda, et dekrüptimisrakendus ei ole omavoliliselt sedeleid kehtetuks
tunnistanud, saab kontrollida üksnes audiitor. Seevastu valiidsete sedelite puhul tohivad
dekrüptimistõestusi välja nõuda ja kontrollida ka vaatlejad. Selles töös kirjeldatud IVXV
täiendus näeb ette, et e-hääletaja tõestab, et on andnud e-hääle nimekirjas oleva kandidaadi
poolt, seejuures lekitamata, millise kandidaadi poolt. Pärast mitme nullteadmussüsteemi
analüüsimist valis autor välja Bulletproofs’i vahemiktõestusel põhineva lähenemise. Lisaks
programmeeris autor prototüübi, mida kasutati, et koormustestida IVXVd koos tõestuste
kontrollimisega. Tulemused näitavad, et hästi valitud parameetrite puhul ei ole e-hääle
korrektsuse tõestustel IVXV-le märkimisväärset lisakoormust ja seega on pakutud lahendus
ka reaalselt kasutatav. E-häälte korrektsust tõestavate nullteadmustõestuste kasutamine
IVXVs võimaldab kehtetud sedelid juba hääletamise etapis tagasi lükata, mis väldib
kehtetute sedelite jõudmist dekrüptimisfaasi. Selle tulemusel on võimalik kõik korrektse
dekrüptimise nullteadmustõestused avalikustada, nt avaldada kõigile kontrollimiseks
internetis, mis suurendab IVXV läbipaistvust ja auditeeritavust.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 73 leheküljel, 9 peatükki, 1 joonist,
2 tabelit.
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1. Introduction

Internet voting, or i-voting, was first used in Estonia for its municipal elections in 2005,
with 1.9% of voters voting over the Internet [1, 2]. I-voting has been used for each election
since, and the 2024 European Parliament elections in Estonia will mark the 14th i-voting
event. The 2023 parliamentary elections were the first Estonian elections where i-voters
were the majority, with 51.1% of participating voters casting i-votes [2]. In English, the
term ‘i-voting’ is preferable over ‘e-voting’ to distinguish the Estonian system from other
electronic voting technologies, such as electronic voting machines or blockchain voting.

The current Estonian i-voting scheme is codenamed ‘IVXV’, and was introduced in 2017
[3]. IVXV follows the double envelope postal voting scheme [3, 4], where an unmarked
envelope that contains a voter’s ballot is included in an outer envelope marked with the
voter’s information and signature. The inner envelope hides the ballot while the outer
envelope enables identification. IVXV achieves this digitally with public-key cryptography.
Each ballot is encrypted with an election-specific public encryption key, and each voter
digitally signs their ballot using their personal private signing key1 [3]. Encryption provides
secrecy while digital signatures establish the identities of voters. Digital signatures also
provide integrity for the ballots, since a third party cannot alter an encrypted and signed
ballot without voiding a voter’s digital signature on it. Before decryption, ballots are
decoupled from their digital signatures in a process called ‘mixing’, which involves
cryptographic re-randomisation and shuffling [3]. Re-randomisation breaks the direct
digital link between a ballot and its signature, while shuffling ensures that the two cannot
be correlated by auxiliary information, e.g. by the order of mix-net inputs and outputs.
This ensures that choices cannot be linked back to voters, which preserves ballot secrecy.

For auditability purposes, when ballots are decrypted during the tallying phase, zero-
knowledge proofs of correct decryption are created by the key application which performs
the decryption [3]. These proofs are mathematical data that allow verifying—without
needing the secret decryption key—that decrypted ballots correspond to their encrypted
counterparts. Therefore, a valid proof asserts that the key application did not decrypt a
ballot to a different vote than what was encrypted. Because the key application decrypts
mixed and therefore anonymised ballots, these ballots cannot seemingly be linked to
the original voters. This suggests that the mixed ballot box and the proofs of correct
decryption can be published for anyone to verify as a transparency measure. However, this

1The signature can be given with the ID-card, Digi-ID, or Mobile-ID [4].
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unlinkability only holds for ballots that are well-formed, i.e. where a valid candidate is
encrypted according to the protocol specification. This issue is similar for paper ballots,
where an incorrectly marked ballot could be associated with a voter, e.g. for a voter writing
their name instead of a candidate number.

Since digital votes are encrypted on the personal devices of i-voters, it is feasible to encrypt
and submit a choice that is not valid by manipulating the voting client. While these invalid
votes are detected during decryption and are not counted towards the official tally, they
cannot be made public since this would allow attacks on voter privacy [5–7]. For example,
if invalid ballots were made public, it would become easier for a coercer to force a voter
to submit an invalid vote, thereby disenfranchising the voter [5]. After forcing a voter
to vote for some non-existent candidate using a modified voting client, the coercer could
then verify whether this invalid vote appears in the published proofs once the election
concludes. If so, the coercer would gain the assurance that the voter did not subsequently
override their vote, re-voting being the current mechanism in IVXV for mitigating coercion
concerns [4]. A potential solution to this problem is to implement proofs of ballot validity
into the vote casting process.

1.1 Research problem

The highlighted significant shortcoming of IVXV is that currently, ballots for invalid
candidates can reach the decryption stage. As a result, some decryption results and proofs
may need to be withheld from the general public to prevent potential attacks [5–7], such
as the aforementioned disenfranchisement attack. The current organisational measures
for preventing leaking information through invalid ballots therefore result in conditional
auditability, which is not ideal. This shortcoming forms the core research problem of this
work.

The main focus is to find a solution to prove, in zero-knowledge, that a ballot contains
the encryption of a valid candidate. That is, the voting client should prove to the vote
collection server that the ballot contains a valid choice, without revealing who the vote is
for. For this, both the mathematical but also the practical feasibility of different approaches
must be analysed. The main research questions therefore are:

� RQ1. How to prove in zero-knowledge that an encrypted ballot represents a valid
candidate in IVXV?

– RQ1.1. Which zero-knowledge proof (ZKP) systems are suitable for this goal?
– RQ1.2. Which changes are needed in IVXV to enable the use of such proofs?
– RQ1.3. Is the use of such proofs practical in IVXV or can it be made practical?

13



� RQ2. How does the use of ZKPs for vote correctness impact/benefit the rest of the
IVXV system?

– RQ2.1. What are the performance considerations of the chosen approach?
– RQ2.2. When and where should the proofs be verified?
– RQ2.3. Do the proofs obsolete existing technical/organisational measures?

1.2 Contributions

The use of zero-knowledge proofs for proving ballot correctness is common for schemes
with homomorphic tallying, but is less studied for general mix-net based schemes like
IVXV. This work is therefore one of the first where the applicability of proofs of vote
correctness for general mix-net based schemes is analysed. While the analysis in this work
is specific to IVXV, it is potentially extensible to any mix-net voting scheme based on the
ElGamal cryptosystem. The core contributions of this work are the following:

� Multiple works were combined into a scheme to prove in zero-knowledge, and
across two separate algebraic groups, that an encrypted integer lies within a range.
A group switching strategy was used to perform the proof in a computationally
performant algebraic group, and link it to the computationally more expensive group
that ElGamal ciphertexts are part of.

� Proofs of vote correctness were introduced to IVXV. Due to the group switching
strategy, the scheme can be added to IVXV with only a small performance overhead,
and with minimal modifications to the cryptosystem used in IVXV. In particular,
only the digital ballot format must be changed, and a derivative of the ballot must be
encrypted instead of the ballot itself.

� A proof of concept was developed in Go2 to demonstrate that the scheme works and
to benchmark the scheme’s performance. The benchmarks can be used by the State’s
Electoral Office (SEO) to decide whether the proposed scheme can be integrated
into IVXV or whether more performant alternatives must be found. While the code
is of research quality rather than production quality, it can still serve as a reference
for a production implementation. Notably, Go was chosen for the prototype since
the IVXV server code is written in Go.

If the vote correctness proofs presented in this work are incorporated into IVXV, the
problems caused by the decryption of arbitrary ballots are effectively solved. As a result,
the inputs and outputs to the tallying process can be published online, therefore greatly
improving the transparency and verifiability of IVXV.

2https://go.dev
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Should the presented scheme not be judged performant enough by the SEO, the work
presents suggestions on potential performance improvements, and highlights promising
approaches for future work.

1.3 Organisation

This thesis is organised as follows. A general overview of IVXV is provided in Chapter 2.
Work related to proving ballot correctness is covered in Chapter 3 and the cryptographic
background is introduced in Chapter 4. The process of elimination by which the state of
the art of different proof systems was reviewed and the suitable proof system was selected
is detailed in Chapter 5. The full protocol for proving vote correctness is presented in
Chapter 6 and its benchmarks are given in Chapter 7. Chapter 8 contains a discussion on
the complexity, performance, and other details related to the proposed protocol. Finally,
Chapter 9 concludes this work.
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2. IVXV

IVXV was released in 2017 with the aim of improving the individual verifiability of many
system components. Notably, the encryption scheme was changed from RSA1 to ElGamal
which enabled introducing both the proofs of correct decryption and the mixing process
into IVXV [3]. This chapter aims to provide the reader with the background on the IVXV
voting scheme necessary to understand this work. For a complete overview on IVXV, the
official documentation2 should be consulted instead.

Many verifiability definitions have been proposed for i-voting protocols [8], but the
fundamental idea is that it should be possible to verify that the election results match
with the intent of voters. Individual verifiability should allow voters to verify that their
intended vote was indeed stored in the ballot box (cast-as-intended). Universal verifiability
should allow anyone to verify that the election results match with the ballot box contents.
Verifiability should not infringe on ballot secrecy however, which means that no-one should
be able to determine how a voter voted. Ballot secrecy is a constitutional requirement in
Estonia [9, §60, §156].

Because i-voting is done on the personal devices of voters, and not on trusted hardware in
voting booths, there is a risk of coercion, vote manipulation, and vote selling. Therefore, an
important functionality of IVXV is the capability of voters to override their i-vote, which
helps mitigate these issues. Votes can be overridden in two ways [4]: by casting a new
i-vote (re-voting), or by casting a paper vote. During the i-voting phase, voters can vote
multiple times, with their most recent vote overriding their previous votes since only one
vote must be counted per voter. However, the last i-vote is not necessarily the last valid
i-vote [10], which is an important distinction under the assumption that the voting client
cannot be trusted. If a voter also casts a paper vote, their i-votes are not considered at all.
In short, only the last i-vote cast by a voter is counted, unless the voter has also voted on
paper, in which case no i-votes are counted for this voter.

The four main parties involved in the scheme are the voter, the collector, the processor, and
the tallying party [4]. Since the election organiser performs the tallying, the term organiser

is used hereinafter to refer to the tallying party. I-voting itself is split into four main phases:
setup, voting, processing, and tallying [4]. The phases may not overlap, and each phase

1More specifically, RSA with the OAEP padding scheme was used.
2https://www.valimised.ee/et/e-haaletamine/dokumendid Note: some documents are
only available in Estonian.
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begins when the previous stage ends. The overlap with the general election phases and
physical voting is not described here.

In Estonia, anyone can register themselves as an observer for an election [11, §194]. In
turn, observers can observe part of the setup, processing and tallying phases. The following
summaries of election phases are based on the author’s working knowledge of the system3,
on his experience as an observer, on the IVXV source code [12], and on [4, 13, 14].

2.1 Election setup

During the setup phase, the data necessary for the election is prepared, the digital systems
are configured, and the official i-voting client is published. Moreover, the election-specific
key-pair used to encrypt and decrypt the votes cast in the election is generated with the
key application on an air-gapped computer with no persistent storage. The key generation
itself is a public ceremony, meaning that the use of the key application can be observed by
the registered observers. The observers gain no knowledge of the secret key or other secret
information. Due to the described setting, the key generation process can be considered as
being a transparent setup (or trusted setup) process.

The election key is generated following a (t, n)-threshold scheme, where the secret key is
split into n shares and distributed among n key-holders. To perform operations with the
secret key (e.g. decryption), at least t out of n key-holders must collaborate. These key-
holders are trusted members of the State’s Electoral Office and of the National Electoral
Committee (NEC), and the values t = 5, n = 9 have been used since 2017 [15–19].
During a normal election process, the key is not reassembled before the tallying phase,
and no party is therefore able to decrypt arbitrary ballots during the voting and processing
phases. While the secret decryption key is split into shares, the public key is not, and this
public key is published4 online after the key generation process. For simplicity, and unless
specified otherwise, the decryption key is considered to be unavailable and the public key
is considered to always be available in the rest of this work.

2.2 Voting

To cast an i-vote, a voter should download the official voting client published by the
SEO. The voting client enables the voter to select their preferred candidate, encrypt the
ballot, digitally sign it, and send it to the collector. The collector then returns to the voting

3At the time of writing, the author was a protocol analyst at SCCEIV, the technical developer of IVXV.
4While the public key is not published on the website of the elections, it is available e.g. from the open
endpoint providing the configuration file for the verification application.
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client the vote qualifying elements, which the client verifies to attest whether the collector
performed all required operations. While the voting client verifies whether the collector
behaved properly, there needs to be a separate mechanism for verifying whether the voting
client behaved properly. For this, the voter can use the verification application on a second
device to verify that their vote was cast and processed correctly. However, the verification
application does not deter a voter who intends to cast an invalid ballot.

The collector is a combination of servers which perform multiple tasks. It provides to the
voting client the data necessary for casting a vote, such as the candidate list available to the
voter. It also receives ballots from the voting client, stores them in the digital ballot box,
and serves requests for the verification application. Upon receiving a ballot, the collector
performs feasible validity checks, such as verifying that the signature on the ballot is
valid and that the voter is eligible to vote. The collector also acquires a timestamp for
the ballot from a trusted timestamping service, since the time on voter devices cannot be
trusted. After having stored the ballot in the digital ballot box, the collector returns the
vote qualifying elements to the voting client.

2.3 Processing and tallying

After the voting phase concludes, the processor obtains the digital ballot box and other
integrity information such as checksums and logs from the collector. In practice, the
election organiser also holds the role of the processor. Using the processing application,
the organiser verifies the integrity of the data supplied by the collector, including the
integrity of the ballot box and of the signatures on the ballots. The organiser also discards
votes overridden by re-voting and paper voting to keep only eligible i-votes, and strips
the digital signatures from these votes. Finally, the organiser uses the mixing application
(mix-net) to cryptographically anonymise the ballots, since otherwise they could still be
correlated with the stripped digital signatures. While the processing phase is observable,
the data generated by the processing application cannot be made publicly available since it
contains sensitive information. For example, it contains the ID codes of voters and ballot
timestamps which could be used to determine whether a voter re-voted.

The anonymised encrypted ballots are then transferred to an air-gapped computer for
decryption with the key application. Notably, while the key application has the capability
to verify whether the structure of encrypted ballots is correct, this option is disabled
in practice for performance reasons. The assumption is that this check was performed
during the processing stage, and the output data of the processing stage is considered
trusted. Before the votes can be decrypted, the trusted parties holding the secret key shares
must present their key-shares to the key application. Once the quorum has been reached,
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decryption can begin. In addition to decrypting the ballots, the key application also verifies
whether the decrypted results are valid, tallies the valid results, and generates the proofs of
correct decryption. While the decryption phase is observable, not all outputs can be made
public in this phase either.

Decryption is the step where the core problem considered in this work arises. Intuitively,
in a good cryptosystem, the encrypted form of some data should not leak any information
about this data. As such, given only an encrypted ballot and no auxiliary information, it
should not be possible to determine whether a valid choice is indeed encrypted. This is
why the validity of decrypted ballots must currently be checked by the key application.
The key application is given the list of candidates and the secret key, and so it can decrypt
votes and compare the outputs with what is specified by the candidate list. Since there is
no knowing what sort of information leak can be caused by arbitrary ballot contents, the
current practice in IVXV is to not publish the invalid votes. These invalid votes are not
made available to the observers either. As a result, the observers must trust an auditor with
verifying that the key application did not arbitrarily declare votes as invalid.

As a result, the decryption process currently produces conditional outputs: if no invalid
votes appear, everything can be made public. Otherwise, only the valid votes and their
proofs can be made public. In the latter case, the tally is no longer verifiable by third
parties, which hinders the universal verifiability of IVXV. A mechanism is therefore needed
to prevent ballots from reaching the final anonymised ballot box, so that the decrypted
ballot box could always be matched against the tally results and decryption proofs.

2.4 Ballot structure

In IVXV, the plaintext ballot, i.e. the unencrypted ballot, is a text file that contains the
candidate’s choice according to a specific format. The exact format is legally fixed [20]
and its specification in Augmented Backus-Naur Form5 can be found in Appendix 2. More
generally, the plaintext ballot contains the candidate’s district, their candidate number, the
name of their party, and their name as written on the candidate list. Candidate numbers
are unique for parliamentary and European Parliament elections, in which case the four-
digit district code is fixed to ‘0000’ [20]. For local elections, the numbers are unique
only within the electoral district, which is the municipality, and the district code is then
the municipality’s EHAK code6. Candidate numbers start at 101 within the district and
are incrementally assigned to candidates by drawing lots. While no number should be
skipped between 101 and the highest candidate number, a gap may appear if a candidate’s

5As defined in RFC5234 (https://www.rfc-editor.org/rfc/rfc5234)
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registration is cancelled before the candidate lists are locked, e.g. if a candidate dies.

As an example, let candidate ‘Taher ElGamal’ be a candidate with the number ‘128’ in
a district with the code ‘1955’. Additionally, let Taher ElGamal be part of the ‘Famous
cryptographers’ party. Then, the unpadded plaintext for Taher ElGamal would be

1955.128%x1FFamous cryptographers%x1FTaher ElGamal

in the local government elections. The first four digits represent the EHAK district code
and the following digits represent the candidate number. The subsequent text strings
represent the party name and the candidate’s name, respectively. %x1F represents the
Unicode Unit Separator character.

To convert the plaintext ballot into an integer for encryption, it is first padded to a fixed
size, and then the byte representation of the file is interpreted as a big-endian integer [21].
Clearly, two candidates with consecutive candidate numbers are unlikely to have their
ballots be represented by consecutive integers since the low order bytes represent names
and not numbers. More generally, the current digital ballot format is highly structured, a
property which is not preserved by mathematical operations on the data.

6EHAK codes are four-digit identifiers used to classify Estonian administrative and settlement units.
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3. Related work

There are two areas in the IVXV i-voting scheme where zero-knowledge proofs are
used: verification of mixing integrity and verification of correct ballot box decryption.
The different attacks against the IVXV voting scheme expose the properties needed for
implementing countermeasures, properties which partly differ for both uses of ZKPs. The
process for discovering research materials thus started with attack discovery, followed by
snowballing through references up to the root primitives of the subject. Once the root
primitives were identified, reverse snowballing and additional search served as the basis
for finding state of the art research to consider for the literature review.

The main database used to find unfamiliar, relevant research was Scopus1 by Elsevier,
especially for material with respect to ZKPs themselves. Due to the complexity, esoteric
nature, and recency of research surrounding the problems at hand, citation counts were not a
reliable metric for selection. Rather, the primary selection argument was the field-reputation
of the authors and journals where the works have been published. In addition, the tables
of contents of the Advances in Cryptology conference series — comprising CRYPTO,
EUROCRYPT, and ASIACRYPT — were searched through for relevant materials. Less
systematically, additional references were sourced by browsing the Cryptology ePrint
Archive2, from discussions with researchers at the E-Vote-ID3 conference of 2023, and the
proceedings of previous conference events.

The Scopus filter used was

KEY(zero-knowledge OR SNARK) AND KEY(membership OR

range-proof) AND NOT KEY(lattice-based)

with the exclusion of lattice-based schemes due to their incompatibility with IVXV. From
there onwards, titles and abstracts were used to discard initial superfluous material. Then,
conclusions and literature reviews of the remaining papers were evaluated to pick the
candidates for a full review.
1https://www.scopus.com/
2https://eprint.iacr.org
3https://e-vote-id.org/
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3.1 Attacks based on arbitrary ballot contents

In 2017, Wikström et al. proposed ways for attackers to leverage elections to force a
dilemma upon an election’s organisers [6]. The idea behind the attacks is that sensitive
information may be embedded in a ballot, which would then have to be revealed during
the counting or auditing process. Intuitively, to mitigate such attacks without impacting
transparency, arbitrary information must be prevented from reaching the ballot box. The
attacks proposed by Wikström et al. are not restricted to electronic voting, and do not
impact a voting system itself.

In 2022, Müller described a theoretical attack against IVXV, in which an attacker can
learn the votes of several voters by crafting a cleverly encoded ballot [7]. The attack relies
on multiple assumptions, one of which is the ability of the attacker to submit an invalid
ballot, but also recover its decryption. While this attack is not practically feasible under
the current organisational safeguards used in IVXV, it does highlight a weakness in the
protocol. Currently, the IVXV decryption application outputs invalid votes into a separate
file [22] which is not shared with the general public, but is accessible to auditors [3]. Still,
Müller showed that the resilience of IVXV is misrepresented against the intended threat
model [3, 7].

Additionally, the key application did not previously output ZKPs of correct decryption for
invalid ballots at all [22]. This, in turn, prevented a complete audit from being conducted:
there was no cryptographic proof that a decrypted vote labelled as invalid indeed was
invalid. For the 2024 elections, the author fixed this problem by adding the capability to
the key application to generate ZKPs of correct decryption also for invalid ballots4. While
the auditor can now verify that ballots deemed invalid were indeed correctly decrypted,
observers must still trust the auditor and are not allowed to verify the proofs themselves.

3.2 Proofs of vote validity for homomorphic tallying

To eliminate the possibility of the aforementioned attacks, proofs of vote validity can be
used. That is, a voter must issue a proof alongside their encrypted ballot that a legal option
was encrypted. The challenge is doing so without revealing what was encrypted, i.e. in
zero-knowledge.

Mathematical proofs of vote correctness were, to the best of the author’s knowledge, first
introduced by Cohen and Fischer in 1985 [23]. The main idea of the scheme is that voters

4At the time of writing, the source code for the 2024 elections was not yet published.

22



prepare unmarked ballots which have the encryptions of a yes and a no value. Voters then
prove that their ballot has indeed only those values without revealing which is which. To
cast a vote, voters select the desired value and submit it to the election organiser. Finally,
the organiser combines the votes and publishes the tally and a proof that the latter is correct.
Cohen and Fischer also describe how their scheme could be extended to more than two
choices and propose intractable problems suitable as a security basis of such schemes.

A significant downside to the scheme of Cohen and Fischer is, however, that the organiser
can decrypt the individual votes [23]. Hence, the proofs of correctness are necessary for
voters to verify the consistency of the tally, and not for the organiser, who can simply
decrypt votes. Benaloh and Yung later contributed an improvement to the scheme which
addressed this very problem by splitting the organiser into parties which must collaborate
for computing the tally [24]. Their work also established the terminology of marking to
designate voters selecting their choice. Benaloh then elaborated on those ideas further
and introduced the use of secret sharing for privacy preservation, and of homomorphic
encryption and tallying for the proof process [25].

All three schemes require interactive proofs of vote correctness [23–25] and serve to prove
the correctness of the tally. The schemes therefore do not consider that a party may need to
verify vote correctness before any tallying. In 1997, Cramer, Gennaro and Schoenmakers
first used zero-knowledge vote correctness proofs in the context of ElGamal ciphertexts
[26]. Notably, the proofs are non-interactive (NIZKP), and verifiable without access to any
secret value, but are still only usable with homomorphically tallied votes. This approach
remains the most widely used proof system in homomorphic tally voting systems [27].

Ideally, similar NIZKPs should be generated for votes with more complex or abstract
information to that of voting systems with homomorphic tally. However, unlike for voting
systems with homomorphic tally [28–32], such proofs of correctness are not strictly
required for the validity of traditional ‘decrypt then tally’ schemes. There is therefore
significantly less research available which targets the validation of arbitrary digital ballots.

Using homomorphic tallying in Estonia has been considered and studied before, but
implementing such a change would require a significant architectural redesign of the
current IVXV scheme [33]. Moreover, when considering local elections where different
regions have different candidates, votes must contain information linking them to a specific
region [3] which was not considered in [33]. While this could be achieved by unique
candidate numbers across the country or by collecting ballots into separate ballots boxes,
both approaches would require further analysis for assessing their practicality.
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3.3 Proofs of vote validity in practice

In the Civitas voting scheme [28], the re-encryption proofs of Hirt and Sako [34] are used
to prove that a vote is the re-encryption of an existing ciphertext. That is, encryptions for
all valid candidates are published by the election authority, and the voter proves that their
ballot is a re-encryption of one of these votes. In essence, this is a zero-knowledge proof
of set-membership since the proof must not reveal which ballot was re-encrypted. This
paradigm was revisited and extended by Joaquim [35] who proposed the addition of an
additional proof of structure. In the scheme, the ballot is obtained from the re-encryptions
of multiple options and an additional ZKP is used to prove the structure of the combination.
The structure proof is based on the proof of knowledge of representation by Brands [36],
but is a novel addition for ElGamal by Joaquim.

In the Kryvos voting system [37], zero-knowledge succinct arguments of knowledge (zk-
SNARK) are used to prove ballot validity. More specifically, the proof system due to
Groth [38] is used to prove that the committed vote shares correspond to the valid choice
space. VoteAgain [39] uses the zero-knowledge set-membership proofs by Bayer and
Groth [40] to prove that a ballot represents a valid candidate. In the code-based SwissPost
voting scheme [41] used in Switzerland, voters use codes delivered to them by post to
vote for specific candidates. A mechanism specific to their code-based implementation is
also used to verify that a voter has cast a vote for a candidate they are allowed to vote for.
However, it is unclear whether the verification method is novel or if it is an adaptation of
an existing scheme.
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4. Preliminaries

4.1 Notation

Let λ ∈ N denote a security parameter and let 1λ be its unary representation. A probabilistic
polynomial time (PPT) adversary A is a probabilistic interactive Turing Machine that runs
in polynomial time in the security parameter λ. Let Zq = Z/qZ be the integers modulo q

with representatives Zq = [0, q − 1], and let [a, b] be an interval in Z.

Given a finite set S, s $← S denotes the sampling of s uniformly at random from S. For a
randomised algorithm A with input x, let y ← A(x; r) denote its execution with explicit
randomness r. When the randomness needs not be explicit, y ← A(x) is used instead,
with the assumption that r is then sampled accordingly.

Definition 1 (DLOG). Let 〈g〉 = G be a q-element cyclic group generated by g, with q

dependent on a security parameter λ. The discrete logarithm (DLOG) is hard in G if for

all non-uniform PPT adversaries A, there exists a negligible function µ such that

Pr[x
$← Zq, y ← gx : x = A(g, y)] ≤ µ(λ) .

A DLOG-group is then a group where the DLOG is hard. From hereinafter, G is used to
denote a DLOG-group of prime order, i.e. with a prime number of elements. Multiplicative
notation for groups is used throughout.

4.2 Commitment schemes

Commitment schemes provide a way to commit—i.e. bind oneself—to a value without
(initially) revealing it. Depending on the use case, the committer may (but needs not)
subsequently reveal the committed value. A commitment scheme must be hiding so as not
to reveal the committed value, and binding so that commitments can only be opened to
one value. In this work, commitments must not be opened to protect vote secrecy, and thus
the definition without an opening algorithm is considered.

Definition 2 (Commitment scheme). A non-interactive commitment scheme consists of a

pair of PPT algorithms (Setup,Com) such that
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� The setup algorithm pp ← Setup(1λ) generates the public parameters pp for a

security parameter λ. The public parameters specify the message space Mpp,

randomness spaceRpp, and commitment space Cpp.

� The commitment algorithm and pp specify the function Compp :Mpp ×Rpp → Cpp.

For a message m ∈Mpp, the algorithm selects r $← Rpp uniformly at random, and

computes the commitment c← Compp(m; r).

Definition 3 (Hiding). A commitment scheme is hiding if for any non-uniform PPT ad-

versary A, there exists a negligible function µ such that∣∣∣∣∣Pr
[

pp← Setup(1λ); (m0,m1)← A(pp),
b

$← {0, 1}, c← Compp(mb) : b = A(c)

]
− 1

2

∣∣∣∣∣ ≤ µ(λ),

where A outputs m0,m1 ∈Mpp. If µ(λ) = 0, the scheme is said to be perfectly hiding.

Definition 4 (Binding). A commitment scheme is binding if for any non-uniform PPT

adversary A, there exists a negligible function µ such that

Pr

[
pp← Setup(1λ); (m0, r0,m1, r1)← A(pp) :
Compp(m0; r0) = Compp(m1; r1) ∧ x0 6= x1

]
≤ µ(λ),

where A outputs m0,m1 ∈ Mpp and r0, r1 ∈ Rpp. If µ(λ) = 0, the scheme is said to be

perfectly binding.

Definition 5 (Pedersen commitment [42]). Let G be a cyclic DLOG-group of prime order

q. The setup algorithm then outputs random generators g, h
$← G such that logg(h) is

not known to anyone. To commit to m ∈ Zq, the committer samples r $← Zq uniformly at

random and computes

Compp(m; r) = gmhr.

Definition 6 (ElGamal commitment). Let the parameter generation be as for the Pedersen

commitment. To commit to m ∈ Zq, the committer samples r $← Zq uniformly at random

and computes

Compp(m; r) = (gr, gmhr).

Under the DLOG, Pedersen commitments are perfectly hiding and computationally binding,
while ElGamal commitments are perfectly binding and computationally hiding. These
results are well known and the proofs are therefore not reproduced here, but can be found
in e.g. [43].
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Both Pedersen and ElGamal commitments are additively homomorphic, which is shown
by the following:

Compp(m1; r1) · Compp(m2; r2) = gm1hr1 · gm2hr2

= gm1gm2 · hr1hr2

= gm1+m2 · hr1+r2

= Compp(m1 +m2; r1 + r2).

Many cryptographic protocols rely on this property, and the homomorphism of Pedersen
and ElGamal commitments is fundamental also to this work.

4.3 Encryption schemes

Public-key encryption schemes provide a way to hide data using an encryption key such
that only a party having the corresponding decryption key can recover the data from the
encryption. Public-key encryption schemes are also called public-key cryptosystems.

Definition 7 (Public-key cryptosystem). A public-key cryptosystem consists of a triple of

PPT algorithms (KeyGen,Enc,Dec) such that

� The key generation algorithm (pk, sk) ← KeyGen(1λ) generates the keypair for a

security parameter λ, where pk is the public key and sk is the private (secret) key.

The public key pk specifies the message spaceMpk, randomness space Rpk, and

ciphertext space Cpk.
� For a message (plaintext) m ∈ Mpk, the encryption algorithm selects r

$← Rpk

uniformly at random, and computes the ciphertext c $← Encpk(m; r).

� For a ciphertext c ∈ Cpk, the deterministic decryption algorithm recovers the plain-

text m← Decsk(c), or outputs ⊥ if the decryption failed.

Definition 8 (ElGamal cryptosystem [44]). Let 〈g〉 = G be a cyclic DLOG-group of prime

order q generated by g. The secret key x
$← G is randomly sampled, and the public key is

computed as pk ← gx. To encrypt a message m ∈ G, randomness r $← Zq is randomly

sampled, and the ciphertext is computed as

Encpk(m; r) = (gr,m · pkr) = (u, v).

The ciphertext (u, v) is decrypted with

Decx(u, v) = v · u−x = m ·
(
gx
)r · (gr)−x

= m.
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Encrypting gm instead of m results in the lifted ElGamal cryptosystem. This also means
that the decrypted message becomes gm instead of m, and to recover m, the discrete
logarithm of gm must be computed. This is not a problem when m is small, e.g. m < 216,
since the values g0, g1, . . . , g216−1 can feasibly be precomputed. In turn, the performance
impact of recovering m through a lookup table of the precomputed values is negligible.

The lifted ElGamal cryptosystem is functionally equivalent to the ElGamal commitment
(Definition 6) for any party who does not know x, i.e. the discrete logarithm of h to the
base g. If a party knows x, they can recover m by decrypting the ciphertext/commitment,
and therefore the hiding property is lost. On the other hand, lifted ElGamal ciphertexts
are interoperable with Pedersen commitments, which makes them compatible with many
zero-knowledge proof systems based on Pedersen commitments.

4.4 Zero-knowledge proofs of knowledge

Zero-knowledge proofs of knowledge (ZKPoK) enable proving the truth of statements
about secret information while preserving the confidentiality of the secret information [45].
Zero-knowledge arguments are ZKPs that hold only for computationally bounded provers.
In this work, only computationally bounded entities are considered, and the terms ‘proof’
and ‘argument’ are used interchangeably for simplicity.

Let Setup be a probabilistic polynomial time setup algorithm that on input 1λ generates a
common reference string (CRS) σ available to all parties. For a polynomial time decidable
ternary relationR, the CRS-dependent language

Lσ = {u | ∃w : (σ, u, w) ∈ R}

is the set of statements u that have a witness w in the relationR.

Let a prover P and a verifier V be two probabilistic polynomial time stateful interactive
algorithms. A Σ-protocol forR is an interactive three-move proof system which allows the
prover to convince a verifier in zero-knowledge thatR holds for u. Assuming that Setup
has already been ran, the interaction between the prover and verifier is the following:

1. Given (σ, u, w) ∈ R, the prover generates an initial message a and sends it to the
verifier. This message is sometimes called the commitment.

2. The verifier samples a challenge c
$← {0, 1}λ and returns it to the prover.

3. The prover computes a response z to the challenge c and sends it to the verifier.
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The tuple of exchanged messages (a, c, z) is called a transcript. The verifier then runs
V(σ, u, (a, c, z)) which returns 1 if it accepts the proof and 0 otherwise. A transcript is
called accepting if V(σ, u, (a, c, z)) = 1.

(Setup,P ,V) is a Σ-protocol forR if it is a special honest-verifier zero-knowledge argu-
ment of knowledge as defined below. The following definitions are adapted from [46]
which are themselves based on [47], and from [48].

Definition 9 (Argument of knowledge). The triple (Setup,P ,V) is called an argument of
knowledge for relationR if it is perfectly complete and computationally special sound.

Definition 10 (Perfect completeness). (Setup,P ,V) has perfect completeness if

Pr

[
σ ← Setup(1λ), a← P(σ, u, w),
c

$← {0, 1}λ, z ← P(c)
:
(σ, u, w) /∈ R ∨
V(σ, u, (a, c, z)) = 1

]
= 1.

Definition 11 (Computational special soundness). (Setup,P ,V) is computationally 2-
special sound if there exists an efficient extraction algorithm Ext that can compute the

witness given two accepting transcripts with the same initial message. Formally, for any

PPT adversary A, there must exist a negligible function µ such that

Pr

[
σ ← Setup(1λ), (u, a, c1, z1, c2, z2)← A(σ),
w ← Ext(σ, u, a, c1, z1, c2, z2)

: (σ, u, w) ∈ R

]
≥ 1− µ(λ),

where A outputs distinct c1, c2 ∈ {0, 1}λ and for all i ∈ {1, 2} the transcript is accepting,

i.e. V(σ, u, (a, ci, zi)) = 1. κ = µ(λ) is the knowledge error of the protocol.

Theorem 1. Let (Setup,P ,V) be a Σ-protocol for relation R with challenge length |c|.
Then (Setup,P ,V) has knowledge error 2−|c|.

This is a well known result in cryptography and so the proof is omitted here. A detailed
proof is presented in [49] and in [50]. Informally, the knowledge error designates the
maximal probability of producing an accepting proof for a statement u without knowing
the corresponding witness w. The intuition behind a proof of knowledge is then that a
(potentially malicious) prover P∗ that can convince a verifier with probability ε > κ must
indeed known a valid witness. This is known as knowledge-soundness and is precisely
what is implied by special soundness.

Definition 12 (Public-coin). An argument (Setup,P ,V) is called public-coin if all mes-

sages sent by the verifier are chosen uniformly at random and independently of the messages
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sent by the prover, i.e. the challenges correspond to the verifier’s randomness.

Definition 13 (Special honest-verifier zero-knowledge (SHVZK)). A public-coin argument

(Setup,P ,V) is called a special honest verifier zero-knowledge argument forR if there

exists a probabilistic polynomial time simulator S such that for any interactive non-uniform

PPT adversary A, there exists a negligible function µ such that∣∣∣∣∣∣∣∣∣∣∣
Pr

[
σ ← Setup(1λ), (u,w, c)← A(σ),
a← P(σ, u, w), z ← P(c) : A(a, z) = 1

]
−

Pr

[
σ ← Setup(1λ), (u,w, c)← A(σ),
(a, z)← S(σ, u, c) : A(a, z) = 1

]
∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

where A outputs (u,w, c) such that (σ, u, w) ∈ R and c ∈ {0, 1}λ.

4.4.1 Non-interactive zero-knowledge

Interactive zero-knowledge proofs are generally non-transferable [51, §2.6.2], which
means that only the verifier involved in the protocol is convinced by the proof [51, §1.6.6].
Intuitively, an observer overseeing the interaction between the prover and verifier cannot
know that the prover and verifier have not colluded beforehand to create an unsound
proof. For example, the observer cannot be convinced that the verifier truly generated
the challenge randomly, and that the challenge was not known to the prover beforehand.
Conversely, a transferable zero-knowledge proof is publicly verifiable [51, §1.6.6], i.e. any
potential verifier, and not just a verifier involved in the protocol, must be able to verify it.
In turn, it is possible to forego the interaction with a verifier completely [51, §2.6.3]. For
example, the ZKPs of correct decryption used in IVXV are non-interactive and transferable:
the key application generates them on its own [22], and they are verifiable by anyone [5].

The Fiat-Shamir [52] transform can be used to turn an interactive public-coin zero-
knowledge protocol into a non-interactive protocol [53]. However, the resulting protocol
is only provably secure in the random oracle model (ROM). In the ROM, all parties have
access to a perfectly random function RO : {0, 1}∗ → {0, 1}2λ. The output space must be
of size 22λ to maintain a security level of λ against collision attacks. In practice, the ROM
is instantiated with a strong cryptographic hash function (e.g. from the SHA-3 family), and
the security guarantees are heuristic rather than provable. The proofs of vote correctness
described in (Chapter 6) are made non-interactive via the Fiat-Shamir transform.
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4.5 Lifted ElGamal in IVXV

For compatibility with many of the ZKP schemes presented in the next chapter, the classic
ElGamal cryptosystem used in IVXV must be replaced with its lifted counterpart. While
this is a change to the existing cryptosystem of IVXV, the security guarantees do not change
and implementation should not be problematic. Indeed, the only required changes are the
encryption of gm instead of m, and the use of a precomputed table for the decryption to
map gm back to m.

Additionally, for the proofs of vote correctness to work (Chapter 6), the ballot must directly
represent the candidate number as an integer. This is a change to the current ballot format
presented in Section 2.4. While this change makes the plaintext ballot illegible in a text
editor, sacrificing human-readable structure for mathematical structure is necessary for the
scheme to work. Since the voting client handles the creation and encryption of the ballot
itself, the voter is never exposed to the plaintext ballot directly, and so the change does not
impact voters. Moreover, simply using the candidate number also aligns with the paper
ballots used in Estonia, where voters must only write the candidate number on the ballot
[20]. Still, the legislation governing the format of the ballots will have to be changed as a
result.
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5. Selecting a proof system

The desired goal is to prove that an encrypted ballot contains a valid candidate identifier,
without leaking which candidate the ballot is for. To simplify the problem, the encrypted
ballot can be viewed as a binding and hiding commitment to a candidate identifier. This
enables the use of ‘commit-and-prove’ techniques [54], where a statement is proven in
zero-knowledge relative to a committed value. The stated problem can thus be reduced
to the general task of proving set membership in zero-knowledge, i.e. that a secret value
belongs to a set.

This chapter contains a brief literature review on commit-and-prove techniques for ZK
proofs of set membership (ZKSM) and ZK range proofs (ZKRP). Since the aim of this
chapter is to illustrate the discovery and thought process behind selecting a practical ap-
proach for IVXV, this review is not meant to be comprehensive. Moreover, the differences
between the approaches are not necessarily clear-cut, and thus the section segmentation
provides only a loose outline. To limit the scope of this work, options were discarded as
soon as they compared unfavourably to another (seemingly) viable approach. This chapter
should therefore be viewed as the process of elimination by which the final proof system
was chosen. While the reasons for discarding schemes are explained, not all such choices
were necessarily objective. The field is vast and it is clear that alternative approaches
should be explored in the future.

5.1 Selection criteria

For minimal changes to IVXV, the chosen scheme should be compatible with finite field
arithmetic, the lifted ElGamal cryptosystem, and rely only on the discrete logarithm
problem. Relying on the DLOG avoids introducing new security assumptions into IVXV.
It follows that schemes based on Pedersen/ElGamal commitments are preferable over other
approaches.

Since the mathematical complexity of the approach impacts the transparency and audit-
ability of IVXV for the general public, it is also a contributing factor in selecting an
appropriate scheme. Part of the subjectivity in the choice thus stems from the perceived
complexity of the available approaches. In other words, approaches requiring the least
amount of specialised mathematical background are preferable, as long as the resulting
scheme remains practical. For example, if a scheme based on elliptic curves has similar
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performance as a scheme based on bilinear pairings over elliptic curves, the former is
preferable due to having one less ‘layer’. For the same reason, approaches making use
of general purpose ZK proof systems for arithmetic circuits (e.g. [38, 55, 56]) were not
considered in this work.

What exactly is practical is also loosely defined. Since i-voters are already used to fast vote
casting times, proving time should not impact it by much, e.g. by < 1s on the majority
of devices. Moreover, the computational burden should lie on the prover, and verification
should be fast enough for the vote collector to withstand projected peak voting loads. Due
to the lack of a specific target for verification times, the most performant solutions were
preferred, provided that the perceived complexity did not appear prohibitive. Performance
was only preferred over complexity when the time-difference was more than one order of
magnitude, i.e. at least tenfold.

5.2 Set membership proofs

It is unclear when exactly zero-knowledge proofs of set membership first appeared in
literature, and there seems to be no dedicated survey in literature summarising and compar-
ing different ZKSM approaches. However, set membership proofs are partly linked with
group signatures [57], where a signature proves its issuer’s membership in a group without
publicly revealing their identity. Chen and Pedersen [58] presented a group signature
scheme based on a protocol for proving knowledge of one out of many witnesses without
revealing the specific witness. It can thus be argued that their approach provided the first
tool for proving set membership in a loose sense of zero-knowledge. Although it does not
cover the advancements of the past decade, one of the most comprehensive summaries on
(non-)membership proofs was given by Bayer and Groth in 2013 [40].

It is not uncommon for ZKSM constructions to appear as a building block or by-product,
rather than as a primary result. For example, Groth and Kohlweiss [48] proposed a ZK
proof system for Bitcoin privacy, which can additionally be used to prove that a value
belongs to a set. The idea behind the scheme is to give a proof that a certain Pedersen
commitment is a commitment to 0. If this is indeed the case for a value in a list, then a
value from this list was necessarily committed. An earlier approach by Bayer and Groth
[40] also uses Pedersen commitments to yield proofs of membership or non-membership
of a secret in a list. However, contrary to the 0-commitment approach, this approach
is based on polynomial evaluation and requires two commitments per secret. The main
improvement of the scheme over earlier membership proof schemes was the absence of a
trusted third party [40].
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Regarding explicit ZKSM research, Camenisch, Chaabouni and Shelat [59] presented an
approach where a prover proves that they know a signature on one of the elements of
a set. The authors also derived a ZKRP from the signature approach, and additionally
proposed an alternative ZKSM based on cryptographic accumulators. Approaches based
on cryptographic accumulators seem to currently be the most popular constructions for
efficient ZKSMs [60].

5.2.1 Accumulator-based set membership

Cryptographic accumulators were first introduced by Benaloh and de Mare [61] and enable
compressing a set of elements into a short digest: the accumulator. While the original
approach was based on iterative exponentiation in an RSA group, accumulators have since
been extended to other constructions and are a core tool for many ZKSMs [60, 62].

Commit-and-prove zero-knowledge proofs of set (non-)membership were formalised by
Benarroch et al. in 2019 [60]. In the original preprint, the authors only considered ap-
proaches based on cryptographic accumulators to achieve succinct ZKSMs, and split
them into three categories: Merkle tree and lattice-based, RSA-based, and pairing-based.
However, a revised, ‘full’ version of their work was published in 2023 [63], which contains
a section on subsequent developments in the field. The authors also presented efficient
ZKSM constructions based on RSA accumulators (MemCPRSA, MemCPRSAPrm) and bi-
linear pairings (MemCPVC). The difference between MemCPRSA and MemCPRSAPrm is
that the former works with sets of arbitrary elements, while MemCPRSAPrm requires a set
of primes of equal bit-length. As of May 2024, their RSA-based constructions seem to
remain the state of the art regarding set membership proofs based on RSA accumulators.

More recently, Campanelli, Hall-Andersen and Kamp presented a novel accumulator-based
ZKSM construction called ‘Curve Trees’ which is both efficient, and has transparent setup
[62]. The approach is based on shallow Merkle trees and 2-cycles of elliptic curves and
requires an existing and efficient commit-and-prove system such as Bulletproofs [46]
to work. The brief overview on related work in their article complements, but does not
encompass the overview of ZKSM approaches by Benarroch et al.

The main argument of Campanelli et al. against the schemes presented in [60] is that they
do not offer transparent setup. However, in the 2023 version, Benarroch et al. showed that
their RSA accumulator scheme can also be instantiated over hidden order groups—e.g.
class groups—for transparent setup [63, Appendix 4]. As a drawback, Benarroch et al.
estimated that verification would take approximately 2.3s in a class group with a 2048-bit
discriminant. This is a significant markup compared to the 20–30ms verification times for
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their MemCPRSAPrm construction with a 2048-bit modulus [63]. Furthermore, cryptanalytic
results show that a 2048-bit discriminant does not offer 128-bit security level in a class
group [64], further worsening performance for a 128-bit security level. Trusted setup
is however not a concern in IVXV, where election keys are generated on an air-gapped
machine during a public ceremony. That is, the RSA group could very well be generated
on the same machine using the pre-audited tool.

5.2.2 Selecting an accumulator

While Benarroch et al. did not include benchmarks for their pairing-based approach, they
did provide benchmarks for the RSA-approach instantiated with Bulletproofs. Campanelli,
Hall-Andersen and Kamp also provided benchmarks for their scheme instantiated with
Bulletproofs. Unfortunately, the benchmarks are not directly comparable since the set sizes
are not comparable, and the difference in approaches makes extrapolation difficult.

Notably, both MemCPRSAPrm and MemCPVC require the use of a commit-and-prove range
proof. For MemCPRSA, the range proof is replaced by a proof that the committed element
hashes to the correct prime. This stems from the ‘hash-to-prime’ mapping used to map the
arbitrary set elements to a set of primes in a collision resistant manner. While the authors
did not provide a detailed benchmark for MemCPRSA approach, they indicated that the
approach is potentially slower than the approach for sets of primes [63].

The conclusion is thus that both state of the art approaches require an underlying commit-
and-prove system for either range proofs, or proving arbitrary statements using constraint
systems. As such, the use of a ZKRP instead of proving ZKSM could potentially reduce
verification times and proof complexity even further, at the cost of losing the flexibility
of arbitrary sets. A potential solution to restore this flexibility is to map set elements to
consecutive integers, similarly to how arbitrary set elements are mapped to primes for
MemCPRSA.

While tree-based approaches can yield constant-size proofs with fast verification times,
they generally require the use of general-purpose zk-SNARKS [63]. As such, they do
not satisfy the requirements set forth in Section 5.1. Pairing-based ZKSMs were also not
pursued further due to the additional hardness assumptions of pairings and since the ZKRP
approach seemed promising.
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5.3 Range proofs

A range proof is a specific type of set membership proof, where the set is an integer range
(an interval). Compared to proofs of set membership, the literature on ZKRPs seems to
be more comprehensive and interlinked. Christ et al. [65] summarised the state of the
art regarding ZKRPs in a fresh survey (2024), and claimed that it provides a complete
description of existing ZKRP techniques. This claim is not entirely accurate, as the authors
did not mention approaches based on lookup arguments [66]. The authors also did not
consider signature-based approaches [59, 67] as a distinct category, but rather as a subset
of binary decomposition. Notably, all covered techniques are based on commit-and-prove
approaches. Additionally, some recent ZKRP protocols [67, 68] which combine the
covered techniques in interesting ways were not included. While the survey was published
after the literature review for the current thesis was already established, it backs the choices
made in this work.

Although Christ et al. improved upon the earlier work by Morais et al. [69], the latter
provides algorithmic descriptions of its covered techniques. It additionally provides a good
technical summary on Bulletproof range proofs. There is also the survey by Deng et al.
[70] which includes a comparative analysis of different ZKRP approaches, although it does
not contain any benchmarks. It also provides a more complete history of range proofs than
the survey by Christ et al., while naturally being less current.

It is not uncommon for range proofs to be part of a more complex proof system, such as of
ZKSMs as seen in Section 5.2. In fact, Christ et al. [65] attribute the introduction of range
proofs to Brickell et al. [71] who merely used it as a building block.

5.3.1 Desirable properties

Principally, the commitment scheme must be compatible with Pedersen/ElGamal commit-
ments in finite fields or an efficient ‘binding’ must exist between the proof system and
the cryptosystem. Otherwise, the proof system is not compatible or practical to use with
IVXV.

While the transparent setup of a proof system can be viewed as an additional perk, a trusted
setup does not pose a problem in IVXV as argued in Section 5.2.1. However, the only
trusted data that a ZKRP may rely on is the common reference string, since in IVXV, the
election authority does not issue any personalised data to voters. Indeed, the security and
trust guarantees of IVXV rely heavily on the Estonian public key infrastructure (PKI),
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which is outside the control of election organisers. As such, certain ZKRP approaches
such as those based on trusted credentials are not usable with IVXV.

Aggregation of proofs and batch verification are further perks of a ZKRP. Since many
ZKRP constructions only allow to prove that a committed value is non-negative, proofs for
specific ranges are obtained by combining proofs in a homomorphic manner [65]. As such,
the amortised generation and verification of potentially many proofs is beneficial, at least
for proofs that do not hold over arbitrary intervals.

5.3.2 Constructions

Christ et al. identified three ZKRP techniques [65]: square decomposition, n-ary decompos-
ition, and hash-chain approach. The hash-chain approach is the only one that is essentially
incompatible with IVXV. In this approach, a hash function is applied x times to a nonce r,
with x being the commitment. A verifier then checks whether the hash function was applied
at least t times, which proves that x ≥ t, i.e. that x exceeds a threshold t. HashWires is a
credential-based range proof [72], and is the current state of the art of hash-based ZKRPs.
However, this means that HashWires guarantees soundness only if the commitment is
well-formed [65, 72], and is therefore not usable with IVXV1.

Constructions based on square decomposition rely on integer commitments where the
binding property must hold over the integers, and not just in the commitment group. The
approach remained largely stale from 2005 onwards, save an improvement by Couteau
et al. in 2017. However, a newer line of work [74, 75] pioneered by Couteau has improved
the approach and led to the development of ‘Sharp’: short relaxed range proofs [75].
Sharp is competitive with state of the art binary decomposition techniques [65, 75], and is
algebraically compatible with IVXV using cross-group binding.

Finally, approaches based on n-ary decomposition are arguably the most widespread and
researched approaches to range proofs. The seminal Bulletproofs by Bünz et al. [46] are
also based on binary decomposition and referenced in a wide body of literature2. Indeed,
Bulletproofs have not only received attention regarding various performance improvements
[76, 77], but are also commonly incorporated as a subcomponent in more complex schemes
as seen in Section 5.2.1. While Bulletproofs are based on Pedersen vector commitments,
n-ary decomposition can also be based on general polynomial commitments [78]. Al-
though the scheme in [78] could be instantiated with a Pedersen-compatible polynomial
commitment scheme [65] for compatibility with IVXV, this would introduce additional

1There is no trusted party that can generate these commitments.
2IEEE Xplore claims 1200+ citations since July 2018 as of May 2024.
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complexity. Bulletproofs are therefore preferable here due to their more streamlined nature
and natural compatibility with Pedersen commitments.

Many lattice-based approaches also fit under the n-ary decomposition paradigm [65].
However, due to their lesser efficiency and the fact that IVXV does not claim post-quantum
security, the approaches are not considered here.

5.3.3 Sharp vs. Bulletproofs

By discarding hash-based range proofs and general polynomial commitments, the state of
the art narrows down to Sharp [75] and Bulletproofs [46] with its potential improvements.
While on paper, variants of Sharp appear more efficient than Bulletproofs [65, 75], there are
important nuances to consider because of differing security guarantees. By default, Sharp
only provides ‘relaxed’ soundness, where the prover is only bound to a rational in the target
range, instead of an integer [75]. Bulletproofs do not suffer form this limitation. However,
Bulletproofs can only directly be used to prove that a number belongs to [0, 2n−1] for some
integer n while Sharp works for arbitrary ranges. Since Bulletproofs are homomorphic, it
is possible to overcome this limitation in practice (Section 6.2).

For Sharp, in the interactive setting, satisfying full soundness with a knowledge error of
2−128 would require 128 repetitions of the protocol [75, Table 4]. In the non-interactive
setting, Sharp can achieve full soundness with an additional commitment in a hidden order
group (class group or RSA group). As such, the performance advantages of Sharp over
Bulletproofs are likely lost when requiring full soundness. This remains a speculation,
as Couteau et al. did not provide performance benchmarks for their hidden order group
versions.

Additionally, Sharp is a very new protocol, and it does not appear to have been implemented
outside of research. In fact, while Couteau et al. have benchmarked their implementation
of Sharp, they have not made any code publicly available. The existence of a reference and
third party implementations34 of Bulletproofs as well as its practical use in protocols5 are
strong arguments for Bulletproofs over Sharp.

3https://crypto.stanford.edu/bulletproofs/
4https://github.com/dalek-cryptography/bulletproofs
5https://tlu.tarilabs.com/protocols/mimblewimble-mb-bp-utxo
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5.4 Bulletproofs

Bulletproofs are a zero-knowledge proof protocol without a trusted setup which can be
used for range proofs, but also for proofs for arithmetic circuits. Bulletproofs rely only
on the discrete logarithm assumption, and are made non-interactive using the Fiat-Shamir
heuristic [46]. In this work, only Bulletproof range proofs in the non-interactive setting
are considered. For simplicity, from hereinafter, the term ‘Bulletproofs’ only refers to the
range proof variant unless specified otherwise.

Bulletproofs do not directly prove that a value lies in an arbitrary integer range. Rather,
given a Pedersen commitment X to x with randomness r, they prove the following relation
[46, eq. 36]:

{
(g, h ∈ G, X, n;x, r ∈ Zq) : X = gxhr ∧ x ∈ [0, 2n − 1]

}
,

where G is a q-element DLOG-group. However, the additive homomorphism of Pedersen
commitments allows to combine two Bulletproofs to prove that x ∈ [a, b] for arbitrary
a, b ∈ N as required (Section 6.2).

Let aL = (a1, . . . , an) ∈ {0, 1}n be the vector containing the bits of x, so that 〈aL,2
n〉 = x,

with 2n = (20, . . . , 2n−1). By proving knowledge of a vector aR such that:

1. aL ◦ aR = 0n (component-wise multiplication)
2. aL + aR = 1n (component-wise addition)
3. 〈aL,2

n〉 = x (inner product)

a prover shows that a1, . . . , an are all in {0, 1} (1 & 2) and that aL contains the binary
decomposition of x (3). In turn, x ∈ [0, 2n−1] if all three equations hold. Bootle et al. [47]
presented an efficient inner product argument which allows to show in zero-knowledge
that the inner product of two committed vectors (using Pedersen vector commitments)
is some publicly known value. Bünz et al. improved the efficiency of the the argument
by showing that the three above equations could be combined into a single inner product
argument. Using this fact, they obtained a range proof with a size logarithmic in n [46].

While the original Bulletproofs are already efficient in practice, various optimisations [79,
80] have been proposed since. Bulletproofs+ by Chung et al. [79] are 84% of the size of
Bulletproofs for a 32-bit range, however, their performance remains comparable to that
of Bulletproofs. Bulletproofs++ by Eagen et al. [80] do not only reduce the size further,
but reduce the O(n) scalar multiplications asymptotically needed by Bulletproofs(+) to
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O(n/ log(n)) multiplications, therefore also improving performance. Eagen et al. claim
that their proof verification times are about 3 times faster than those of Bulletproofs [80,
p. 4].

However, unlike Bulletproofs+ which still make use of a (weighted) inner product argument,
Bulletproofs++ use new techniques altogether. As such, the Bulletproofs++ range proof is
in reality encoded into and proven with an arithmetic circuit, rather than being a directly
constructed range proof. It is the author’s opinion that they are therefore significantly
harder to understand than Bulletproofs(+). In fact, Bulletproofs++ are related to the zero-
knowledge lookup arguments introduced by Bootle et al. in 2018 [66] which can be used
to construct efficient ZKSMs and ZKRPs [81, 82]. While efficient, they are also complex
and were therefore not considered here.
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6. Proving vote correctness

6.1 Setting

Let f be a safe prime with p = (f − 1)/2 prime, and let Gp be the subgroup of quadratic
residues in Z∗

f . Let Gq be a DLOG-group such that q � p, e.g. an elliptic curve group.
Let bq denote the bit-length of q.

Let x represent a vote and let bx be the maximal bit-length of a vote such that b < 2bx � q.
Let a, b be two integers with 0 ≤ a < b < 2bx . Thus, for any x ∈ [a, b], it holds that x is
the same in both Zp and Zq, and that x < 2bx . Let a (resp. b) represent the lowest (resp.
highest) candidate number among candidates who voters can vote for. Without loss of
generality, let the candidate numbers be consecutive between a and b. On the off-chance
that this is not the case, the available candidate numbers can be mapped onto a consecutive
integer range.

Let pk ∈ Gp be the public key of the lifted ElGamal cryptosystem, and let gp be a generator
of Gp. The encryption of x ∈ [a, b] with randomness rp

$← Zq is then

Encpk(x; rp) =
(
grpp , gxp · pkrp

)
= (y,Xp).

More generally, in this chapter, capital letters denote Pedersen commitments, and indices
denote which group or field an element is in. Standalone, Xp can be viewed as a Pedersen
commitment of x with randomness rp in Gp.

Let bc represent the bit-length of a verifier’s challenge in a Σ-protocol. For some security
parameter λ, it must hold that bc ≥ λ for security with no repetitions of the protocol. In
practice, λ ≥ 128. Let b⊥ be a parameter controlling the probability of aborts, i.e. the
probability that the Σ-protocol must be restarted to avoid leaking information about the
secret. Finally, the parameters bx, bc, b⊥, bq must satisfy the relation bx + bc + b⊥ < bq

which is necessary to avoid modular reductions in Gp and Gq for the protocol computations.
A discussion on how to pick values for these parameters is given in Section 6.4.
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6.2 Range proof for concrete ranges

A Bulletproof range proof can be used to prove that x ∈ [0, 2bx − 1] for a commitment C
of x. However,

a ≤ x ≤ b < 2bx ⇐⇒ 0 ≤ x− a < 2bx ∧ 0 ≤ b− x < 2bx

and so, by the conjunction of two Bulletproofs, a range proof for a concrete range can be
obtained.

Let gq, hq be two generators of Gq such that loggq(hq) is not known. Let Cq, C
′
q be two

Pedersen commitments such that

rq
$← Gq, Cq ← gx−a

q · hrq
q

r′q
$← Gq, C ′

q ← gb−x
q · h−r′q

q .

Let πrpa
be the Bulletproof for x− a ∈ [0, 2bx − 1] and the commitment Cq, and let πrpb

be
the Bulletproof for b− x ∈ [0, 2bx − 1] and the commitment C ′

q. To prove that x ∈ [a, b], it
remains to show that x is the same for both Xq ← gaq · Cq and X ′

q ← gbq · (C ′
q)

−1, since

gaq · Cq = gaq · gx−a
q · hrq

q = gxq · hrq
q

gbq ·
(
C ′

q

)−1
= gbq · gx−b

q · hr′q
q = gxq · h

r′q
q .

Given Cq, C
′
q, anyone can compute Xq, X

′
q since gq, a, b are publicly known values.

A ZKP of discrete logarithm equality is needed to prove that Xq and X ′
q are commitments

for the same x. Otherwise, there are no guarantees that a dishonest prover did not use a
different x value when computing Cq and C ′

q since the commitments are perfectly hiding.
While Bulletproofs do not offer a way to prove such a conjunction, they do support proof
batching for efficiency [46, §4.3]. This means that πrpa

and πrpb
can be proven and verified

together with better efficiency than when doing so separately. The discrete logarithm
equality is proven in the protocol proposed in Section 6.3.

Since Bulletproofs are a public-coin protocol, they can be made non-interactive using the
Fiat-Shamir heuristic [46, §4.4]. Not only are non-interactive Bulletproofs transferable,
its authors also claim certain computational speed-ups over the interactive setting. Fur-
thermore, non-interactiveness helps minimise communication complexity between the
voting server and voting clients in the IVXV setting, and is easily combined with the
non-interactive protocol proposed in Section 6.3.
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For practical implementations, the range proofs should therefore be implemented with
non-interactive Bulletproofs with aggregation. Gq should be chosen such that computing
and verifying Bulletproofs would be reasonably fast, while also being compatible with
other requirements. A more detailed discussion on the parameter choice is provided in
Section 6.4.

6.3 Discrete logarithm equality across groups

Let (y,Xp), (Cq, πrpa
), (C ′

q, πrpb
) be given to the verifier. By verifying πrpa

, πrpb
and

computing Xq, X
′
q, the verifier gains assurance that

1. Xq is a commitment for xq such that xq ≥ a,
2. X ′

q is a commitment for x′
q such that x′

q ≤ b.

Furthermore, Xp is a commitment for the vote xp. Then, to prove that (y,Xp) is an
encryption of x ∈ [a, b], the verifier must additionally be able to verify in zero-knowledge
that

xp = xq = x′
q

for the committed values. More formally, to prove that (y,Xp) is an encryption of x ∈ [a, b],
a zero-knowledge proof must be given for the relation

RVeq =

{(
(y,Xp, Xq, X

′
q), (x, rp, rq, r

′
q)
) ∣∣∣∣ y = g

rp
p ∧Xp = gxp · pkrp

∧Xq = gxq · h
rq
q ∧X ′

q = gxq · h
r′q
q

}
.

A ZKP for RVeq therefore proves that a vote for an eligible candidate was encrypted
without leaking who the vote is for.

When p = q, the proof is a variant of proving discrete logarithm equality in a group, for
which an efficient approach has been given by Chaum and Pedersen [83]. However, the
difficulty lies in proving this efficiently when p 6= q, which is the case here, i.e. proving
discrete logarithm equality across different groups. For the latter problem, an approach
using Pedersen commitments was presented by Chase et al. [84]. More formally, the
technique by Chase et al. gives a ZKP for the relation

RDLeq =
{(

(Xp, Xq), (x, rp, rq)
) ∣∣ Xp = gxp · hrp

p ∧Xq = gxq · hrq
q

}
however, a range proof for x ∈ {0, 1bx − 1} is needed as part of the technique. This range
proof must be knowledge-sound, and the authors themselves propose to use Bulletproofs
for this [84, p. 5]. The protocol is therefore ideal for the current use case, since such a
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range proof is required regardless, i.e, πrpa
, πrpb

. Moreover, since the protocol in [84] is a
public-coin protocol, it can also be made non-interactive with the Fiat-Shamir transform.

For efficiency, instead of first proving xq = x′
q for commitments in Gq and then proving

RDLeq, the technique by Chase et al. can be extended to prove the entirety of RVeq. The
resulting Σ-protocol ΠVeq for proving the relationRVeq is given on Figure 1.

Prover Verifier
Input: x, rp, rq, r′q Input: y,Xp, Xq, X

′
q, πrpa

, πrpb

k
$← [0, 2bx+bc+b⊥ − 1]

tp
$← Zp

(tq, t
′
q)

$← Z2
q

w ← g
tp
p

Kp ← gkp · pktp
Kq ← gkq · htq

K ′
q ← gkq · ht′q

w,Kp, Kq, K
′
q

c
$← [0, 2bc − 1]

c

Check c ∈ [0, . . . , 2bc − 1]

z ← k + c · x (in Z)
Abort if
z /∈ [2bx+bc , 2bx+bc+b⊥ − 1]

sp ← tp + c · rp (mod p)
sq ← tq + c · rq (mod q)
s′q ← tq + c · r′q (mod q)

z, sp, sq, s
′
q

Accept iff
z ∈ [2bx+bc , 2bx+bc+b⊥ − 1],
sp ∈ Zp, (sq, s′q) ∈ Z2

q ,
g
sp
p = w · yc, (i)
gzp · pksp = Kp ·Xc

p, (ii)
gzq · hsq = Kq ·Xc

q , (iii)
gzq · hs′q = K ′

q ·X ′c
q (iv)

Figure 1. ΠVeq: a Σ-protocol for provingRVeq.
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6.3.1 Masking and aborts

The mask k is necessary to hide information with random noise, otherwise the verifier could
trivially extract x from z with x = z/c. Since operations are performed over the integers,
the traditional approach of picking the mask uniformly at random from the underlying
group is not feasible. As such, not all values of k mask cx ‘sufficiently’. Indeed, not all
values of z are equally likely to occur for z < 2bx+bc or z ≥ 2bx+bc+b⊥ , and so the response
may leak information about x. For example, if k = 0 and c = 2bc − 1, then cx < 2bx+bc

for all values of x, but for k = b⊥, this is no longer the case. In such cases, the prover must
abort the protocol before sending its response to the verifier to avoid revealing information
about x. The prover and verifier must then restart the protocol and must sample a new k

and a new c uniformly at random.

The abort condition is motivated by the following lemma [84, 85]:

Lemma 1 ([85, Lemma 1]). In the non-aborting case, the value z in the transcript of

an honest protocol execution is uniformly distributed in {2bx+bc , . . . , 2bx+bc+b⊥ − 1}. An

honest prover aborts with probability 2−b⊥ .

The proof is identical to that of [84, Lemma 2] and is hence not reproduced here.

Notably, the verifier gets no information about k due to the hiding property of the Pedersen
commitments transmitted with the first message. Thus, it is infeasible for the verifier to
learn anything about cx regardless of whether the prover aborts the protocol.

6.3.2 Non-interactiveness

Interactive proofs have certain shortcomings compared to non-interactive proofs. For
example, non-transferability restricts the auditability of i-voting, which is the very situation
that this work aims to improve. Moreover, the three move communication might not be
practical from an implementation viewpoint, especially when aborts are involved.

Since the verifier is a public-coin verifier, the protocol can be made non-interactive using
the Fiat-Shamir transform [52, 53] with aborts [86]. In the following proofs, the random
oracle is considered programmable as in [53]. By turning the proposed protocol non-
interactive, the proof becomes transferable and some of the abort complexity is mitigated.
In the non-interactive version, the prover repeats the proof locally when needed and only
outputs a non-aborting transcript, which places the abort burden entirely on the prover.
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Therefore, the no-abort zero-knowledge of the interactive protocol becomes regular zero-
knowledge in the non-interactive setting [84]. Furthermore, part of the communication
overhead is shelved.

However, non-interactive proofs are not without their issues [87, 88], especially in abort-
based versions as shown by recent work [89, 90]. More specifically, to prevent a malicious
prover being able to prove wrong things, the statement and protocol messages preceding
the challenge generation should be included in the challenge seed [87]. For the given
protocol, challenges must be obtained from the programmable random oracle O with
c← O(st, α), where

� st is the statement
(
(y,Xp), (gp, pk), (gq, hq), (a, b)

)
,

� α is the first message of the protocol, i.e. (w,Kp, Kq, K
′
q).

Additionally, making the proof non-interactive with Fiat-Shamir requires setting bc ≥ 2λ

for collision resistance due to the birthday attack [91, §7.3]. When instantiating the random
oracle with a cryptographic hash function in practice, this security requirement may even
be higher [92].

The proofs that follow are based on the proofs in [84] in the interactive setting, but are
adapted to the proposed protocol in the non-interactive setting. This simplifies the proofs
slightly since the abort cases no longer need to be considered [84, §4.2].

6.3.3 Completeness

Theorem 2. The non-interactive protocol for the relationRVeq is perfectly complete.

Proof. In the non-interactive setting, the prover never aborts. First, for an honest prover,
the equation (i)

gspp = gtp+crp
p = gtpp · gcrpp = w ·

(
grpp

)c
= w · yc

is satisfied. Additionally, equation (ii)

gzp · pksp = gk+cx
p · pktp+crp = gkp · pktp ·

(
gxp · pkrp

)c
= Kp ·Xc

p

is also satisfied. Equations (iii) and (iv) are proven similarly.
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6.3.4 Soundness

Theorem 3. Let κrp be the knowledge error of πrp . The non-interactive protocol for the

relationRVeq is 2-special sound with knowledge error κ = 2−bc + κrp under the DLOG

assumption for Gp and Gq in the random oracle model.

Proof. Let there be an extractor algorithm Ext which is given inputs πrpa
, (w,Kp) ∈

G2
p, (Kq, K

′
q) ∈ G2

q , and two accepting transcripts ((w,Kp, Kq, K
′
q), c, (z, sp, sq, s

′
q)) and

((w,Kp, Kq, K
′
q), ċ, (ż, ṡp, ṡq, ṡ

′
q)) with c 6= ċ. The extractor also has access to the public

parameters, including the public key pk.

The extractor then recovers xp, xq, rp, rq, r
′
q such that y = g

rp
p , Xp = g

xp
p · pkrp and

Xq = g
xq
q · hrq

q , X ′
q = g

x′
q

q · h
r′q
q with the following steps:

1. Bulletproof range proofs are arguments of knowledge [46] and are therefore ex-
tractable. By using the knowledge-extractor of πrpa

, Ext can extract ((xq − a)∗, r∗q),
except with some small failure probability κrp . Since a is publicly known, the
extractor can further recover (x∗

q, r
∗
q) such that Xq = g

x∗
q

q · h
r∗q
q and x∗

q < 2bx .
2. From the two accepting transcripts with distinct challenges c 6= ċ, the extractor

selects the pairs
�

(
(Kp, c, z, sp), (Kp, ċ, ż, ṡp)

)
,

�

(
(Kq, K

′
q, c, z, sq, s

′
q), (Kq, K

′
q, ċ, ż, ṡq, ṡ

′
q)
)
.

By defining xp = (z − ż) · (c− ċ)−1 and rp = (sp − ṡp) · (c− ċ)−1, Ext extracts an
opening of Xp = g

xp
p · pkrp since

z − ż

c− ċ
=

k + cxp − (k + ċxp)

c− ċ
=

xp(c− ċ)

c− ċ
= xp.

Ext similarly extracts openings for Xq = g
xq
q · hrq

q and X ′
q = g

xq
q · h

r′q
q . From

Theorem 1, this fails with probability 2−bc . By the binding property of Pedersen
commitments Xq, Kp, Kq, K

′
q and of ElGamal,

(a) y = g
rp
p

(b) (xq, rq) = (x∗
q, r

∗
q)

(c) (z − cxp, sp − crp) = (ż − ċxp, ṡp − ċrp)

(d) (z − cxq, sq − crq, s
′
q − cr′q) = (ż − ċxq, ṡp − ċrq, ṡ′q − ċr′q)

must all hold under the DLOG assumption.
3. Finally, the extractor returns (xp, xq, rp, rq, r

′
q).

It remains to show that xp = xq over the integers. From verification checks (ii) and (iii),
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there must exist kp, kq, u, u̇, v, v̇ ∈ Z such that

z = kp + c · xp + u · p z = kq + c · xq + v · q

ż = kp + ċ · xp + u̇ · p ż = kq + ċ · xq + v̇ · q .

Because the verifier must assert that z ∈ {2bx+bc , . . . , 2bx+bc+b⊥ − 1} for a transcript to be
accepting, it follows that (u, u̇, v, v̇) are non-negative. By linear combination with respect
to p and q,

(z − ż) = (c− ċ)xp + (u− u̇)p (z − ż) = (c− ċ)xq + (v − v̇)q .

W.l.o.g., let z − ż be positive, since if it is negative, then ż − z is positive instead. From
the choice of parameters and verification checks z − ż < 2bx+bc+b⊥ < 2bq . Moreover, πrp

ensures that xq < 2bx , and so |c− ċ|xq < 2bx+bc . It follows that (z − ż)− |c− ċ|xq < 2bq

and so (v − v̇) = 0.

Equating the two representations of z − ż with (v − v̇) = 0 yields

(c− ċ)xq = (c− ċ)xp + (u− u̇)p

(c− ċ)(xq − xp) = (u− u̇)p .

Since p is prime, it must divide (c − ċ) or (xq − xp), but p > 2bq > 2bc and so it cannot
divide |c− ċ|. Therefore p|(xq − xp) and so xq ≡ xp (mod p). Since xq < p and xp < p,
no modular reduction takes place and so xq = xp in Z as well.

6.3.5 Zero-knowledge

In a non-interactive protocol execution, an honest prover only outputs non-aborting tran-
scripts. The proof can therefore follow standard reasoning with accepting transcripts and
without factoring in aborts.

Theorem 4. The non-interactive protocol for the relationRVeq has computational zero-

knowledge in the random oracle model.

Proof. The simulator takes as input the public parameters, including the group descriptions
and the public key pk. It also has access to the random oracle and can program it with
input-output pairs.
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First, the simulator samples uniformly at random

c
$← {0, . . . , 2bc − 1}, z $← {2bx+bc , . . . , 2bx+bc+b⊥ − 1}, sp

$← Zp, (sq, s
′
q)

$← Z2
q.

Since Kp satisfies the equation

Kp = gkp · pktp = gkp ·
(
gcxp · g−cx

p

)
· pksp−crp = gzp · pksp ·

(
gxp · pkrp

)−c
,

the simulator computes the commitment Kp as

Kp ← gzp · pksp ·
(
Xc

p

)−1

and commitments Kq and K ′
q analogously. It also computes the commitment w as

w ← gspp ·
(
yc
)−1

.

Finally, the simulator programs the random oracle O such that

c← O
((

(y,Xp), (gp, pk), (gq, hq), (a, b)
)
, (w,Kp, Kq, K

′
q)
)

and then outputs the transcript
(
(w,Kp, Kq, K

′
q), c, (z, sp, sq, s

′
q)
)
.

Since non-interactive Bulletproofs are fully zero-knowledge in the ROM [46, §4.4], πrpa

and πrpb
do not affect the zero-knowledge property of the protocol. However, an unbounded

adversary can recover rp from y and therefore decrypt Xp to recover x, thus breaking the
zero-knowledge property. This is not feasible for a computationally bounded adversary,
and thus the protocol can only satisfy computational zero-knowledge.

It remains to show that the distributions of the real and simulated transcripts are computa-
tionally indistinguishable in the programmable random oracle model.

1. In a real protocol execution, the oracle samples c at random and returns it to the
prover. In the simulated protocol, the oracle returns the value c which was randomly
sampled by the simulator. As such, in both real and simulated protocol executions, c
is uniformly distributed.

2. By Lemma 1, z is distributed uniformly in {2bx+bc , . . . , 2bx+bc+b⊥ − 1} in both real
and simulated transcripts since there can be no aborted transcripts.

3. In both transcripts, the values sp, sq, and s′q are uniformly distributed.
4. Since the simulator chooses sp uniformly from Zp, Kp = gkp · pktp = gkp · pksp−crp is

uniformly distributed in Gp. Uniform distribution can be similarly shown for Kq, K
′
q.

Furthermore, w = g
tp
p = g

sp−crp
p , and so w is also uniformly distributed in Gp.
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6.4 Concrete instantiation

From Estonian election statistics [93], the largest number of candidates in an election
since 1992 is 15322. However, this is the cumulative candidate count across all local
governments. In any concrete municipality, the number of candidates a voter can vote for
is much less, and candidate numbers are not global for local elections. The largest number
of candidates unified throughout the country is only 1885 [93]. Regardless of the election
type, it is reasonable to assume that for the foreseeable future, no election will have more
than 216 candidates, and so bx = 16.

IVXV uses finite field ElGamal in Group 15 from RFC3526 [5], and so bq = 3071. Given
the current state of classical cryptanalysis, this corresponds to a security level of 128 bits,
and so λ = 128. Since the protocol requires bc ≥ λ for soundness without repetitions,
bc = 128 satisfies this requirement, but only in the interactive setting. In the non-interactive
setting, the hash function must have a range of {0, 1}2λ to achieve a collision resistance
of λ bits [91, §7.3]. In practice, bc = 256 is therefore required for a 128-bit security level
against confidentiality and soundness attacks.

It remains to find values for b⊥ and bq such that bx + bc + b⊥ < bq and bq � bp. A popular
and performant implementation of Bulletproofs [94] is implemented over ristretto2551,
which is itself built on top of Curve25519. While using ristretto255 would be beneficial
for the performance, it has a group size of 2252, which is incompatible with bc = 256. By
weakening the soundness guarantees to 112 bits of soundness, the challenge size can be
set to bc = 224. Then, b⊥ = 251− 16− 224 = 11 and the probability of aborts becomes
2−11. This remains small and the computational burden of occasional aborts is only borne
by the prover. Since the non-interactive version of the protocol is full computational
zero-knowledge, the zero-knowledge guarantees are not impacted and a 128-bit security
level against confidentiality attacks is therefore maintained.

To achieve 128-bit soundness guarantees, a larger curve such as P-384 should be used.
By setting bq = 384, it follows that b⊥ < 112, and so the probability of aborts is 2−112.
While b⊥ could be lowered if needed for compatibility with a smaller curve that still
accommodates bc = 256, P-384 is a popular curve choice. Notably P-384 is used by the
Estonian ID card for digital signatures [95, p. 135].

1https://ristretto.group
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7. Prototype and benchmarks

To analyse and benchmark the computational cost of verification, a prototype of the full
protocol was developed in Go [96, 97]. Go was chosen since the IVXV vote collector is
also written in Go [98], therefore simplifying the real-system benchmarking. In addition,
the prototype can hopefully serve as a template for a production implementation of the
protocol should the approach be approved by the SEO.

The Bulletproofs needed as part of the protocol were not implemented from scratch. Rather,
the open-source implementation by ING Bank [99]—hereinafter ‘library’—was taken as
a basis. No implementation of Bulletproofs+ was found for Go. Since the library uses
secp2561k as a hardcoded elliptic curve, an abstraction inspired by the CIRCL library [100]
was created. The hardcoded curve was subsequently replaced with the abstraction for
the ease of testing the protocol with different curves. Additionally, the library code was
refactored and consolidated in places for additional clarity and fidelity to the Bulletproofs
paper [46].

A shortcoming of the library is that it lacks the batching technique which allows for greater
efficiency for proving and verifying two (or more) Bulletproofs. Due to time restrictions,
batching was not implemented on top of the library either. There exists an alternative
prototype implementation of Bulletproofs in Go (bp-go) which implements the batching
technique [101]. However, bp-go seems to mimic the original prototype of Bulletproofs
by Bünz in Java [102], rather than following the algorithm descriptions in the paper. As a
result, it is hard to verify why the parts of bp-go that deviate from the paper are correct.
Moreover, bp-go could not be run due to its use of a version of a package that is no longer
available1. While a newer version of the package exists2, it is not usable with bp-go without
code changes.

Some prime-field NIST elliptic curves (e.g. P-256, P-384) are available in Go as part of the
standard library, however, the direct use of the curve operations has been deprecated [103].
The CIRCL library enhances the P-256 and P-384 implementations provided by the Go
standard library, and provides optimised operations on P-384 [100]. CIRCL also supports
the use of the ristretto255 group implemented by the go-ristretto library [104]. The
versions of P-256, P-384 and ristretto255 provided by CIRCL, and ING Bank’s secp256k1
implementation were used for benchmarking the full protocol.
1https://pkg.go.dev/github.com/revolutionchain/btcd/btcec
2https://pkg.go.dev/github.com/revolutionchain/btcd/btcec/v2
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Initial benchmarks were run on a MacBook Pro with a 2.42 GHz M2 Pro processor. Both
the prover and verifier were part of the same program, all data was held in memory and no
data was serialised. The average of 1000 runs was taken where the candidate number was
fixed to 1500 and the proof range was set to [101, 2000] with bx = 16. Batching was not
used for generating or verifying Bulletproofs. The results are presented in Table 1.

Verifier’s work (ms)

λ κ bc Curve group Prover’s work (ms) BP RP Total

128 112 224 secp256k1 39.10 10.81 20.34 31.15
128 112 224 ristretto255 41.19 11.08 20.88 31.96
128 112 224 P-256 40.30 10.77 20.01 30.78
128 112 224 P-384 171.8 79.06 22.76 101.8
128 128 256 P-384 169.4 77.89 23.17 101.1

Table 1. Prototype benchmarks on a MacBook Pro with a 2.42 GHz M2 Pro processor. All
timings are in milliseconds. ‘BP’ represents the time required to verify both Bulletproofs,
while ‘RP’ represents the time needed to verify ΠVeq.
λ indicates the security level against confidentiality attacks and is upper bounded by the
128-bit security level of the ElGamal group. κ indicates the soundness level of the scheme.

It is clear from the benchmarks that on the prover’s side, the proof generation is unlikely
to impact the voting experience. While the voting client is written in C++ and not Go,
implementation performance in C++ should be comparable. While verification times are
lower than proving times, the server must be able to handle and process many concurrent
requests. As such, the direct impact is more difficult to assess based on these benchmarks
alone. However, it is clear that the curve choice may have a significant impact on the
verifier, whereas the impact on the prover is negligible in practice.

To better determine the impact of the protocol on the vote collection server, i.e. the verifier,
a standard IVXV benchmark was run with the verification function added in. According to
internal SCCEIV data, the peak concurrent load for IVXV has been 12 votes per second. A
typical benchmark target is therefore to process 40 votes per second until the target number
of votes has been cast [105]. As such, if the vote collector can keep up with this rate with
the additional verification added in, the protocol can be deemed practical.

The goal was to run benchmarks on the same servers that are used during the actual
elections, which are physical servers in Estonia hosted by the Estonian Information System
Authority (RIA). The servers run Ubuntu 22.04, with 8 CPU cores with a base frequency
of 2.90 GHz, and 16 GB of RAM. The processor itself is the Intel® Xeon® Gold 6326
Processor with 16 physical cores, however the vote collector is virtualised, with 8 CPU
cores available to the virtualised container. For load balancing and redundancy, the vote
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collector is comprised of three servers. Unfortunately, due to the proximity in time to the
2024 elections, there was little availability for benchmarking on this hardware. As a result,
only two benchmarks could be run for which P-256 and P-384 were chosen.

For the benchmarks, a proof of vote correctness was serialised into JSON and stored as a
Go variable in the server-side code. For each received vote, after performing the habitual
verification checks, the server de-serialised the JSON proof and verified it, therefore
simulating the actual work of the verifier. In a production setting, the proof and the ballot
will need to be read from the ASiC-E container containing the encrypted ballot instead.
However, this overhead is likely to be marginal. Additionally, for the benchmarking, the
server re-generated the public parameters before verifying the proof since this allowed
easily hooking the prototype to the vote collector. This can easily be avoided in production
since the public parameters are known in advance and are the same for every proof.

A total of 882366 ballots were cast, which was the size of the list of eligible voters in the
testing environment, and for which a baseline benchmark already existed. The results are
presented in Table 2. While the impact of the proof verification on the processing rate of
received ballots is negligible, some overhead is still introduced as shown by the increased
database error rate.

Category Duration Processing rate DB error count

Reference 06:21:03 38.59 16
P-256 06:20:28 38.66 228
P-384 06:24:47 38.22 1205

Table 2. Load tests with proof verification on the IVXV vote collector with 882366 ballots
cast. The duration is in hh:mm:ss format, the processing rate is in ballots per second, and
the benchmark target was 40 ballots/s. DB error count represents the number of errors
related to the etcd database of the vote collector.

The vote collector uses etcd3 as its database for storing ballots. While the common practice
is to allocate dedicated resources to etcd [106], the vote collector’s etcd shares its resources
with the rest of the collector’s services, including the verifier service. The higher etcd
error count could therefore be explained by the proof verification requiring some of the
processing power that was previously used by etcd only. However, it was not possible to
determine with certainty whether this was the case, or whether the etcd errors were caused
by unrelated state-changes to the system in-between benchmarks.

If an etcd error happens before the received ballot is stored, the collector will retry the

3https://etcd.io
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operation. However, if the ballot cannot be stored before the configured timeout—typically
between 5–10 seconds—is reached, the voting process will fail and the voter will have
to restart the voting process. While the number of etcd errors is higher with the proof
verifications added in, the error rates remain marginal compared to the total number of
votes cast. Furthermore, processing 40 ballots per second is three to eight times more than
the expected voting rate during the elections. Even if such a rate is achieved during a peak,
it is unlikely to be sustained for a period of several hours and the real impact is therefore
likely to be negligible. This remains a speculation however, since a benchmark with a
target rate of 10 ballots per second could not be performed due to the unavailability of the
infrastructure.

A possible improvement would be to deploy etcd on its own dedicated resources. Not only
could this improve or solve the performance problem that caused etcd transactions to fail,
it could be a worthwhile architecture improvement in general. While this may require
purchasing or leasing additional hardware, the resource requirements for etcd are modest
[107] and the cost should therefore not be prohibitive. Three 4-core machines with 16 GB
of RAM each should be sufficient for IVXV’s etcd needs. Improvements regarding vote
verification itself are discussed in Section 8.3.

Since no proofs were stored by the collector during the benchmarks, there is no empirical
data available regarding the additional space needed for storing the proofs. One reason
for this is due to the suboptimal serialisation of the internal data structures directly into
JSON. In practice, ASN.1 DER should be used as the encrypted ballot is also encoded
into an ASN.1 structure. To minimise space requirements further, elliptic curve point
compression could be used. Regardless, as space is easily extensible, it was not deemed to
be a potentially limiting factor.
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8. Discussion

8.1 Protocol complexity

While the protocol for proving vote correctness was chosen with simplicity in mind, the
resulting protocol is not exactly simple. The complexity is twofold: there is the complexity
due to the underlying range proof protocol, but also the complexity due to the group
switching strategy.

Group switching is seemingly unavoidable as long as the ElGamal ciphertext is generated
in the prime-order group of quadratic residues. Because operations in this group are
computationally expensive, it is unlikely that range proofs could be efficiently generated in
this group, regardless of the technique used. Range proofs must therefore be generated
in a group different than the one used for the ElGamal encryption, and a group switching
strategy must be used to bind the proof to the ciphertext. Regarding range proofs, the
author’s opinion is that Bulletproofs(+) are the most understandable of the considered
approaches.

8.2 Elliptic curve ElGamal

To avoid the need for group switching, the ElGamal ciphertext could be generated in
a computationally more performant group instead. In practice, this means using lifted
ElGamal in an elliptic curve group instead of the prime-order group of quadratic residues
modulo a prime. In lifted elliptic curve ElGamal, the message is represented as an integer
which is used as a scalar and is multiplied with the group’s base point (the generator). In
additive notation, this gives

EncH(m; r) = (rG,mG+ rH)

where G is the group’s base point, H is the public key (a point on the curve), m is the
message scalar, and r is a random scalar. By only encrypting an integer in the range
[0, 216 − 1] it is certain that the message scalar will not overflow the group order.

By picking an elliptic curve compatible with the range proof, the encryption and the range
proofs could then be generated in the same group. While this may not replace the need for
generating a range proof separately from the ciphertext, proving the equality of discrete
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logarithms in the same group is simpler than using the cross-group proof, e.g. as in [83].
Since there are less operations to do, this will also improve overall performance on top of
simplifying the vote correctness protocol. However, a complete migration to elliptic curves
involves requires re-implementing the current IVXV cryptosystem, thus losing the ‘tried
and tested’ advantage of the current implementation. The potential development effort is
therefore much higher than solely using elliptic curves for the vote correctness proof.

8.3 Improving performance

While the benchmark results show that the current prototype should already be practical
performance-wise, there are a number of ways to potentially improve the performance.
Performance improvements are especially important if the SEO decides that the current
buffer zone between real loads and test loads is not large enough.

The first change would be to implement Bulletproof batching to verify the two range
proofs simultaneously. This would replace the 4dlog2(n)e + 8 group elements needed
for verifying the proofs separately with 2dlog2(n) + 1e+ 4 elements, thus shortening the
proofs. While the exact time-improvement is hard to estimate, verification time should
improve at least by a quarter judging by data from the original paper [46, §6.3]. Second,
since Bulletproofs+ can be used as a drop-in replacement to Bulletproofs, Bulletproofs+
could be used instead, although this would improve the proof size rather than verification
time. While Bulletproofs++ are also a drop-in replacement to Bulletproofs(+), the protocol
itself is arguably more complicated than the former two. As such, this change would not
be recommended unless absolutely needed for performance. It might also be possible
to solely replace the inner product argument with future improvements in the literature
without replacing the Bulletproofs(+) themselves, however this is not guaranteed.

Finally, other than the potential improvements that could be obtained by optimising the
Go code, a more radical change would be to use another programming language for the
proof verification. In particular, Rust1 could be used since many production-grade open
source proof system implementations have been written in Rust (e.g. [94, 108–110]). In
turn, this would remove the need for an in-house implementation of the underlying proof
system and is likely to also improve performance. Developers could therefore treat the
implementation as a black-box, although any third-party library should still be audited.

1https://www.rust-lang.org
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8.4 Range vs set-membership proofs

While range proofs were chosen in this work due to their arguable simplicity compared
to the identified set-membership schemes, ZKSMs have advantages over ZKRPs as well.
Since ZKSMs do not require a continuous range of allowed values, but only a public set,
they offer additional flexibility over ZKRPs. One potential issue of using a range proof
for proving vote correctness is the uncertainty surrounding whether it is possible for the
candidate range not to be continuous. It is not clear from the law what happens to candidate
numbers if a candidate’s eligibility is revoked after the numbers have been issued. Likely,
this candidate number will not be available to vote for, at least not in the digital voter
lists. While the author sent a request to the SEO for clarifications, he unfortunately did not
receive a response.

The issue of continuous ranges can be solved by mapping the set of available candidates
to integers, and so the range proof approach remains applicable, although this would add
another layer of complexity. However, there is another edge case which is interesting to
consider.

1. In local government elections, the candidates are different per municipality, and
voters can only vote for candidates in their municipality. The candidate numbers are
unique per municipality, but not at the national level.

2. In European Parliament elections, the candidates are the same across Estonia, and
voters can vote for any candidate.

3. In parliamentary elections, the candidates are the same across Estonia, however
voters can only vote for the candidate in their electoral district (their county).

As such, for the first two cases, the range proofs can also be used to verify that the voter
votes for a candidate they are allowed to vote, not just for an eligible candidate. As an
example, if a resident of Tartu attempts to create an illegitimate ballot for a candidate in
Tallinn, the vote collector could identify this immediately and refuse to accept the vote.
Currently, this is mitigated by sorting ballots into separate ballot boxes depending on the
municipality associated with each voter. The ballot boxes are then decrypted separately, and
since the ballots contain also candidate names (Section 2.4), the outliers can be discarded.

In the third case, the range proof does not allow for this by default, whereas a set member-
ship proof would. Once more, it could then be possible to map all the eligible candidates
under the hood such that numbers for candidates in the same district are consecutive.
Changing the procedure for assigning candidate numbers itself is likely not a good idea
since the drawing by lots system has been used for a long time. Allocating specific ranges
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to districts is likely to encounter push-back due to fairness claims (smaller numbers are
higher in lists), although district ordering could theoretically also be drawn by lots.

8.5 Proof verification

The proofs of vote correctness must be included in the digitally singed ASiC-E container
alongside the encrypted ballot. The proofs of vote correctness must be verified by the vote
collector upon receiving each vote, as this enables it to provide immediate feedback to
the voter when something is amiss. It remains to determine what should the verification
application, the processing application, the key application, and the auditor do.

Since the verification application has the capability to decrypt the vote by using the
randomness used during encryption it can verify the range directly, without needing the
range proofs. In fact, the verification application currently already verifies whether the
ballot contains an eligible candidate. A necessary change to the verification application,
however, is to display the full candidate information as usual. That is, the verification
application should map the integer in the ballot back to the candidate list, particularly if
candidate numbers were remapped to avoid gaps in the range. In principle, it should not be
possible to cast a vote with an invalid range proof without the collector refusing to accept
the vote. However, the purpose of the verification application is to determine whether both
the voting client and the collector behaved correctly. Since the verification application can
only be used if a vote has been successfully cast, the verification application should still
verify the range proofs. If the range proofs do not validate, the application should alert the
voter that the collector misbehaved.

Similarly, the processing application should verify the range proofs to also make sure that
the collector did not misbehave. The after the fact verification of proofs is the main reason
why the proofs should be non-interactive and transferable. If the processing application
does not verify that all range proofs are valid, ballots with illegitimate contents could still
reach the decryption phase if they slipped by the collector. Since the processing application
performs all necessary verifications and is operated by the organiser, the output of the
application can be considered trusted. As such, the key application needs not verify the
range proofs, similarly to how the key application does not currently verify whether ballots
are well formed, as this is already done by the processor. In fact, it is not possible to verify
the vote correctness proofs after ballots have been mixed since the ballot randomness is
altered. Therefore, the proofs can only be verified with pre-mixnet ballots. The auditor
should verify all the proofs as well.

The processing application and the Android verification application are written in Java
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while the iOS verification application is written in Objective-C. This means that Bullet-
proofs will also have to be implemented in these other languages, which increases the
development effort significantly. While this development effort may outweigh the benefits
of proof verification by the verification applications, the verification by the processing
application is a must. For Java, the implementation by Bünz [102] could be taken as a
basis.
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9. Conclusion

In the current version of IVXV, there is no way to verify whether an encrypted ballot
contains a vote for an eligible candidate until the ballot is decrypted. As a result, using
a modified voting client, it is possible to cast a ballot containing arbitrary data, and this
ballot will be decrypted during the tallying process. The key application that decrypts the
ballots issues ZKPs of correct decryption to prove that it correctly decrypted the ballots.

Previously, it was not possible to generate proofs of correct decryption for invalid ballots,
however, the author has remediated this in the key application for the 2024 elections.
Regardless of whether proofs of correct decryption are generated for invalid ballots,
election observers are not allowed to verify those proofs, only a designated auditor is. The
rationale behind this is that invalid ballots may contain information that can identity the
original voter. As a result, observers cannot verify whether the key application has falsely
declared ballots as invalid as a means to manipulate the election result. By ensuring that
invalid ballots cannot reach the final ballot box and the decryption stage, all decryption
proofs could be made publicly available, e.g. online. Thus, anyone could verify that the
key application behaved correctly, and that the individual votes sum up to the claimed tally.

To this end, the goal of this work was to introduce ZKPs of ballot validity into IVXV.
That is, voters would have to prove that they have voted for a valid candidate, but without
leaking who they voted for. After considering different state of the art proof systems, the
Bulletproofs range proof was chosen. However, by themselves, Bulletproofs only allow to
prove that a committed integer is non-negative, and less than some maximum. That is, they
do not support range proofs for arbitrary ranges by default. Moreover, for performance
reasons, Bulletproofs must be generated in an elliptic curve group, which is separate from
the algebraic group where the ballot is encrypted in. To mitigate both issues, a group
switching strategy was proposed to bind the Bulletproofs in the elliptic curve group to the
group used for encryption. The group switching strategy was also enhanced to combine
two Bulletproofs such that they would form a range proof for an arbitrary range. As a
result, a system for proving that the ballot encrypts a number in an given range was created.
In cases where the candidate numbers are not consecutive, the proof system remains usable
by mapping the candidate numbers to a consecutive integer range.

To verify whether the proposed scheme is practically usable, a prototype was implemented
in Go, the same language that the vote collector is written in. This prototype demon-
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strates that the system is realisable in practice and can serve as a reference for a future
production implementation. Additionally, the proof verification was benchmarked on
the same infrastructure used during real elections to see whether the system is practical
performance-wise. While the results show a slight performance impact for the tested
configurations, the proposed system remains practical. The prototype is publicly available
and can be used to benchmark other configurations. Whether to implement the proposed
scheme into IVXV or to further research the subject beforehand will be determined by
discussions with the SEO.

Several potential optimisations were proposed to the scheme, the analysis of which is left
for future work. Additionally, some schemes that were discarded in this work but were
identified as potentially usable could be explored in future work to see how they compare
to the proposed scheme. Finally, whereas research on a post-quantum secure voting system
to use in Estonia is ongoing, porting such a range proof to a post-quantum scheme would
also be valuable.
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license shall not be valid for the period.

72



Appendix 2 – Plaintext ballot format

The Augmented Backus-Naur Form (ABNF) specification of the digital ballot format
defined in decision RT III, 22.09.2023, 1 of the NEC [20] is the following:

ehak-district = 4DIGIT

choice-no = 1*11DIGIT

district-choice = ehak-district %x2E choice-no

choicelist-name = 1*100UTF-8-CHAR

choice-name = 1*100UTF-8-CHAR

ballot = district-choice %x1F choicelist-name %x1F choice-name

The ABNF form of the padded ballot [21] is

padded-ballot = %x00 %x01 *%xFF %x00 ballot

where %xFF is repeated as many times as needed for the padded-ballot to occupy as many
bytes as the ElGamal modulus.
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